Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = K/Ka-band

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3298 KiB  
Article
Linkage Between Radar Reflectivity Slope and Raindrop Size Distribution in Precipitation with Bright Bands
by Qinghui Li, Xuejin Sun, Xichuan Liu and Haoran Li
Remote Sens. 2025, 17(14), 2393; https://doi.org/10.3390/rs17142393 - 11 Jul 2025
Viewed by 290
Abstract
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below [...] Read more.
This study investigates the linkage between the radar reflectivity slope and raindrop size distribution (DSD) in precipitation with bright bands through coordinated C-band/Ka-band radar and disdrometer observations in southern China. Precipitation is classified into three types based on the reflectivity slope (K-value) below the freezing level, revealing distinct microphysical regimes: Type 1 (K = 0 to −0.9) shows coalescence-dominated growth; Type 2 (|K| > 0.9) shows the balance between coalescence and evaporation/size sorting; and Type 3 (K = 0.9 to 0) demonstrates evaporation/size-sorting effects. Surface DSD analysis demonstrates distinct precipitation characteristics across classification types. Type 3 has the highest frequency of occurrence. A gradual decrease in the mean rain rates is observed from Type 1 to Type 3, with Type 3 exhibiting significantly lower rainfall intensities compared to Type 1. At equivalent rainfall rates, Type 2 exhibits unique microphysical signatures with larger mass-weighted mean diameters (Dm) compared to other types. These differences are due to Type 2 maintaining a high relative humidity above the freezing level (influencing initial Dm at bottom of melting layer) but experiencing limited Dm growth due to a dry warm rain layer and downdrafts. Type 1 shows opposite characteristics—a low initial Dm from the dry upper layers but maximum growth through the moist warm rain layer and updrafts. Type 3 features intermediate humidity throughout the column with updrafts and downdrafts coexisting in the warm rain layer, producing moderate growth. Full article
(This article belongs to the Special Issue Remote Sensing in Clouds and Precipitation Physics)
Show Figures

Figure 1

12 pages, 4246 KiB  
Article
A Multi-Stage WPDC Optimized Separately for Even and Odd Modes
by Fangkai Wang, Xinyi Zhang, Xudong Wang and Chenxuan Yang
Electronics 2025, 14(10), 2023; https://doi.org/10.3390/electronics14102023 - 15 May 2025
Viewed by 404
Abstract
This paper introduces a compact multi-stage Wilkinson power divider/combiner (WPDC) topology which enables broadband operation with isolation capacitors and requiring only one single isolation resistor. The application of an L network for even-mode impedance matching and a π network for odd-mode impedance matching [...] Read more.
This paper introduces a compact multi-stage Wilkinson power divider/combiner (WPDC) topology which enables broadband operation with isolation capacitors and requiring only one single isolation resistor. The application of an L network for even-mode impedance matching and a π network for odd-mode impedance matching results in a more compact circuit layout and lower insertion loss compared to conventional WPDC designs. A K- and Ka-band WPDC is designed using a 45RFE process with measurements verifying the proposed topology. The results of a two-stage WPDC show an insertion loss below 0.7 dB, isolation better than 20 dB, and input/output return loss exceeding 12 dB across the frequency range of 18.6 to 33.6 GHz. The corresponding amplitude imbalance is within 0.06 dB, and the phase difference is below 0.8 degrees. The core chip size is 210 μm × 186 μm, which is only 0.018 λ0 × 0.016 λ0 at the center frequency of 26.1 GHz. Thus, this integrated passive component holds significant promise as a viable solution for wideband applications. Full article
Show Figures

