Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Istradefylline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 13615 KiB  
Article
The Anti-Parkinsonian A2A Receptor Antagonist Istradefylline (KW-6002) Attenuates Behavioral Abnormalities, Neuroinflammation, and Neurodegeneration in Cerebral Ischemia: An Adenosinergic Signaling Link Between Stroke and Parkinson’s Disease
by Michael G. Zaki, Elisabet Jakova, Mahboubeh Pordeli, Elina Setork, Changiz Taghibiglou and Francisco S. Cayabyab
Int. J. Mol. Sci. 2025, 26(12), 5680; https://doi.org/10.3390/ijms26125680 - 13 Jun 2025
Viewed by 1424
Abstract
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target [...] Read more.
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target in neurodegenerative disorders involving extracellular adenosine elevation. Istradefylline, a selective A2AR antagonist, has been approved for Parkinson’s disease (PD) adjunctive therapy and showed neuroprotective effects in PD and Alzheimer’s disease. However, the role of A2ARs in post-stroke neuronal damage and behavioral deficits remains unclear. We recently showed that A2AR antagonism prevented the adenosine-induced post-hypoxia synaptic potentiation of glutamatergic neurotransmission following the hypoxia/reperfusion of hippocampal slices. Here, we investigated the potential neuroprotective effects of istradefylline in male Sprague-Dawley rats subjected to pial vessel disruption (PVD) used to model a small-vessel stroke. Rats were treated with either a vehicle control or istradefylline (3 mg/kg i.p.) following PVD surgery for three days. Istradefylline administration prevented anxiety and depressive-like behaviors caused by PVD stroke. In addition, istradefylline significantly attenuated ischemia-induced cognitive impairment and motor deficits. Moreover, istradefylline markedly reduced hippocampal neurodegeneration, as well as GFAP/Iba-1, TNF-α, nNOS, and iNOS levels after PVD, but prevented the downregulation of anti-inflammatory markers TGF-β1 and IL-4. Together, these results suggest a molecular link between stroke and PD and that the anti-PD drug istradefylline displays translational potential for drug repurposing as a neuroprotective agent for cerebral ischemic damage. Full article
Show Figures

Figure 1

15 pages, 1308 KiB  
Article
A2A Adenosine Receptor Antagonists and Their Efficacy in Rat Models of Parkinson’s Disease
by Andrea Spinaci, Michela Buccioni, Diego Dal Ben, Beatrice Francucci, Karl-Norbert Klotz, Gabriella Marucci, Nicola Simola, Micaela Morelli, Annalisa Pinna, Rosaria Volpini and Catia Lambertucci
Cells 2025, 14(5), 338; https://doi.org/10.3390/cells14050338 - 26 Feb 2025
Viewed by 817
Abstract
Parkinson’s disease (PD) represents a growing challenge to global health, as it involves millions of people. The high grade of disability is due to the loss of dopaminergic neuron activity, and levodopa is the gold-standard therapy used to restore dopamine in the dopamine-denervated [...] Read more.
Parkinson’s disease (PD) represents a growing challenge to global health, as it involves millions of people. The high grade of disability is due to the loss of dopaminergic neuron activity, and levodopa is the gold-standard therapy used to restore dopamine in the dopamine-denervated regions. Another therapeutic approach is the use of A2A adenosine receptor antagonists and, among them, istradefylline is the only one currently approved for therapy in association with levodopa. In this work, we synthesized A2A adenosine receptor antagonists represented by 9-ethyl-2,8-disubstituted adenine derivatives, which were tested at human adenosine receptors in binding and functional assays. These compounds showed A2A adenosine receptor-binding affinities in the low nanomolar range and 1, 4, and 5 exhibited good potency in the functional assays. Hence, they were evaluated in in vivo rat models of PD, where they were demonstrated to revert haloperidol-induced catalepsy and potentiate levodopa-induced contralateral rotations in 6-hydroxydopamine-lesioned rats. The most potent derivative, 4, was then evaluated in the tacrine model, where it reduced the tremulous jaw movements, therefore demonstrating an action on parkinsonian tremor. These data revealed 8-ethoxy-2-phenethoxy-9-ethyladenine (4) as an A2A adenosine receptor antagonist endowed with antiparkinsonian effects and as a good candidate to treat the disease. Full article
Show Figures

