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Abstract: Currently, there is no widely accepted consensus regarding a consistent thermodynamic
framework within the special relativity paradigm. However, by postulating that the inverse tempera-
ture 4-vector, denoted as β, is future-directed and time-like, intriguing insights emerge. Specifically,
it is demonstrated that the q-dependent Tsallis distribution can be conceptualized as a de Sitterian
deformation of the relativistic Maxwell–Jüttner distribution. In this context, the curvature of the de
Sitter space-time is characterized by

√
Λ/3, where Λ represents the cosmological constant within the

ΛCDM standard model for cosmology. For a simple gas composed of particles with proper mass m,
and within the framework of quantum statistical de Sitterian considerations, the Tsallis parameter q
exhibits a dependence on the cosmological constant given by q = 1 + ℓc

√
Λ/n, where ℓc = h̄/mc is

the Compton length of the particle and n is a positive numerical factor, the determination of which
awaits observational confirmation. This formulation establishes a novel connection between the
Tsallis distribution, quantum statistics, and the cosmological constant, shedding light on the intricate
interplay between relativistic thermodynamics and fundamental cosmological parameters.

Keywords: Maxwell–Jüttner distribution; Tsallis distribution; de Sitter quantum field; ΛCDM
standard model

1. Preamble: Temperature, Heat, and Entropy, That Obscure Objects of Desire

It is opportune to start out this contribution by quoting what de Broglie wrote in Ref. [1]
about the relation between entropy invariance and relativistic variance of temperature
(translated from French):

It is well known that entropy, alongside the space-time interval, electric charge, and
mechanical action, is one of the fundamental “invariants” of the theory of relativity. To
convince oneself of this, it is enough to recall that, according to Boltzmann, the entropy
of a macroscopic state is proportional to the logarithm of the number of microstates that
realize that state. To strengthen this reasoning, one can argue that, on the one hand, the
definition of entropy involves a integer number of microstates, and, on the other hand, the
transformation of entropy during a Galilean reference frame change must be expressed
as a continuous function of the relative velocity of the reference frames. Consequently,
this continuous function is necessarily constant and equal to unity, which means that
entropy is constant.

Let us now give more insights about what “relativistic thermodynamics” could be. In
relativistic thermodynamics (i.e., in accordance with special relativity), there exist three
points of view [2], distinguished from the way heat ∆Q and temperature T transform under
a Lorentz boost from frame R0 (e.g., laboratory) to comoving frame R with velocity v = vn̂
relative to R0 and Lorentz factor

γ(v) =
1√

1 − v2/c2
. (1)
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(a) The covariant viewpoint (Einstein [3], Planck [4], de Broglie [1] . . . ),

∆Q = ∆Q0γ−1 , T = T0γ−1. (2)

(b) The anti-covariant one (Ott [5], Arzelies [6], . . . ),

∆Q = ∆Q0γ , T = T0γ. (3)

(c) The invariant one, “nothing changes” (Landsberg [7,8], . . . ),

∆Q = ∆Q0 , T = T0. (4)

Also note that, for some authors (Landsberg [9], Sewell [10], . . . ), “there is no mean-
ingful law of temperature under boosts”.

Nevertheless, more recent approaches (e.g., Ref. [11]) show that there is a covariant
relativistic thermodynamics with proper absolute temperature in full agreement with
relativistic hydrodynamics.

In this paper, we adopt the viewpoint in Section 1 and review de Broglie’s arguments in
Section 2. In Section 3, we remind you of the construction of the so-called Maxwell–Jüttner
distribution presented by Synge in Ref. [12]. In Section 4, we then present the de Sitter
space-time, its geometric description as a hyperboloid embedded in the 1 + 4 Minkowski
space-time, and give some insights of the fully covariant quantum field theory of free scalar
massive elementary systems propagating on this manifold. In Section 5, we then develop
our arguments in favor of a novel connection between the Tsallis distribution, quantum
statistics, and the cosmological constant, shedding light on the intricate interplay between
relativistic thermodynamics and fundamental cosmological parameters. A few comments
end our paper in Section 6.

2. Relativistic Covariance of Temperature According to de Broglie (1948)

Here, we give an account of the de Broglie arguments given in Ref. [1] in favor of the
covariant viewpoint (a).