Figure 1

31 pages, 7090 KiB  
Article
Analysis of the Integrated Signal Design for Near-Space Communication, Navigation, and TT&C Based on K/Ka Frequency Bands
by Lvyang Ye, Shaojun Cao, Zhifei Gu, Deng Pan, Binhu Chen, Xuqian Wu, Kun Shen and Yangdong Yan
Atmosphere 2025, 16(5), 586; https://doi.org/10.3390/atmos16050586 - 13 May 2025
Viewed by 852
Abstract
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, [...] Read more.
With its unique environment and strategic value, the near space (NS) has become the focus of global scientific and technological, military, and commercial fields. Aiming at the problem of communication interruption when the aircraft re-enters the atmosphere, to ensure the needs of communication, navigation, and telemetry, tracking, and command (TT&C), this paper proposes an overall integration of communication, navigation, and TT&C (ICNT) signals scheme based on the K/Ka frequency band. Firstly, the K/Ka frequency band is selected according to the ITU frequency division, high-speed communication requirements, advantages of space-based over-the-horizon relay, overcoming the blackout problem, and the development trend of high frequencies. Secondly, the influence of the physical characteristics of the NS on ICNT is analyzed through simulation. The results show that when the K/Ka signal is transmitted in the NS, the path loss changes significantly with the elevation angle. The bottom layer loss at an elevation angle of 90° is between 143.5 and 150.5 dB, and the top layer loss is between 157.5 and 164.4 dB; the maximum attenuation of the bottom layer and the top layer at an elevation angle of 0° is close to 180 dB and 187 dB, respectively. In terms of rainfall attenuation, when a 30 GHz signal passes through a 100 km rain area under moderate rain conditions, the horizontal and vertical polarization losses reach 225 dB and 185 dB, respectively, and the rainfall attenuation increases with the increase in frequency. For gas absorption, the loss of water vapor is higher than that of oxygen molecules; when a 30 GHz signal is transmitted for 100 km, the loss of water vapor is 17 dB, while that of oxygen is 2 dB. The loss of clouds and fog is relatively small, less than 1 dB. Increasing the frequency and the antenna elevation angle can reduce the atmospheric scintillation. In addition, factors such as the plasma sheath and multipath also affect the signal propagation. In terms of modulation technology, the constant envelope signal shows an advantage in spectral efficiency; the new integrated signal obtained by integrating communication, navigation, and TT&C signals into a single K/Ka frequency point has excellent characteristics in the simulation of power spectral density (PSD) and autocorrelation function (ACF), verifying the feasibility of the scheme. The proposed ICNT scheme is expected to provide an innovative solution example for the communication, navigation, and TT&C requirements of NS vehicles during the re-entry phase. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 1376 KiB  
Article
Ultra-Wideband Analog Radio-over-Fiber Communication System Employing Pulse-Position Modulation
by Sandis Migla, Kristaps Rubuls, Nikolajs Tihomorskis, Toms Salgals, Oskars Ozolins, Vjaceslavs Bobrovs, Sandis Spolitis and Arturs Aboltins
Appl. Sci. 2025, 15(8), 4222; https://doi.org/10.3390/app15084222 - 11 Apr 2025
Viewed by 697
Abstract
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an [...] Read more.
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an arbitrary waveform generator (AWG) is employed for PPM signal generation, while demodulation is performed with a commercial time-to-digital converter (TDC) based on an event timer. To enhance the reliability of transmitted reference PPM (TR-PPM) signals, the transmission system integrates Gray coding and Consultative Committee for Space Data Systems (CCSDS)-standard-compliant Reed-Solomon (RS) error correcting code (ECC). System performance was evaluated by transmitting pseudorandom binary sequences (PRBSs) and measuring the bit error ratio (BER) across a 5-m wireless link between two 20 dBi gain horn (Ka-band) antennas, with and without a 20 km single-mode optical fiber (SMF) link in transmitter side and ECC at the receiver side. The system achieved a BER of less than 8.17 × 10−7, using a time bin duration of 200 ps and a pulse duration of 100 ps, demonstrating robust performance and significant potential for space-to-ground telecommunication applications. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Devices and Intelligent Systems)
Show Figures