Graphical abstract

11 pages, 936 KiB  
Review
The Neuroprotective Role of A2A Adenosine Purinoceptor Modulation as a Strategy Against Glioblastoma
by Júlia Leão Batista Simões, Geórgia de Carvalho Braga, Michelli Fontana, Charles Elias Assmann and Margarete Dulce Bagatini
Brain Sci. 2024, 14(12), 1286; https://doi.org/10.3390/brainsci14121286 - 21 Dec 2024
Cited by 1 | Viewed by 1033
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer, frequently presenting an unfavorable prognosis. The current treatment options for this neoplasia are still limited, highlighting the need for further research evaluating new drugs to treat GBM or to serve as an adjuvant to [...] Read more.
Glioblastoma (GBM) is a highly lethal type of cancer, frequently presenting an unfavorable prognosis. The current treatment options for this neoplasia are still limited, highlighting the need for further research evaluating new drugs to treat GBM or to serve as an adjuvant to improve the efficiency of currently used therapies. In this sense, the inhibition of A2A receptors in the brain has presented a neuroprotective role for several diseases, such as neurodegenerative conditions, and it has been suggested as a possible pharmacological target in some types of cancer; thus, it also can be underscored as a potential target in GBM. Recently, Istradefylline (IST) was approved by the FDA for treating Parkinson’s disease, representing a safe drug that acts through the inhibition of the A2A receptor, and it has also been suggested as an antineoplastic drug. Therefore, this work aims to explore the effects of A2A receptor inhibition as a therapy for GBM and assess the feasibility of this blockage occurring through the effects of IST. Full article
(This article belongs to the Special Issue The Role of Glia in Inflammatory Processes)
Show Figures

Figure 1

15 pages, 4026 KiB  
Article
Screening of Crucial Cytosolicproteins Interconnecting the Endoplasmic Reticulum and Mitochondria in Parkinson’s Disease and the Impact of Anti-Parkinson Drugs in the Preservation of Organelle Connectivity
by Athira Anirudhan, S. Mahema, Sheikh F. Ahmad, Talha Bin Emran, Shiek S. S. J. Ahmed and Prabu Paramasivam
Brain Sci. 2023, 13(11), 1551; https://doi.org/10.3390/brainsci13111551 - 5 Nov 2023
Cited by 4 | Viewed by 2138
Abstract
Mitochondrial dysfunction is well-established in Parkinson’s disease (PD); however, its dysfunctions associating with cell organelle connectivity remain unknown. We aimed to establish the crucial cytosolic protein involved in organelle connectivity between mitochondria and the endopalmic reticulum (ER) through a computational approach by constructing [...] Read more.
Mitochondrial dysfunction is well-established in Parkinson’s disease (PD); however, its dysfunctions associating with cell organelle connectivity remain unknown. We aimed to establish the crucial cytosolic protein involved in organelle connectivity between mitochondria and the endopalmic reticulum (ER) through a computational approach by constructing an organelle protein network to extract functional clusters presenting the crucial PD protein connecting organelles. Then, we assessed the influence of anti-parkinsonism drugs (n = 35) on the crucial protein through molecular docking and molecular dynamic simulation and further validated its gene expression in PD participants under, istradefylline (n = 25) and amantadine (n = 25) treatment. Based on our investigation, D-aspartate oxidase (DDO )protein was found to be the critical that connects both mitochondria and the ER. Further, molecular docking showed that istradefylline has a high affinity (−9.073 kcal/mol) against DDO protein, which may disrupt mitochondrial-ER connectivity. While amantadine (−4.53 kcal/mol) shows negligible effects against DDO that contribute to conformational changes in drug binding, Successively, DDO gene expression was downregulated in istradefylline-treated PD participants, which elucidated the likelihood of an istradefylline off-target mechanism. Overall, our findings illuminate the off-target effects of anti-parkinsonism medications on DDO protein, enabling the recommendation of off-target-free PD treatments. Full article
Show Figures