Let us consider a body B with proper frame R0, and total proper mass M0. It is
assumed to be in thermodynamical equilibrium with temperature T0 and fixed volume V0
(e.g., a gas enclosed with surrounding rigid wall). Let us then observe B from an inertial
frame R, in which B has constant velocity v = vn̂ relative to R0. We suppose that a source
in R provides B with heat ∆Q. In order to keep the velocity v of B constant, work W has
to be performed on B. Its proper mass is consequently modified M0 → M′

0. Then, from
energy conservation,

(M′
0 − M0)γc2 = ∆Q + W , γ = γ(v) =

1√
1 − v2/c2

, (5)

and the relativistic second Newton law,

∆P = M′
0γv − M0γv =

∫
Fdt =

1
v

∫
Fvdt =

W
v

, (6)

we derive

∆Q =
c2

v2 γ−2W = (M′
0 − M0)c2γ−2 . (7)

In frame R0, there is no work performed (the volume is constant), there is just trans-
mitted heat ∆Q0 = (M′

0 − M0)c2. By comparison with (7), one infers that heat transforms
as

∆Q = ∆Q0γ−1 . (8)
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Since the entropy S =
∫ dQ

T is relativistic invariant, S = S0, temperature finally
transforms as

T = T0γ−1 (9)

3. Maxwell–Jüttner Distribution

We now present a relativistic version of the Maxwell–Boltzmann distribution for
simple gases, namely the Maxwell–Jüttner distribution [13–15]. We follow the derivation
given by Synge in Ref. [12]; see also Ref. [16], and the recent article [17] for a comprehensive
list of references. Note that this distribution is defined on the mass hyperboloid, and not
expressed in terms of velocities (see the recent [18] and references therein).

Our notations [19] for event four-vector x in the Minkowskian space-time M1,3 and
for four-momentum k are the following:

M1,3 ∋ x = (xµ) = (x0 = x0, xi = −xi, i = 1, 2, 3) ≡ (x0, x) , (10)

equipped with the metric ds2 = (dx0)2 − dx · x ≡ gµνdxµdxν, gµν = diag(1,−1,−1,−1),

k = (kµ) = (k0, k). (11)

The Minkowskian inner product is noted by:

x · x′ = gµνxµx′ν = xµx′µ = x0x′0 − x · x′. (12)

Let k be four-momentum, pointing toward point A of the mass shell hyperboloid
V+

m = {k , k · k = m2c2}, and an infinitesimal hyperbolic interval at A, with length

dσ = mc dω , (13)

where dω =
d3k
k0

is the Lorentz-invariant element on V+
m . Given a time-like unit vector n,

and a straight line ∆ passing through the origin and orthogonal (in the M1,3 metric sense)
to n, denote by dΩ the length of the projection of dσ on ∆ along n. As is illustrated in
Figure 1, one easily proves that

dΩ = |k · n|dω (= d3k if n = (1, 0)). (14)
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Figure 1. n is a time-like unit vector, ∆ is a straight line passing through the origin and orthogonal (in
the Minkowskian metric sense) to n. The 4-momentum k = (kµ) = (k0, k) points toward a point A of
the mass shell hyperboloid V+

m = {k , k · k = m2c2}. dΩ is the length of the projection, along n, of an
infinitesimal hyperbolic interval at A of length dσ = mcdω.

Figure 1. n is a time-like unit vector, ∆ is a straight line passing through the origin and orthogonal (in
the Minkowskian metric sense) to n. The 4-momentum k = (kµ) = (k0, k) points toward a point A of
the mass shell hyperboloid V+

m = {k , k · k = m2c2}. dΩ is the length of the projection, along n, of an
infinitesimal hyperbolic interval at A of length dσ = mcdω.
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The sample population consists of those particles with world lines cutting the in-
finitesimal space-like segment dΣ orthogonal to the time-like unit vector n, as is shown in
Figure 2.
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Figure 2. C is the portion of the null cone starting at the event M = (x0, x) and limited by the
infinitesimal space-like segment dΣ orthogonal to the time-like unit vector n. R is the region
delimited by M, the portion of the light cone C, and dΣ.
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Figure 2. C is the portion of the null cone starting at the event M = (x0, x) and limited by the
infinitesimal space-like segment dΣ orthogonal to the time-like unit vector n. R is the region
delimited by M, the portion of the light cone C, and dΣ.