Figure 1

32 pages, 1004 KiB  
Article
Highly Adaptive Reconfigurable Receiver Front-End for 5G and Satellite Applications
by Mfonobong Uko, Sunday Ekpo, Sunday Enahoro, Fanuel Elias, Rahul Unnikrishnan and Yasir Al-Yasir
Technologies 2025, 13(4), 124; https://doi.org/10.3390/technologies13040124 - 22 Mar 2025
Viewed by 800
Abstract
The deployment of fifth-generation (5G) and beyond-5G wireless communication systems necessitates advanced transceiver architectures to support high data rates, spectrum efficiency, and energy-efficient designs. This paper presents a highly adaptive reconfigurable receiver front-end (HARRF) designed for 5G and satellite applications, integrating a switchable [...] Read more.
The deployment of fifth-generation (5G) and beyond-5G wireless communication systems necessitates advanced transceiver architectures to support high data rates, spectrum efficiency, and energy-efficient designs. This paper presents a highly adaptive reconfigurable receiver front-end (HARRF) designed for 5G and satellite applications, integrating a switchable low noise amplifier (LNA) and a single pole double throw (SPDT) switch. The HARRF architecture supports both X-band (8–12 GHz) and K/Ka-band (23–28 GHz) operations, enabling seamless adaptation between radar, satellite communication, and millimeter-wave (mmWave) 5G applications. The proposed receiver front-end employs a 0.15 μm pseudomorphic high electron mobility transistor (pHEMT) process, optimised through a three-stage cascaded LNA topology. A switched-tuned matching network is utilised to achieve reconfigurability between X-band and K/Ka-band. Performance evaluations indicate that the X-band LNA achieves a gain of 23–27 dB with a noise figure below 7 dB, whereas the K/Ka-band LNA provides 23–27 dB gain with a noise figure ranging from 2.3–2.6 dB. The SPDT switch exhibits low insertion loss and high isolation, ensuring minimal signal degradation across operational bands. Network analysis and scattering parameter extractions were conducted using advanced design system (ADS) simulations, demonstrating superior return loss, power efficiency, and impedance matching. Comparative analysis with state-of-the-art designs shows that the proposed HARRF outperforms existing solutions in terms of reconfigurability, stability, and wideband operation. The results validate the feasibility of the proposed reconfigurable RF front-end in enabling efficient spectrum utilisation and energy-efficient transceiver systems for next-generation communication networks. Full article
Show Figures

Graphical abstract

13 pages, 5328 KiB  
Article
InP/Si3N4 Hybrid Integrated Lasers for RF Local Oscillator Signal Generation in Satellite Payloads
by Jessica César-Cuello, Alberto Zarzuelo, Robinson C. Guzmán, Charoula Mitsolidou, Ilka Visscher, Roelof B. Timens, Paulus W. L. Van Dijk, Chris G. H. Roeloffzen, Luis González, José Manuel Delgado Mendinueta and Guillermo Carpintero
Photonics 2025, 12(1), 77; https://doi.org/10.3390/photonics12010077 - 16 Jan 2025
Viewed by 1184
Abstract
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed [...] Read more.
This paper presents an integrated tunable hybrid multi-laser module designed to simultaneously generate multiple radiofrequency (RF) local oscillator (LO) signals through optical heterodyning. The device consists of five hybrid InP/Si3N4 integrated lasers, each incorporating an intracavity wavelength-selective optical filter formed by two micro-ring resonators. Through beating the wavelengths generated from three of these lasers, we demonstrate the simultaneous generation of two LO signals within bands crucial for satellite communications (SatCom): one in the Ka-band and the other in the V-band. The device provides an extensive wavelength tuning range across the entire C-band and exhibits exceptionally narrow optical linewidths, below 40 kHz in free-running mode. This results in ultra-wideband tunable RF signals with narrow electrical linewidths below 100 kHz. The system is compact and highly scalable, with the potential to generate up to 10 simultaneous LO signals, being a promising solution for advanced RF signal generation in high throughput satellite payloads. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