Graphical abstract

17 pages, 371 KiB  
Review
Cognitive Impairment in Parkinson’s Disease: An Updated Overview Focusing on Emerging Pharmaceutical Treatment Approaches
by Yildiz Degirmenci, Efthalia Angelopoulou, Vasiliki Epameinondas Georgakopoulou and Anastasia Bougea
Medicina 2023, 59(10), 1756; https://doi.org/10.3390/medicina59101756 - 1 Oct 2023
Cited by 23 | Viewed by 8167
Abstract
Cognitive impairment in patients with Parkinson’s disease (PD) is one of the commonest and most disabling non-motor manifestations during the course of the disease. The clinical spectrum of PD-related cognitive impairment includes subjective cognitive decline (SCD), mild cognitive impairment (MCI) and PD dementia [...] Read more.
Cognitive impairment in patients with Parkinson’s disease (PD) is one of the commonest and most disabling non-motor manifestations during the course of the disease. The clinical spectrum of PD-related cognitive impairment includes subjective cognitive decline (SCD), mild cognitive impairment (MCI) and PD dementia (PDD). As the disease progresses, cognitive decline creates a significant burden for the family members and/or caregivers of patients with PD, and has a great impact on quality of life. Current pharmacological treatments have demonstrated partial efficacy and failed to halt disease progression, and novel, effective, and safe therapeutic strategies are required. Accumulating preclinical and clinical evidence shows that several agents may provide beneficial effects on patients with PD and cognitive impairment, including ceftriaxone, ambroxol, intranasal insulin, nilotinib, atomoxetine, mevidalen, blarcamesine, prasinezumab, SYN120, ENT-01, NYX-458, GRF6021, fosgonimeton, INT-777, Neuropeptide S, silibinin, osmotin, cordycepin, huperzine A, fibroblast growth factor 21, Poloxamer 188, ginsenoside Rb1, thioredoxin-1, tangeretin, istradefylline and Eugenia uniflora. Potential underlying mechanisms include the inhibition of a-synuclein aggregation, the improvement of mitochondrial function, the regulation of synaptic plasticity, an impact on the gut–brain axis, the modulation of neuroinflammation and the upregulation of neurotrophic factors, as well as cholinergic, dopaminergic, serotoninergic and norepinephrine neurotransmission. In this updated overview, we aim to cover the clinical aspects of the spectrum of PD-related cognitive impairment and discuss recent evidence on emerging treatment approaches that are under investigation at a preclinical and clinical level. Finally, we aim to provide additional insights and propose new ideas for investigation that may be feasible and effective for the spectrum of PD-related cognitive impairment. Full article
(This article belongs to the Section Neurology)
23 pages, 2316 KiB  
Article
Projection of Target Drug Particle Size in Oral Formulations Using the Refined Developability Classification System (rDCS)
by Kristian Beran, Eline Hermans, René Holm, Kia Sepassi and Jennifer Dressman
Pharmaceutics 2023, 15(7), 1909; https://doi.org/10.3390/pharmaceutics15071909 - 8 Jul 2023
Cited by 8 | Viewed by 3927
Abstract
Dissolution limitations to oral absorption can occur if the time required for dissolution is longer than the transit time across the small intestine and/or if dissolution is slower than the drug’s permeation through the gut wall. These limitations most often occur for poorly [...] Read more.
Dissolution limitations to oral absorption can occur if the time required for dissolution is longer than the transit time across the small intestine and/or if dissolution is slower than the drug’s permeation through the gut wall. These limitations most often occur for poorly soluble drugs. A standard method for overcoming dissolution issues is to reduce the particle size of the (solid) drug. Building on the refined Developability Classification System (rDCS), this work establishes a novel set of equations with which the appropriate degree of particle size reduction needed to mitigate dissolution limitations to absorption can be calculated. According to the type of data available, the appropriate equation(s) for each situation can be applied. Three case examples are used to illustrate implementation of the equations: voriconazole, lemborexant and istradefylline. Although for voriconazole (rDCS Class I) target radius (rtarget) estimates indicate that particle size reduction is unnecessary, for lemborexant (rDCS Class I) a radius of ≤20 µm would be required to improve absorption. For istradefylline (rDCS Class IIb) the rtarget was approximately 12 µm. Results are commensurate with literature information for these three drugs, signaling that the equations are suitable for application to a wide variety of drug substances. Full article
(This article belongs to the Special Issue Recent Advances in Oral Biopharmaceutics)
Show Figures

