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Abstract: In recent years, the implications of the generalized (GUP) and extended (EUP) uncertainty
principles on Maxwell-Boltzmann distribution have been widely investigated. However, at high
energy regimes, the validity of Maxwell-Boltzmann statistics is under debate and instead, the
Jittner distribution is proposed as the distribution function in relativistic limit. Motivated by these
considerations, in the present work, our aim is to study the effects of GUP and EUP on a system
that obeys the Jittner distribution. To achieve this goal, we address a method to get the distribution
function by starting from the partition function and its relation with thermal energy which finally
helps us in finding the corresponding energy density states.
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1. Introduction

A general prediction of any quantum gravity theory is the possibility of the existence
of a minimal length in nature, known as the Planck length, below which no other length
can be observed. It is commonly believed that in the vicinity of the Planck length, the
smooth structure of spacetime is replaced by a foamy structure due to quantum gravity
effects [1-3]. Therefore, the Planck scale can be regarded as a separation line between
classical and quantum gravity regimes. There is a general consensus that in the scale
of this minimal size, the characteristics of different physical systems would be altered.
For instance, the introduction of a minimal length scale results in a generalization of the
Heisenberg uncertainty principle (HUP) in such a way that it incorporates gravitationally
induced uncertainty, postulated as the generalized uncertainty principle (GUP) [4]. In fact,
the HUP breaks down for energies near the Planck scale, i.e., when the Schwarzschild
radius is comparable to the Compton wavelength and both are close to the Planck length.
This deficiency is removed by revising the characteristic scale through the modification of
HUP to GUP.

In recent decades, numerous studies on the effects of GUP in various classical and
quantum mechanical systems have been performed [5-30]. Uncertainty in momentum
is also bounded from below and it is proposed that its minimum is non-zero, a proposal
which modifies HUP to the extended uncertainty principle (EUP) [31-35]. In the presence
of EUP and GUP, the general form of modified HUP is proposed as

AxAp > 2(1 +a(8x) +1(8p) +7), (1)

in which «, #, and <y are positive deformation parameters [35,36]. It should be noted that
there is another formulation of GUP and EUP [37], and also that extended forms of HUP
like GUP may break the fundamental symmetries such as Lorentz invariance and CPT [38].

On the other hand, it is known that heavy ions can be accelerated to very high
kinetic energies constituting an ensemble of ideal gas with relativistic velocities in large
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particle accelerators [39]. In such high energy regimes, minimal length effects may appear
and could have their own influences on the statistics of ideal gases. Therefore, particle
accelerators could provide a setting to examine the phenomena related to short-distance
physics [40,41]. Based on minimum observable length, the quantum gravity implications
on the statistical properties of ideal gases have been investigated in many studies, see,
e.g., [42-45] and references therein. In the framework of GUP: (i) deformed density of states
and an improved definition of the statistical entropy have been introduced in [46,47], (ii)
Maxwell-Boltzmann statistics have been investigated in [48], and (iii) employing Maxwell-
Boltzmann statistics, the thermodynamics of relativistic ideal gas has also been analyzed
in [49]. In the same manner, there have been some studies on the deformation of statistical
concepts in the EUP framework [50,51].

Jiittner distribution is a generalization of Maxwell-Boltzmann statistics to the rela-
tivistic regimes, which appears in high energy physics. Since quantum gravity is a high
energy physics scenario, its statistical effects may be more meaningful in the framework
of Jiittner distribution function compared to the Maxwell-Boltzmann distribution [52].
Here, our main aim is to study the effects of GUP and EUP on Maxwell-Boltzmann and
Jiittner distributions and density of states in energy space. To achieve this goal, we begin
by providing an introductory note on Maxwell-Boltzmann and Jiittner distributions. We
then address a way to find these functions by starting from the partition function of the
system. The effects of GUP and EUP on these statistics are also studied in the subsequent
sections, respectively. The last section is devoted to a summary of the work.