Every particle that traverses the segment C of the null cone between M and dΣ must
also traverse dΣ (causal cone). Consequently, regardless of the collisions that take place
within the infinitesimal region R bounded by M, the segment of the light cone C, and dΣ,
the number of particles crossing Σ, is predetermined as the number crossing C:

ν = N · n dΣ = dΣ
∫

V+
m

N (x, k)dΩ , (15)

where N is the numerical-flux four-vector and N (x, k) is the distribution function. By
the conservation of four-momentum at each collision in a simple gas, the flux of four-
momentum across dΣ is predetermined as the flux across C,

Tµ · n dΣ = dΣ
∫

V+
m

N (x, k) ckµdΩ , (16)

where T = (Tµν) is the energy-momentum tensor.
The most probable distribution function N at M is that which maximizes the following

entropy integral:

F = −dΣ
∫

V+
m

N (x, k) logN (x, k)dΩ. (17)

Variational calculus with five Lagrange x-dependent multipliers α and ηµ associated
with constraints on ν and Tµ · n, respectively, leads to the solution

N (x, k) = C(x) exp(−η(x) · k) , C = eα−1. (18)

Scalar C and time-like four-vector η are determined by the constraints on ν = N · n dΣ
and Tµ · n dΣ:

C
∫

V+
m

kµ e−η·k dω = Nµ , C
∫

V+
m

ckµkν e−η·k dω = Tµν. (19)

established by taking into account that n is arbitrary.
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With the equations of conservation

∂ · N = 0 , ∂ · Tµ = 0 , (20)

We finally obtain as many equations as the 19 functions of x: C, η, N, T. The following
partition function is essential for all relevant calculations.

Z(η) :=
∫

V+
m

e−η·k d3k
k0

=
4πmc√

η · η
K1

(
mc
√

η · η
)

(21)

where Kν is the modified Bessel function [20]. Hence, the components of the numerical flux
four-vector N and of the energy tensor T in (19) are given in terms of derivatives of Z and,
finally, in terms of Bessel functions by

Nµ = −C
∂Z
∂ηµ = C

4πm2c2ηµ

η · η
K2

(
mc
√

η · η
)

, (22)

Tµν = Cc
∂2Z

∂ηµ∂ην
= C4πm2c3


mc

K3

(
mc√η · η

)

(η · η)3/2 ηµην −
K2

(
mc√η · η

)

η · η
gµν


. (23)

For a simple gas consisting of material particles of proper mass m, the components of
the energy–momentum tensor T are given by

Tµν = (ρ + p)uµuν − pgµν , (24)

where ρ is the mean density, p is the pressure, and u =
(

uµ =
dxµ

ds

)
, u · u = 1, is the mean

four-velocity of the fluid. Hence, by identification with (23), Synge [12] proved that a
relativistic gas consisting of material particles of proper mass m is a perfect fluid through the
relations:

uµ =
ηµ√
η · η

, (25)

ρ + p = C4πm3c4
K3

(
mc√η · η

)

√
η · η

, (26)

p = C4πm2c3
K2

(
mc√η · η

)

η · η
. (27)

From (26) and (27), we derive the expression of the density:

ρ = C
4πm3c4
√

η · η

K1

(
mc√η · η

)
+ K3

(
mc√η · η

)

2
= −C

4πm3c4
√

η · η
K′

2

(
mc
√

η · η
)

. (28)

Let us define the invariant quantity, i.e., the projection of the numerical flux (57) along
the four-velocity of the fluid,

N0 = N · u = C
4πm2c2
√

η · η
K2

(
mc
√

η · η
)

. (29)
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This expression, which represents the number of particles per unit length (“numerical
density”) in the rest frame of the fluid (u0 = 1), allows us to determine the function
C = C(x), and to eventually write Distribution (18) as:

N (x, k) =
N0

m2ckBTaK2(mc2/kBTa)
exp

(
− cu · k

kBTa

)
. (30)

The term Ta := c/(kB
√

η · η), where kB is the Boltzmann constant, is a “relativistic”
absolute temperature. It is precisely the relativistic invariant, which might fit pointview (c).