12 pages, 8273 KiB  
Article
A Compact V-Band Transit Time Oscillator with Reflective Modulation Cavity
by Zulong Chen, Lei Wang, Junpu Ling, Lili Song, Juntao He, Jinmei Yao and Weili Xu
Electronics 2024, 13(16), 3290; https://doi.org/10.3390/electronics13163290 - 19 Aug 2024
Viewed by 907
Abstract
Improving compactness is essential for high-power microwave (HPM) sources. In this paper, a novel reflective modulation cavity is proposed and investigated in a V-band relativistic coaxial transit-time oscillator (RCTTO). The cold cavity analyses and particle-in-cell simulations show that the reflective modulation cavity has [...] Read more.
Improving compactness is essential for high-power microwave (HPM) sources. In this paper, a novel reflective modulation cavity is proposed and investigated in a V-band relativistic coaxial transit-time oscillator (RCTTO). The cold cavity analyses and particle-in-cell simulations show that the reflective modulation cavity has larger reflection coefficients of TEM mode and stronger electron beam modulation capability when compared with a uniform modulation cavity. When the input diode voltage is 391 kV, the beam current is 4.91 kA, and when the guiding magnetic field is 0.6 T, the compact V-band RCTTO produces an output microwave power of 518 MW (conversion efficiency of 27.0%). Compared with the original RCTTO, the compact V-band RCTTO featuring a reflective modulation cavity exhibits a 24.8% increase in output power and a 5.4% improvement in efficiency, and the axial length of the magnetic field uniform region is reduced by 24.2%. The compact V-band RCTTO also demonstrates a broad operation voltage range, indicating potential for stable operation with voltage fluctuations in experiments. Furthermore, the reflective modulation cavity can be integrated into other high-frequency O-type HPM devices to enhance compactness, thereby diminishing the demands on the magnetic field region, which is advantageous for the future permanent packaging of HPM sources. Full article
Show Figures

Figure 1

10 pages, 10160 KiB  
Article
Dual-Band Antenna Array Fed by Ridge Gap Waveguide with Dual-Periodic Interdigital-Pin Bed of Nails
by Boju Chen, Xiaoming Chen, Xin Cheng, Yiran Da, Xiaobo Liu, Steven Gao and Ahmed A. Kishk
Sensors 2024, 24(16), 5117; https://doi.org/10.3390/s24165117 - 7 Aug 2024
Cited by 1 | Viewed by 1557
Abstract
A dual-band (K-/Ka-band) antenna array is presented. An ultra-wideband antenna element in the shape of a double-ridged waveguide is used as a radiation slot, and a novel dual-periodic ridge gap waveguide (RGW) with an interdigital-pin bed of nails (serving as a filter) is [...] Read more.
A dual-band (K-/Ka-band) antenna array is presented. An ultra-wideband antenna element in the shape of a double-ridged waveguide is used as a radiation slot, and a novel dual-periodic ridge gap waveguide (RGW) with an interdigital-pin bed of nails (serving as a filter) is used to realize dual-band operation. By periodically arranging the pins of two different heights in two dimensions, the proposed RGW with interdigital-pin bed of nails is able to realize and flexibly adjust two passbands. The widely used GW-based back cavity boosts the realized gain and simplifies the feed network design. A 4 × 4 prototype array was designed, fabricated, and measured. The results show that the array has two operating bands at 24.5–26.4 GHz and 30.3–31.5 GHz, and the realized gain can reach 19.2 dBi and 20.4 dBi, respectively. Meanwhile, there is a very significant gain attenuation at stopband. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Antennas: Second Edition)
Show Figures