2. The Maxwell-Boltzmann and Jiittner Distribution Functions

We begin by considering an ideal gas composed of non-interacting particles and set
the units so that wg = 27th = 1, where wy denotes the fundamental volume of each cell
in the two-dimensional phase-space. This value of wy originates from the well-known
commutation relation between canonical coordinates x and p, and indeed, it is the direct
result of HUP [22]. Therefore, any changes in HUP can affect wy.

2.1. Non-Relativistic Gas

Let us consider a 3-dimensional classical gas consisting of N identical non-interacting
particles of mass m with E = mv?/2, where E and v denote the energy and velocity of
each particle, respectively. At temperature T, the Maxwell-Boltzmann (MB) distribution
function is given by

2
fme(v, B) = Zmsp eXp(—ﬁn;U), ()

where Z)p is a normalization constant, and g = 1/KgT with Kp being the Boltzmann
constant. In terms of E, we have

dov

fup = 4700 (E) fuup (0(E), B) 7= = ZupeE? exp(—pE), 6)

in which ZypE is a new normalization constant and E2 denotes the density of states with
energy E. The normalization constants can be calculated using the normalization constraint

./(;Oo fump(v, B)d’o = /:0 fmp(E, B)dE = 1. @)
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The extremum of fyp(E, B) is located at E = 1/2p = E§ik or equally at velocity v =
1/+/Bm = v§i. One can also evaluate the partition function of the mentioned gas (with
Hamiltonian H = p?/2m) as

1 o (@)
Oy =]+ [exp(piyd™xa™ p "=
3N (5)
where
NR _ ./exp(—‘BH)d3xd3p _ V(T)g, ©)

denotes the single partition function of a nonrelativistic gas and V refers to the total volume
of the system. In this manner, the corresponding thermal energy per particle (U) takes
the form
dInQNR 3
OO _ 3 _ gpe @)
op 2p
Although the use of Equation (7) dates back to before the discovery of special relativity
theory by Einstein, the ultra-relativistic expression of E produces interesting results in this
framework [53].

utt = /EfMB(E/ﬁ)dE = -
0

2.2. Relativistic Gas

In the relativistic situations, where E = /p?c? + m?c* in which ¢ denotes the light
velocity and m is the rest mass, one can employ Equation (5) to get

Qr = Q¥ (o),
(o) = eV i) ®)

(i0)3 '

as the partition function of a single particle [52,54,55]. Finally, we obtain the thermal energy
per particle as

URzlll—ia

Hl(l) : a
5 2(”)] = ———InQf. )

HY (iv) 9p
In the above equations, ¢ = Bmc?, H,(f ) (io) is the n-th order Hankel function of the
j-th kind, and prime denotes a derivative with respect to the argument of the function.
The above results were first reported in 1911 by Jiittner [52], who attempted to calculate
the energy of a relativistic ideal gas using the conventional theory of relativistic statistical
mechanics. According to Jiittner’s results, a comprehensive study of a 3-dimensional
relativistic system requires the Jiittner distribution (f;)

fi(n,B) =Z;(v* - 1)%ve><p(*ﬁm7), (10)

instead of MB distribution (fysp) [56-61]. Jittner distribution is indeed the relativistic

extension of generalized isotropic MB distribution when E(p) = m+(p)c*. Here, Z; is the
1
Vi-0?

been set so that ¢ = 1. In terms of E, simple calculations give us Jiittner distribution as

fi(E, B) = Zjeaj(E) exp(—BE), (11)

normalization constant and v = refers to the Lorentz factor, where the units have




Symmetry 2021, 13,213

40f11

where a;(E) = EV E? — m? denotes the density of states in energy representation, and in
terms of v one finds

in which Z;g and Zjy are new normalization constants [57]. These constants can be
evaluated using the normalization condition

ffoJ;J(% By = [ f;(E,{i)dE =1 )
= [y f1(7v(0), B)Ldv = [} f1(v, B)d%v,

which clearly states that

1 dy
fi(v,B) = mf](?(@/ﬁ)%- (14)
2
Itis finally useful to note that the extremum of fj(v, B) islocated atv = {/1 — (’%m) =

v?"t leading to Ei"t = %, a solution which is valid only when Bm < 5. There are also other

proposals for Jiittner function (fj(7y, B)) [56-61], but the standard form Equation (11) con-
sidered in this paper is confirmed by some previous studies [58-60]. The corresponding
thermal energy per particle (i.e., (7y)) (or equally, the ratio U/ N in Equation (12)) can also
be obtained by using f;(v, B), as