Note that, with this expression, (27) reads as the usual gas law:

p = N0kBTa. (31)

The Maxwell–Boltzmann non relativistic distribution (in the space of momenta) is
recovered by considering the limit at kBTa ≪ mc2 in the rest frame of the fluid:

K2

(
mc2

kBTa

)
≈
√

πkBTa

2mc2 e−
mc2

kBTa

⇒ N (x, k)

≈ N0(2πmkBTa)
−3/2 exp

(
− k0c − mc2

kBTa

)
≈ N0(2πmkBTa)

−3/2 exp
(
− k2

2mkBTa

)
. (32)

Inverse Temperature Four-Vector

The found distribution (30) on the Minkowskian mass shell for a simple gas consisting
of particles of proper mass m leads us to introduce the relativistic thermodynamic, future
directed, time-like four-coldness vector β, as the four-version of the reciprocal of the
thermodynamic temperature (see also Ref. [2]):

cu
kBTa

≡ β = (β0 = β0 > 0, βi = −βi) = (β0, β), (33)

with absolute coldness as relativistic invariant,
√

β · β =
c

kBTa
≡ βa . (34)

It is precisely the way the component β0 transforms under a Lorentz boost, β′
0 =

γ(v)(β0 − v · β/c), which explains the way the temperature transforms à la de Broglie,
T 7→ T′ = Tγ−1. So, in the follow-up, we call Maxwell–Jüttner distribution the following
relativistic invariant:

N (β, k) =
N0

mcK1(mcβa)
exp

(
−β · k

)
, (35)

where the space-time dependence holds through the coldness four-vector coldness field
β = β(x).

4. de Sitter Material

We now turn our attention to the de Sitter (dS) space-time and some important features
of a dS covariant quantum field theory.

4.1. de Sitter Geometry

The de Sitter space-time can be viewed as a hyperboloid embedded in a five-dimensional
Minkowski space M1,4 with metric gαβ =diag(1,−1,−1,−1,−1) (see Figure 3). Of course,
one should keep in mind that all choices of one point in the manifold as an origin are
physically equivalent, as are the points of the Minkowski space-time M1,3.

MR ≡ {x ∈ R5; x2 = gαβ xαxβ = −R2}, α, β = 0, 1, 2, 3, 4 , (36)
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where the pseudo-radius R (or inverse of curvature) is given by R =

√
3
Λ

within the

cosmological ΛCDM standard model. The de Sitter symmetry group is the group SO0(1, 4)
of proper (i.e., det . = 1) and orthochronous (to be precised later) transformations of the
manifold (36). This group has ten (Killing) generators Kαβ = xα∂β − xβ∂α.

!2
!1

0
1

2

!2
!1

0
1

2
!1

!0.5

0

0.5

1

x4

de Sitter space!time

Space direction

x0

Figure 3. The de Sitter space-time as viewed as a one-sheet hyperboloid embedded in Minkowski
space M1,4.

4.2. Flat Minkowskian Limit of de Sitter Geometry

Let us choose the global coordinates ct ∈ R, n ∈ S2, r/R ∈ [0, π] for the dS manifold
MR. They are defined by:

MR ∋ x = (x0, x1, x2, x3, x4) ≡ (x0, x, x4)

= (R sinh(ct/R), R cosh(ct/R) sin(r/R)n, R cosh(ct/R) cos(r/R)) ≡ x(t, x). (37)

At the limit R → ∞, and the manifold MR → M1,3, the Minkowski space-time tangent
to MR at, say, the de Sitter point OdS = (0, 0, R), chosen as the origin, since

MR ∋ x ≈
R→∞

(ct, r = r n, R) ≡ (ℓ, R) , ℓ ∈ M1,3. (38)

At this limit, the de Sitter group becomes the Poincaré group:

lim
R→∞

SO0(1, 4) = P↑
+(1, 3) = M1,3 ⋊ SO0(1, 3). (39)

Consistently, the ten de Sitter Killing generators contract (in the Wigner–Inönü sense) to
their Poincaré counterparts Kµν, Πµ, µ = 0, 1, 2, 3, after rescaling the four K4µ −→ Πµ = K4µ/R.