Graphical abstract

14 pages, 2715 KiB  
Brief Report
Phenotypic Assessment of Pathogenic Variants in GNAO1 and Response to Caffeine in C. elegans Models of the Disease
by Martina Di Rocco, Serena Galosi, Francesca C. Follo, Enrico Lanza, Viola Folli, Alberto Martire, Vincenzo Leuzzi and Simone Martinelli
Genes 2023, 14(2), 319; https://doi.org/10.3390/genes14020319 - 26 Jan 2023
Cited by 12 | Viewed by 2822
Abstract
De novo mutations affecting the G protein α o subunit (Gαo)-encoding gene (GNAO1) cause childhood-onset developmental delay, hyperkinetic movement disorders, and epilepsy. Recently, we established Caenorhabditis elegans as an informative experimental model for deciphering pathogenic mechanisms associated with GNAO1 defects and [...] Read more.
De novo mutations affecting the G protein α o subunit (Gαo)-encoding gene (GNAO1) cause childhood-onset developmental delay, hyperkinetic movement disorders, and epilepsy. Recently, we established Caenorhabditis elegans as an informative experimental model for deciphering pathogenic mechanisms associated with GNAO1 defects and identifying new therapies. In this study, we generated two additional gene-edited strains that harbor pathogenic variants which affect residues Glu246 and Arg209—two mutational hotspots in Gαo. In line with previous findings, biallelic changes displayed a variable hypomorphic effect on Gαo-mediated signaling that led to the excessive release of neurotransmitters by different classes of neurons, which, in turn, caused hyperactive egg laying and locomotion. Of note, heterozygous variants showed a cell-specific dominant-negative behavior, which was strictly dependent on the affected residue. As with previously generated mutants (S47G and A221D), caffeine was effective in attenuating the hyperkinetic behavior of R209H and E246K animals, indicating that its efficacy is mutation-independent. Conversely, istradefylline, a selective adenosine A2A receptor antagonist, was effective in R209H animals but not in E246K worms, suggesting that caffeine acts through both adenosine receptor-dependent and receptor-independent mechanisms. Overall, our findings provide new insights into disease mechanisms and further support the potential efficacy of caffeine in controlling dyskinesia associated with pathogenic GNAO1 mutations. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 2448 KiB  
Article
Biglycan Involvement in Heart Fibrosis: Modulation of Adenosine 2A Receptor Improves Damage in Immortalized Cardiac Fibroblasts
by Michele Scuruchi, Federica Mannino, Chiara Imbesi, Giovanni Pallio, Giovanna Vermiglio, Gianluca Bagnato, Letteria Minutoli, Alessandra Bitto, Francesco Squadrito and Natasha Irrera
Int. J. Mol. Sci. 2023, 24(2), 1784; https://doi.org/10.3390/ijms24021784 - 16 Jan 2023
Cited by 13 | Viewed by 2895
Abstract
Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-β activation. Biglycan (BGN), a small [...] Read more.
Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-β activation. Biglycan (BGN), a small leucine-rich proteoglycan (SLRPG) integrated within the ECM, plays a key role in matrix assembly and the phenotypic control of cardiac fibroblasts. Moreover, BGN is critically involved in pathological cardiac remodeling through TGF-β binding, thus causing myofibroblast differentiation and proliferation. Adenosine receptors (ARs), and in particular A2AR, may play a key role in stimulating fibrotic damage through collagen production/deposition, as a consequence of cyclic AMP (cAMP) and AKT activation. For this reason, A2AR modulation could be a useful tool to manage cardiac fibrosis in order to reduce fibrotic scar deposition in heart tissue. Therefore, the aim of the present study was to investigate the possible crosstalk between A2AR and BGN modulation in an in vitro model of TGF-β-induced fibrosis. Immortalized human cardiac fibroblasts (IM-HCF) were stimulated with TGF-β at the concentration of 10 ng/mL for 24 h to induce a fibrotic phenotype. After applying the TGF-β stimulus, cells were treated with two different A2AR antagonists, Istradefylline and ZM241385, for an additional 24 h, at the concentration of 10 µM and 1 µM, respectively. Both A2AR antagonists were able to regulate the oxidative stress induced by TGF-β through intracellular reactive oxygen species (ROS) reduction in IM-HCFs. Moreover, collagen1a1, MMPs 3/9, BGN, caspase-1 and IL-1β gene expression was markedly decreased following A2AR antagonist treatment in TGF-β-challenged human fibroblasts. The results obtained for collagen1a1, SMAD3, α-SMA and BGN were also confirmed when protein expression was evaluated; phospho-Akt protein levels were also reduced following Istradefylline and ZM241385 use, thus suggesting that collagen production involves AKT recruited by the A2AR. These results suggest that A2AR modulation might be an effective therapeutic option to reduce the fibrotic processes involved in heart pathological remodeling. Full article
(This article belongs to the Special Issue Cardiac Fibrosis: Molecular Pathology and Therapeutics)
Show Figures