2
op

Although Equations (7) and (15) are simple examples, they confirm that the mean
value of energy (or equally, thermal energy) can be calculated by using either the partition
function or the distribution function. Moreover, employing these equations, one can find
the distribution functions whenever the partition function is known. Indeed, if the phase-
space geometry is deformed, then the partition function will also be modified. Therefore,
one can find the corresponding modified MB and Jiittner distributions by directly using
Equations (7) and (15) for the non-relativistic and relativistic cases, repetitively.

UR = m(y) = /: Ef;(E, B)dE = — 2 InQR. (15)

3. Generalized Uncertainty Principle, Partition and Distribution Functions

In the units of &~ = ¢ = 1, the relation [x, p;] = idy is the standard commutation
relation between the canonical coordinates x and p. This relation leads to HUP in the
framework of quantum mechanics and is the backbone of calculating wy [48,53]. Thus, the
volume element d®xd®p changes whenever different coordinates (commutation relations)
are used [42-44,48]. For GUP, we have [14,31]

AXAP > % {1 +y(AP)? + .. } (16)

where 77 denotes the GUP parameter and it is based on modified commutation relations

[Xk, Pi] = i (0 (1 +nP?) +1'PePy),

[Pe, Pl =0, i (17)
2n—n'+(2 "y P

(X, X)) = iR (B X, — PXy),

where k,I = 1,2, 3 for a 3-dimensional space [43,62]. P and X are generalized coordinates
which are not necessarily equal to the canonical coordinates p and x. In this manner,
assuming 7’ = 0 and 7 is independent of %, one finds

A3Xd3p

Pxd’p - ————,
ERRTETE

(18)
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which must be considered as the volume element in X-P space instead of d3xd>p [42-44,48].
This means that the density of states in the X-P phase space is affected by the factor of
(14 7P?) [42]. In this situation, the single particle partition function can also be found as

: d*Xd3P
QpUr = / eXP(*ﬁH(P,X))W, (19)

where H(P, X) denotes Hamiltonian in generalized coordinates [42,43,50]. The correspond-
ing thermal energy (UCY") can be calculated using the relation

uGUP ﬁ ].I'l QGUP/ (20)

along with Equation (19), which finally gives

H(P H(P))—&P

f exp(~BH(P) T2

In obtaining this equation, the fact that H(= E) is independent of X has been used
which cancels integration over d3X. Indeed, the density of states in phase-space is changed
under the shadow of GUP [42,43,48], a result which affects the distribution function.

For a single free particle with H = %, the ideal gas law is still valid, and therefore

QNR ,GUP QNRI<2’Z’7 3>’ (22)

while the explicit form of the function I ( B ) can be followed in [44] and Q{\] R

introduced in Equation (6). The effects of GUP are stored in I ( 2751'7 , 3) , and in the limit of
7 — 0, one gets the ordinary single partition function of a free particle. Correspondingly,
the partition function of a single free relativistic particle can also be evaluated using

H? = P2 + m? in Equation (19). By doing so one finds

d®>Xadp
RGUP _ / exp(—pV/PE+m2) 25 (23)

1+ 77P2)

for which the solution reads

R,GUP 151
Qe = of ( Z,Bm)’ (24)

when m > % [50]

3.1. Maxwell-Boltzmann Statistics

Bearing in mind the recipe which led to the expression for fjsg(E, B), one can get the
modified MB distribution in the X-P space as

GUP 2 exp(—BE) dp

(E,p) = 4P (E) 2ECEE 4
(25)
GUP E2 exp(—BE)
MBE (142ymE)?