4.3. de Sitter Plane Waves as Binomial Deformations of Minkowskian Plane Waves

The de Sitter (scalar) plane waves are defined in [21] as

ϕτ,ξ(x) =
(

x · ξ

R

)τ

, x ∈ MR , ξ ∈ C1,4 , (40)

where C1,4 = {ξ ∈ R5 , ξ · ξ = 0} is the null cone in M1,4. They are solutions of the
Klein–Gordon-like equation

1
2

Mαβ Mαβϕτ,ξ(x) ≡ R22Rϕτ,ξ(x) = τ(τ + 3)ϕτ,ξ(x) ,
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where Mαβ = −i
(

xα∂β − xβ∂α

)
is the quantum representation of the Killing vector Kαβ,

and 2R stands for the d’Alembertian operator on MR. For the values

τ = −3
2
+ iν , ν ∈ R , (41)

they describe free quantum motions of “massive” scalar particles on MR. The term “massive”
is justified by the flat Minkowskian limit R → ∞, i.e., Λ → 0. This limit is understood as
follows.

(i) First, one has the Garidi [22] relation between proper mass m (curvature independent)
of the spinless particle and the parameter ν ≥ 0:

m =
h̄

Rc

[
ν2 +

1
4

]1/2
⇔ ν =

√
R2m2c2

h̄2 − 1
4

≈
R large

Rmc
h̄

=
mc
h̄

√
3
Λ

. (42)

The quantity
h̄cν

R
is a kind of at rest de Sitterian energy, which is distinct of the proper

mass energy mc2 if Λ ̸= 0.
(ii) Then, with the mass shell parameterization ξ =

(
ξ0 = k0

mc , ξ = k
mc , ξ4 = 1

)
∈ C+

1,4, one
obtains at the limit R → ∞:

ϕτ,ξ(x) = (x · ξ/R)−3/2+iν →
R→∞

eik·ℓ/h̄ , ℓ = (ct, r). (43)

This relation allows us to consider Function (40) as deformation of the plane waves
propagating in the Minkowskian space-time M1,4. This pivotal property justifies the name
“dS plane waves” granted to Function (40).

4.4. Analytic Extension of dS Plane Waves for dS QFT

The dS plane waves ϕτ,ξ(x) =

(
x · ξ

R

)τ

, τ = −3/2 + iν, are not defined on all

MR, due to the possible change of sign of x · ξ. A solution to this drawback is found
through the extension to the tubular domains in the complexified hyperboloid MC

R ={
z = x + iy ∈ C5 , z2 = gαβ zαzβ = −R2 or, equivalently, x2 − y2 = −R2 , x · y = 0

}
:

T ± := T± ∩MC
R , T± := M1,4 + iV±, (44)

where the forward and backward light cones V± :=
{

x ∈ M1,4 , x0 ≷
√

x2 + (x4)2
}

allow
for a causal ordering in M1,4.

Then, the extended plane waves ϕτ,ξ(z) =
(

z · ξ

R

)τ

are globally defined for z ∈ T ±

and ξ ∈ C+
1,4.

These analytic extensions allow for a consistent QFT for free scalar fields on MR: the
two-point Wightman function Wν(x, x′) = ⟨Ω, ϕ(x)ϕ(x′)Ω⟩ can be extended to the com-
plex covariant, maximally analytic, two-point function having the spectral representation
in terms of these extended plane waves:

Wν(z, z′) = cν

∫

V+
m ∪V−

m

(z · ξ)−3/2+iν(ξ · z′)−3/2−iν dk
k0

, z ∈ T − , z′ ∈ T +. (45)

Details are found in Ref. [21] and in the recent volume [23].
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4.5. KMS Interpretation of Wν(z, z′) Analyticity

From the analyticity of Wν(z, z′), we deduce that Wν(x, x′) defines a 2iπR/c periodic
analytic function of t, whose domain is the periodic cut plane

Ccut
x,x′ = {t ∈ C , Im(t) ̸= 2nπR/c , n ∈ Z} ∪ {t , t − 2inπR/c ∈ Ix,x′ , n ∈ Z} , (46)

where Ix,x′ is the real interval on which (x − x′)2 < 0. Hence, Wν(z, z′) is analytic in
the strip

{t ∈ C , 0 < Im(t) < 2iπR/c} , (47)

and satisfies

Wν(x′(t + t′, x), x) = lim
ϵ→0+

Wν

(
(x, x′(t + t′ + 2iπR/c − iϵ, x)

)
, t′ ∈ R . (48)

This is a KMS relation at (∼ Hawking) temperature

TΛ =
h̄c

2πkBR
:=

h̄c
2πkB

√
Λ
3

. (49)

5. de Sitterian Tsallis Distribution
5.1. Tsallis Entropy and Distribution: A Short Reminder

Given a discrete (resp. continuous) set of probabilities {pi} (resp. continuous x 7→ p(x))
with ∑i pi = 1 (resp.