Figure 1

16 pages, 8372 KiB  
Article
Design and Analysis of K-Band Single-Pole Double-Throw Switches Based on GaAs Technology
by Sida Tang, Xiaoqing Liu, Mengye Cai, Jiahui Guan, Kaili Wang, Peng Li and Jitai Han
Crystals 2024, 14(7), 657; https://doi.org/10.3390/cryst14070657 - 17 Jul 2024
Viewed by 1164
Abstract
Two K-band switch circuits, each consisting of a single-pole double-throw (SPDT) switch, have been built using a 0.15 μm GaAs process. One circuit utilizes diode techniques while the other utilizes field effect transistor (FET) techniques. The diode single-pole double-throw switches that have been [...] Read more.
Two K-band switch circuits, each consisting of a single-pole double-throw (SPDT) switch, have been built using a 0.15 μm GaAs process. One circuit utilizes diode techniques while the other utilizes field effect transistor (FET) techniques. The diode single-pole double-throw switches that have been devised exhibit exceptional linearity and are capable of withstanding high power levels. The switches exhibit a return loss of 10 dB or higher, an insertion loss of 3 dB or lower, and operate within a frequency range of 19 GHz to 25 GHz. They have a compact design with a core size of only 1.05 mm2 and consume a total power of 136.8 mW. The FET SPDT switch circuits are created utilizing a parallel–parallel quarter-wavelength transmission line architecture. This design allows for a higher power output compared to using a diode. The transistorized single-pole double-throw switch circuit is designed using a parallel–parallel quarter-wavelength transmission line architecture. This design ensures a low insertion loss. By adjusting the length of the transmission line, the circuit can operate in both frequency bands; the K-band and Ka-band. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

24 pages, 10588 KiB  
Article
Evaluation and Application of SMRT Model for L-Band Brightness Temperature Simulation in Arctic Sea Ice
by Yanfei Fan, Lele Li, Haihua Chen and Lei Guan
Remote Sens. 2023, 15(15), 3889; https://doi.org/10.3390/rs15153889 - 5 Aug 2023
Cited by 3 | Viewed by 2002
Abstract
Using L-band microwave radiative transfer theory to retrieve ice and snow parameters is one of the focuses of Arctic research. At present, due to limitations of frequency and substrates, few operational microwave radiative transfer models can be used to simulate L-band brightness temperature [...] Read more.
Using L-band microwave radiative transfer theory to retrieve ice and snow parameters is one of the focuses of Arctic research. At present, due to limitations of frequency and substrates, few operational microwave radiative transfer models can be used to simulate L-band brightness temperature (TB) in Arctic sea ice. The snow microwave radiative transfer (SMRT) model, developed with the support of the European Space Agency in 2018, has been used to simulate high-frequency TB in polar regions and has obtained good results, but no studies have shown whether it can be used appropriately in the L-band. Therefore, in this study, we systematically evaluate the ability of the SMRT model to simulate L-band TB in the Arctic sea ice and snow environment, and we show that the results are significantly optimized by improving the simulation method. In this paper, we first consider the thermal insulation effect of snow by adding the thermodynamic equation, then use a reasonable salinity profile formula for multi-layer model simulation to solve the problem of excessive L-band penetration in the SMRT single-layer model, and finally add ice lead correction to resolve the large influence it has on the results. The improved SMRT model is evaluated using Operation IceBridge (OIB) data from 2012 to 2015 and compared with the snow-corrected classical L-band radiative transfer model for Arctic sea ice proposed in 2010 (KA2010). The results show that the SMRT model has better simulation results, and the correlation coefficient (R) between SMRT-simulated TB and Soil Moisture and Ocean Salinity (SMOS) satellite TB is 0.65, and the RMSE is 3.11 K. Finally, the SMRT model with the improved simulation method is applied to the whole Arctic from November 2014 to April 2015, and the simulated R is 0.63, and the RMSE is 5.22 K. The results show that the SMRT multi-layer model is feasible for simulating L-band TB in the Arctic sea ice and snow environment, which provides a basis for the retrieval of Arctic parameters. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Sea Ice)
Show Figures