where Z§HE denotes the normalization constant in the presence of GUP. The thermal

energy then reads
uGUP _ / E GUP(E '8) (26)
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One can also find the normalization constant ZEA%IE as
Edexp(—pE) . |
® E2 exp(—
zihe =1 | PLPolaE| 27)
0 (1+2ymE)

which is equal to ZypE in the limit where # — 0. Obviously, the MB distribution fy5(E, B),
is recovered through Equation (25) at the appropriate limit of # = 0. For the density of
states in HUP framework we have a5(E) = v/E. This relation is modified in the presence
of GUP effects and thus, the density of states will take the following form

VE
Gur _
ayg (E) = A1 2mER (28)

which is in agreement with the results of [18]. The extremum of f;% (E, ) is also located
at

8mnESYL

_ 1 tomEg (]
4miy (1+ 10myESEL)?

s‘j\’ff

-1, (29)

which clearly indicates €5 — E§}: whenever 7 — 0. In Figure 1, the effects of GUP on
the distribution function in MB statistics are shown where the temperature is considered to
be constant (B = 1).

0.50 T T T T

0.10 -

Maxwell-Boltzmann distribution

00260 = oy 0w q Mo B e ey 0 e e e By ey
0.0 0.5 1.0 1.5 2.0 25 3.0

Energy

Figure 1. Maxwell-Boltzmann (MB) distribution versus energy for # = 0.5,1,1.5. The ordinary MB
distribution is denoted by the solid curve. Here, we have set the units so that 7 = ¢ = K = 1.
3.2. [iittner Statistics

In the relativistic situation, where H = v/ P2 + m?(= E), following the above recipe,
we get the modified Jiittner distribution as

GUP _ cupEVE? — m?exp(—BE)
fr (EB)=Z R R

(30)
which recovers fj(E, B) in the limit where # — 0. Here, Z?EUP is also a normalization con-
stant which can be calculated by utilizing the normalization constraint [,* {7/ (E, )dE =
1. We also find
EVE? — m?
aft*(E) = — (31)
(1+n[E? —m?])

as the density of states in Jiittner statistics in the presence of GUP. Figure 2 shows the
behavior of f]G UP(E, B) for some positive values of 17 parameter.
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0.050 F T T T |

0.010}

0.005|

Juntter distribution

0.001}

1.0 1.5 2.0 2.5 3.0
Energy

Figure 2. Behavior of Jiittner distribution against energy for 7 = 0.5,1,1.5. The solid curve belongs
to the ordinary Jiittner distribution and we have set the units so that s = c = Kg = 1.

4. Extended Uncertainty Principle, Partition and Distribution Functions
The modified Heisenberg algebra in the EUP framework can be recast into the follow-
ing form
[X;, Pi] =i(6; + aX;X;), (32)
where « is a small positive parameter known as the EUP parameter. In the limit of « — 0,
the canonical commutation relation of the standard quantum mechanics is recovered. Based
on the commutation relation Equation (32), the HUP is modified by

(AX;)(AP) > %[1 +a(AX) +..], (33)

which leads to a non-zero minimum uncertainty in momentum as (AP;), ., = v/«. Here,
we apply the coordinate representation of the operators X; and P; expressed as

X = x;,

34
P = ((51] +DCXin)Pj, ( )

where x; and p; satisfy the standard commutation relation of ordinary quantum mechanics.
This representation yields the following commutation relation for the momentum operator

[P, Pj] = ia(xipj — pix;).- (35)
In the X-P space, the modified volume element

> Xd>P

A (36)
(1+aX?)

should be considered instead of d3xd®p [20]. We then proceed to consider the consequences

of such a modification in calculating the partition and distribution functions. For a single

particle, the partition function in X-P space can be found as

> Xd*P
QEUP _ /ex _BH(P, X)) -2 (37)
| P(—pH(PX)) == o
whence we get the corresponding thermal energy as
urr =~ 2 g Q. (38)

9p
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The above expression can also be combined with Equation (37) to give Equation (21). For
the free non-relativistic and relativistic particles, one finds