∫
p(x)dx = 1), and a real q, the Tsallis entropy [24] is defined as

Sq(pi) = k
1

q − 1

(
1 − ∑

i
pq

i

)
resp. Sq[p] =

1
q − 1

(
1 −

∫
(p(x))qdx

)
. (50)

As q → 1, Sq(pi) → SBG(p) = −k ∑i pi ln pi (Boltzmann–Gibbs). The Tsallis entropy
is non additive for two independent systems, A and B, for which p(A ∪ B) = p(A) p(B),
Sq(A∪ B) = Sq(A)+ Sq(B)+ (1− q)Sq(A)Sq(B). A Tsallis distribution is a probability distri-
bution derived from the maximization of the Tsallis entropy under appropriate constraints.
The so-called q-exponential Tsallis distribution has the probability density function

(2 − q)λ[1 − (1 − q)λx]1/(1−q) ≡ (2 − q)λeq(−λx) , (51)

where q < 2 and λ > 0 (rate) arise from the maximization of the Tsallis entropy under
appropriate constraints, including constraining the domain to be positive. More details are
given, for instance, in Ref. [25].

Let us now show how the Tsallis distribution can be viewed as a Λ-deformation of the
Maxwell–Jüttner distribution.

5.2. Coldness in de Sitter

Analogous with the de Sitter plane waves, we introduce the following distributions
on the subset ∼ V+

m of the null cone C+
1,4 = {ξ ∈ M1,4 , ξ · ξ = 0 , ξ0 > 0}:

ϕτ,ξ(x) =
(
b · ξ

B

)τ

, b ∈ MB , ξ =

(
k0

mc
> 0,

k
mc

,−1
)

, (52)

where one should note the negative value −1 for ξ4, and

MB ≡ {b ∈ M1,4 , b2 = gαβ bαbβ = −B2}, α, β = 0, 1, 2, 3, 4 , (53)

is the manifold of the “de Sitterian five-vector coldness fields” b = b(x).
Like for MR, we use global coordinates on MB:

β0 ∈ R , β = ∥β∥n ∈ R3 , ∥β∥/B ∈ [0, π] , (54)
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with

MB ∋ b ≡ b(β) = (b0, b1, b2, b3, b4) ≡ (b0,b, b4)

=
(

B sinh(β0/B), B cosh(β0/B) sin(∥β∥/B)n,−B cosh(β0/B) cos(∥β∥/B)
)

, (55)

in such a way that at large B we recover the Minkowskian coldness β:

MB ∋ b ∼
B→∞

(β, B).

We now need to connect the de Sitterian coldness scale B with Λ. Inspired by the

relativistic invariant βa =
c

kBTa
and the KMS temperature TΛ = h̄c

2πkB

√
Λ
3 , we write

B ∝
2π

h̄

√
3
Λ

, i.e., B =
n

h̄
√

Λ
, (56)

where n is a numerical factor. Note that, with the values

Λcurrent = 1.1056 × 10−52 m−2 , h̄ = 1.054571817 . . . × 10−34 J s ,

one obtains B ≈ 0.9 × 1060 n SI (inverse of a momentum).

5.3. A de Sitterian Tsallis Distribution

We now consider the distribution on MB × V+
m with B = n

h̄
√

Λ
:

N (b, k) = CB

(
b · ξ

B

)−mcB
= CB

(
b0

B
k0

mc
− b

B
· k

mc
+

b4

B

)−mcB

. (57)

b ∈ MB , ξ =

(
k0

mc
> 0,

k
mc

,−1
)

,

where the constant CB involves an associated Legendre function of the First Kind [26].
With the global coordinates (55), and with the constraint β0/B ∈ [0, π/2), the distri-

bution N (b, k) reads

N (b, k)

= CB

(
cosh(β0/B) cos(∥β∥/B) + sinh(β0/B)

k0

mc
− cosh(β0/B) sin(∥β∥/B)

n · k
mc

)−mcB

= CB exp
[
−mcB log

(
cosh(β0/B) cos(∥β∥/B)

)]

× exp

[
−mcB log

(
1 +

sinh(β0/B) k0

mc − cosh(β0/B) sin(∥β∥/B) n·k
mc

cosh(β0/B) cos(∥β∥/B)

)]
. (58)

At large B this expression becomes the Maxwell–Jüttner distribution:

N (b, k) ∼
B→∞

CBe−β·k.