Figure 1

12 pages, 6018 KiB  
Article
Theoretical Design of a Dual-Band TE01/TE02 Mode Gyrotron Traveling Wave Tube
by Rutai Chen, Tianzhong Zhang, Qixiang Zhao and Sheng Yu
Electronics 2023, 12(15), 3282; https://doi.org/10.3390/electronics12153282 - 30 Jul 2023
Cited by 1 | Viewed by 1618
Abstract
A dual-band (K/Ka) TE01/TE02 mode gyrotron traveling wave tube is presented in this article. To suppress parasitic oscillations, a lossy-dielectric-loaded interaction circuit is employed. The particle-in-cell simulation results show that when it operates in K-band, the operating mode is the [...] Read more.
A dual-band (K/Ka) TE01/TE02 mode gyrotron traveling wave tube is presented in this article. To suppress parasitic oscillations, a lossy-dielectric-loaded interaction circuit is employed. The particle-in-cell simulation results show that when it operates in K-band, the operating mode is the TE01 mode, with a peak output power of 87.1 kW, a saturated gain of 42.74 dB, and a −3 dB bandwidth of 0.7 GHz, and when it operates in Ka-band, the operating mode is the TE02 mode, with a peak output power of 62 kW, a saturated gain of 60.76 dB, and a −3 dB bandwidth of 2 GHz. Moreover, in the operating frequency range of the Ka-band, the overall gain is greater than 57 dB. To meet the requirements of dual-band operating, a dual-state magnetic injection gun is designed, a dual-mode coaxial cavity input coupler is proposed, and a dual-band output system is developed. All of these components showed excellent performance in simulations. Full article
(This article belongs to the Special Issue Microwave, Millimeter and Terahertz Wave Power Electronic Devices)
Show Figures

Figure 1

14 pages, 4529 KiB  
Article
Fully-Metallic Additively Manufactured Monolithic Double-Ridged Waveguide Rotman Lens in the K/Ka-Band
by Nelson J. G. Fonseca, Sophie-Abigaël Gomanne, José Rico-Fernández, Petar Jankovic, Jaione Galdeano, Giovanni Toso, Piero Angeletti, Manuel Arrebola and Oscar Quevedo-Teruel
Sensors 2023, 23(14), 6573; https://doi.org/10.3390/s23146573 - 21 Jul 2023
Cited by 10 | Viewed by 2496
Abstract
This paper reports on the design and experimental validation of a fully-metallic double-ridged waveguide 10 × 10 Rotman lens additively manufactured as a single part. The wide band operation of this quasi-optical beamformer enables us to cover the uplink and downlink frequencies allocated [...] Read more.
This paper reports on the design and experimental validation of a fully-metallic double-ridged waveguide 10 × 10 Rotman lens additively manufactured as a single part. The wide band operation of this quasi-optical beamformer enables us to cover the uplink and downlink frequencies allocated to satellite communications in the K/Ka-band, from 17.3 GHz to 30 GHz. The feeding port design was adjusted to enable vertical printing, thus minimizing the use of supporting structures. A prototype was manufactured and tested. The reported results indicate losses in the range of 0.5 dB in the lower-frequency band and 0.8 dB in the upper-frequency band, including the waveguide transitions added for test purposes. The measured reflection and coupling coefficients remain below −11.5 dB over the operating band. The standard deviation of the residual phase error across the array ports is below 5° in simulation and below 10° in measurements. Array factors synthesized using the scattering parameters confirm the good stability of the beamforming functionality over the wide frequency band analyzed. This monolithic design is a promising step toward more integrated antenna systems, such as a compact dual-stack configuration for planar array design. Full article
Show Figures