3
2mrm\ 2 Vesr(a,r)
VR e () = LR, 9)
and (5,17)
effFlX, T
QR JEUP _ ffV Qf, (40)

respectively, where we have defined Vs (a, 1) fo 1f3§2)3 as the effective volume, and

in the limit of « — 0, the usual volume V is recovered. Since V, f f(zx, r) is independent of 5,
the thermal energy related to EUP is the same as what we obtained in Equations (7) and
(9), respectively. Consequently, EUP does not affect the Maxwell-Boltzmann and Jiittner
distribution functions, because the corresponding effective volume has no dependence on

B.

5. Conclusions

The Jiittner function is the relativistic version of MB distribution and is proper for
studying relativistic (high energy) systems. On the other hand, the minimal length comes
into play in the realms of high energy physics. Hence, compared with MB distribution,
the study of its effects on Jiittner distribution would be more meaningful. Thus, our
attempt in the present work was to address an algorithm with the help of which, one
can get the distribution function, starting from the partition function. Motivated then
by the abovementioned arguments, we studied the effects of GUP and EUP (two aspects
of quantum gravity) on Jiittner distribution and the corresponding density of states in
energy space. We also addressed the consequence of applying our approach to the MB
distribution in order to find the density of states Equation (28) which is in agreement with
previous reports [42,48], a result which confirms our approach. The results of our study are
summarized in Tables 1 and 2 for the non-relativistic and relativistic regimes, respectively.

Table 1. Non-relativistic ideal gas (27th = 1).

HUP GUP EUP
The volume of phase 213 2\3
space element ! (1+nP?) (1+aX?)
Density of S _VE__
y of States VvE (A72myE) VE
Single Partition 5 3 > 3 2my 21 2
Function V(%) V(%) I<T’3> eff(“ r)<T>

Table 2. Relativistic ideal gas (27th = 1).

HUP GUP EUP

The volume of phase
space element
Density of States EVEZ —m? (1_@7 é;::ﬁw EVE? —m?
3
Single Partition orem ) 3 V<27ém> “¥(o) <1 - ,7175 i) , 2mm )\
Function V(T) ¥(o) when 1 > % W f(w,r)(T) ¥ (o)

1 (1+np2)° (1+ax?)’

It is obvious from Figures 1 and 2, that the effects of the existence of a non-zero
minimal length (17 # 0) on distribution functions become more sensible as energy increases.
This means that the probability of achieving high energy states when # # 0 is smaller than
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the 7 = 0 case. It is also worth mentioning that though there exist some proposals to test
observable effects of the minimal length [63], the Planck scale is currently far beyond our
reach. Since by comparing the Planck energy (=~10'® TeV) [64] to the energy achieved in the
Large Hadron Collider (=10 TeV) [65], or the Planck length (~1073° m) to the uncertainty
within the position of the LIGO mirrors (~10718 m) [66] or the Planck time (=10~%* s) to
the shortest light pulse produced in laboratory(=10~17 s) [67], we observe that we are at
best 15 orders of magnitude away from achieving the Planck scale. In this regard, future
developments within these experimental setups are expected in order to search for the
footprints of GUP effects in nature.

Finally, regarding the results reported in [68] and [69] the usefulness of Tsallis distribu-
tion function in high energy physics is expected. In line with these results, some researchers
study the possibility of describing the distribution of transverse momentum in the Large
Hadron Collider and Relativistic Heavy Ion Collider, employing the Tsallis distribution,
expressed as [70-73]

fr(3,B) = Zr[1 — (1— q)BE] ™. (41)

Here Z1 and g denote the normalization constant and non-extensivity parameter, respec-
tively. Although utilizing our approach to investigate the effects of GUP and EUP on Equa-
tion (41) is straightforward, such a study needs more careful analysis owing to the issues
raised by [38] which states a criterion on the domains of validity of Maxwell-Boltzmann,
Jiittner, and Tsallis distributions as a special high energy phenomenon. Therefore, it can be
considered as an attractive topic for future studies.
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