Hence, going back to the original expression

N (b, k) = CB

(
b · ξ

B

)−mcB
= CB

(
b0

B
k0

mc
− b

B
· k

mc
+

b4

B

)−mcB

= CB

(
b4

B

)−mcB (
1 +

b · k
b4mc

)−mcB
, b := (b0,b),
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and introducing

q = 1 +
1

mcB
= 1 +

h̄
√

Λ
mcn

, (59)

We finally obtain the Tsallis-type distribution

N (b, k) = CB

(
b4

B

)−mcB(
1 − (1 − q)

B
b4 b · k

) 1
1−q

. (60)

Analogously to (21) and all subsequent determinations of thermodynamical quantities,
the following partition function is essential for their transcriptions to the de Sitter case:

ZdS(b, k) =
(
b4

B

)−mcB ∫

V+
m

(
1 +

b · k
b4mc

)−mcB d3k
k0

(61)

= 4πm2c2
(
b4

B

)−mcB ∫ ∞

0

(
1 +

(
b0

b4

)
cosh t

)−mcB
sinh2 t dt. (62)

With the following integral representation of the associated Legendre function of the
First Kind Pµ

ν (z) [26],

Pµ
ν (z) =

2−ν
(
z2 − 1

)−µ/2

Γ(−ν − µ)Γ(ν + 1)

∫ ∞

0
(z + cosh t)−ν−µ−1 sinh2ν+1 t dt , (63)

valid for z /∈ (−∞,−1] and Re(−µ) > Re(ν) > −1, the function (61) reads as

ZdS(b, k) = (8π)3/2Γ(1 − mcB)
(

B
b0

)mcB
(

B2 − b · b
b2

0

)mcB/2−3/4

PmcB−3/2
1/2

(
b4

b0

)
. (64)

6. Conclusions

In this contribution, we have forged a groundbreaking link between the Tsallis dis-
tribution, quantum statistics, and the cosmological constant, illuminating the complex
interplay between relativistic thermodynamics and a fundamental cosmological parameter.

Our key findings are encapsulated in Equations (59) and (60). The intricate technical
details of the associated thermodynamic features (flux number, energy-momentum tensor,
etc.) in the de Sitter space-time, along with their physical (and astrophysical!) implications
and determinations (e.g., numerical factor(s) n), are reserved for future exploration. In
this endeavor, analogous studies, such as those found in Refs. [27,28], may provide useful
insights and avenues for the advancement of this project.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. de Broglie, L. Sur la variance relativiste de la température. Cah. Phys. 1948, 31, 1–11.
2. Wu, Z.C. Inverse Temperature 4-vector in Special Relativity. Eur. Phys. Lett. 2009, 88, 20005. [CrossRef]
3. Einstein, A. Ueber das Relativitaetsprinzip und die aus demselben gezogenen Folgerungen. Jahrb. Rad. Elektr. 1907, 4, 411.
4. Planck, M. Zur Dynamik bewegter Systeme. Ann. Phys. 1908, 26, 1–35. [CrossRef]
5. Ott, H. Lorentz-Transformation der Wärme und der Temperatur. Zeitschr. Phys. 1963, 175, 70–104. [CrossRef]
6. Arzeliès, H. Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques. Nuov. Cim. 1965,

35, 792–804. [CrossRef]
7. Landsberg, P.T. Does a Moving Body Appear Cool? Nature 1966, 212, 571–572. [CrossRef]
8. Landsberg, P.T. Does a Moving Body Appear Cool? Nature 1967, 214, 903–904. [CrossRef]

http://doi.org/10.1209/0295-5075/88/20005
http://dx.doi.org/10.1002/andp.19083310602
http://dx.doi.org/10.1007/BF01375397
http://dx.doi.org/10.1007/BF02739342
http://dx.doi.org/10.1038/212571a0
http://dx.doi.org/10.1038/214903a0


Entropy 2024, 26, 273 12 of 12

9. Landsberg, P.T.; Matsas, G.E.A. Laying the ghost of the relativistic temperature transformation. Phys. Lett. A 1996, 223, 401–403.
[CrossRef]