Figure 1

12 pages, 3933 KiB  
Technical Note
Sea Ice Detection by an Unsupervised Method Using Ku- and Ka-Band Radar Data at Low Incidence Angles: First Results
by Maria Panfilova and Vladimir Karaev
Remote Sens. 2023, 15(14), 3530; https://doi.org/10.3390/rs15143530 - 13 Jul 2023
Cited by 4 | Viewed by 1691
Abstract
This paper presents the first results of sea ice detection using the data of Ka- and Ku-band radars at low incidence angles. A classification method based on an unsupervised K-means approach is applied to the arrays of the data for the Arctic and [...] Read more.
This paper presents the first results of sea ice detection using the data of Ka- and Ku-band radars at low incidence angles. A classification method based on an unsupervised K-means approach is applied to the arrays of the data for the Arctic and Antarctic regions. Comparison with Advanced Microwave Scanning Radiometer 2 (AMSR-2) data was performed, and the dependence of classification performance was evaluated for incidence angles from 0° to 18.15°. This paper evaluates the classification accuracy of sea ice detection based on Ku-band, Ka-band, and their combination. Preliminary results indicate that the classification based solely on Ku-band data achieves the best performance. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Ocean, Sea Ice and Atmosphere Dynamics)
Show Figures

Figure 1

22 pages, 8218 KiB  
Article
Design of a Compact Analog Complex Correlator for Millimeter-Wave Radiation Temperature Measurement System
by Wangdong He, Anyong Hu, Chen Dong, Xi Chen, Jianhao Gong and Jungang Miao
Micromachines 2023, 14(4), 867; https://doi.org/10.3390/mi14040867 - 17 Apr 2023
Cited by 2 | Viewed by 1833
Abstract
Human body temperature is a fundamental physiological sign that reflects the state of physical health. It is important to achieve high-accuracy detection for non-contact human body temperature measurement. In this article, a Ka band (32 to 36 GHz) analog complex correlator using the [...] Read more.
Human body temperature is a fundamental physiological sign that reflects the state of physical health. It is important to achieve high-accuracy detection for non-contact human body temperature measurement. In this article, a Ka band (32 to 36 GHz) analog complex correlator using the integrated six-port chip is proposed, and a millimeter-wave thermometer system based on the designed correlator is completed for human body temperature measurement. The designed correlator utilizes the six-port technique to achieve large bandwidth and high sensitivity, and miniaturization of the correlator is achieved through an integrated six-port chip. By performing the single-frequency test and the broadband noise measurement on the correlator, we can determine that the dynamic range of input power of the correlator is −70 dBm to −35 dBm, and the correlation efficiency and equivalent bandwidth are 92.5% and 3.42 GHz, respectively. Moreover, the output of the correlator varies linearly with the input noise power, which reveals that the designed correlator is suitable for the field of human body temperature measurement. Then, a handheld thermometer system, with a size of 140 mm × 47 mm × 20 mm, is proposed using the designed correlator, and the measurement results show that the temperature sensitivity of the thermometer is less than 0.2 K. Full article
Show Figures

Figure 1

14 pages, 4977 KiB  
Review
A Review of Dielectric Resonator Antenna at Mm-Wave Band
by Meshari D. Alanazi
Eng 2023, 4(1), 843-856; https://doi.org/10.3390/eng4010051 - 6 Mar 2023
Cited by 16 | Viewed by 4945
Abstract
This paper is a comprehensive review of the recent literature studies on the developments and applications of millimeter-wave (mm-wave) dielectric resonator antennas (DRAs). Different designs and techniques for linear and circular polarized DRAs are discussed thoroughly. In addition, array and multiple-input multiple-output (MIMO) [...] Read more.
This paper is a comprehensive review of the recent literature studies on the developments and applications of millimeter-wave (mm-wave) dielectric resonator antennas (DRAs). Different designs and techniques for linear and circular polarized DRAs are discussed thoroughly. In addition, array and multiple-input multiple-output (MIMO) DRAs operating in the K, Ka, and V bands are illustrated. These applications are highly advantageous on many levels, resulting in the improved performance of the DRA in terms of obtaining a higher gain, lower losses, a higher efficiency, and a lower profile. This work reviews the fundamental research trends in antennas to meet the demands of fifth-generation (5G) communications and beyond. The reviewed studies are scholarly sources which contain measurement-based results. This paper concludes by highlighting the limitations of the studies and the implications for future research. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

Back to TopTop