10. Sewell, G.L. On the question of temperature transformations under Lorentz and Galilei boosts. J. Phys. A Math. Theor. 2008,
41, 382003. [CrossRef]

11. Bíró, T.S.; Ván, P. About the temperature of moving bodies. EPL 2010, 89, 30001. [CrossRef]
12. Synge, J.L. The Relativistic Gas; North-Holland Publishing Company: Amsterdam, The Netherlands, 1957.
13. Jüttner, F. Das maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie. Ann. Phys. 1911, 339, 856–882. [CrossRef]
14. van Dantzig, D. On the phenomenological thermodynamics of moving matter. Physica 1939, 6, 673–704. [CrossRef]
15. Taub, A.H. Relativistic Ranirine-Hugoniot Equations. Phys. Rev. 1948, 74, 328–334. [CrossRef]
16. Gazeau, J.-P.; Graffi, S. Quantum Harmonic Oscillator: A Relativistic and Statistical Point of View. Boll. Della Unione Mat. Ital. A

1997, 3, 815–839.
17. Chacón-Acosta, G.; Dagdug Hugo, L.; Morales-Técotl, A. Manifestly covariant Jüttner distribution and equipartition theorem.

Phys. Rev. E 2010, 81, 021126. [CrossRef] [PubMed]
18. Curado, E.M.F.; Cedeño, C.E.; Soares, I.D.; Tsallis, C. Relativistic gas: Lorentz-invariant distribution for the velocities. Chaos 2022,

32, 103110. [CrossRef]
19. Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 2.
20. Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed.; Springer:

Berlin/Heidelberg, Germany, 1966.
21. Bros, J.; Gazeau, J.-P.; Moschella, U. Quantum Field Theory in the de Sitter Universe. Phys. Rev. Lett. 1994, 73, 1746–1749.

[CrossRef] [PubMed]
22. Garidi, T. What is mass in desitterian physics? arXiv 2003, arXiv:hep-th/0309104.
23. Enayati, M.; Gazeau, J.-P.; Pejhan, H.; Wang, A. The de Sitter (dS) Group and Its Representations, an Introduction to Elementary Systems

and Modeling the Dark Energy Universe; Springer: Berlin/Heidelberg, Germany, 2022.
24. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
25. Tsallis, C. Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 2009, 39, 337–356.

[CrossRef]
26. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau

of Standards: Gaithersburg, MD, USA, 1964.
27. Bíró, T.S. Gyulassy, M.; Schram, Z. Unruh gamma radiation at RHIC. Phys. Lett. B 2012, 708, 276–279. [CrossRef]
28. Bíró, T.S.; Czinner,V.G. A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy.

Phys. Lett. B 2013, 726, 861–865. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0375-9601(96)00791-8
http://dx.doi.org/10.1088/1751-8113/41/38/382003
http://dx.doi.org/10.1209/0295-5075/89/30001
http://dx.doi.org/10.1002/andp.19113390503
http://dx.doi.org/10.1016/S0031-8914(39)90072-8
http://dx.doi.org/10.1103/PhysRev.74.328
http://dx.doi.org/10.1103/PhysRevE.81.021126
http://www.ncbi.nlm.nih.gov/pubmed/20365549
http://dx.doi.org/10.1063/5.0101935
http://dx.doi.org/10.1103/PhysRevLett.73.1746
http://www.ncbi.nlm.nih.gov/pubmed/10056876
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1590/S0103-97332009000400002
http://dx.doi.org/10.1016/j.physletb.2011.12.062
http://dx.doi.org/10.1016/j.physletb.2013.09.032

	Preamble: Temperature, Heat, and Entropy, That Obscure Objects of Desire
	Relativistic Covariance of Temperature According to de Broglie (1948)
	Maxwell–Jüttner Distribution
	de Sitter Material
	de Sitter Geometry
	Flat Minkowskian Limit of de Sitter Geometry
	de Sitter Plane Waves as Binomial Deformations of Minkowskian Plane Waves
	Analytic Extension of dS Plane Waves for dS QFT
	KMS Interpretation of W (z,z ) Analyticity

	de Sitterian Tsallis Distribution
	Tsallis Entropy and Distribution: A Short Reminder
	Coldness in de Sitter
	A de Sitterian Tsallis Distribution

	Conclusions
	References