Figure 1

12 pages, 1593 KiB  
Article
Studies on the Crystal Forms of Istradefylline: Structure, Solubility, and Dissolution Profile
by Yiyun Wang, Youwei Xu, Zhonghui Zheng, Min Xue, Zihui Meng, Zhibin Xu, Jiarong Li and Qing Lin
Crystals 2022, 12(7), 917; https://doi.org/10.3390/cryst12070917 - 28 Jun 2022
Cited by 4 | Viewed by 3430
Abstract
Istradefylline as a selective adenosine A2A-receptor antagonist is clinically used to treat Parkinson’s disease and improve dyskinesia in its early stages. However, its crystal form, as an important factor in the efficacy of the drug, is rarely studied. Herein, three [...] Read more.
Istradefylline as a selective adenosine A2A-receptor antagonist is clinically used to treat Parkinson’s disease and improve dyskinesia in its early stages. However, its crystal form, as an important factor in the efficacy of the drug, is rarely studied. Herein, three kinds of crystal forms of istradefylline prepared from ethanol (form I), methanol (form II), and acetonitrile (form III) are reported by use of a crystal engineering strategy. These three crystal forms were characterized and made into tablets for dissolution testing. Both the solubility and the dissolution rates were also determined. The dissolution rate of form I and form III is significantly higher than form II at pH 1.2 (87.1%, 58.2%, and 87.7% for form I, form II, and form III, respectively), pH 4.5 (88.1%, 58.9%, and 87.1% for form I, form II, and form III, respectively) and pH 6.8 (87.5%, 58.2%, and 86.0% for form I, form II, and form III, respectively) at 60 min. Considering the prepared solution and the proper dissolution profile, form I is anticipated to possess promising absorption for bioavailability. Full article
(This article belongs to the Special Issue State-of-the-Art Research in Biomolecular Crystals)
Show Figures

Figure 1

20 pages, 1205 KiB  
Article
Effects of Selen on the Antidepressant-like Activity of Agents Affecting the Adenosinergic Neurotransmission
by Aleksandra Szopa, Mariola Herbet, Ewa Poleszak, Karolina Bogatko, Marta Ostrowska-Leśko, Katarzyna Świąder, Jarosław Szponar and Anna Serefko
Metabolites 2022, 12(7), 586; https://doi.org/10.3390/metabo12070586 - 23 Jun 2022
Cited by 6 | Viewed by 2908
Abstract
The main goal of this study was to determine the antidepressant-like potential of the co-administration of sodium selenite (Se) and the selective adenosine A1 and A2A antagonists DPCPX and istradefylline (IST), respectively, in mice despair tests. Biochemical studies were performed to elucidate the [...] Read more.
The main goal of this study was to determine the antidepressant-like potential of the co-administration of sodium selenite (Se) and the selective adenosine A1 and A2A antagonists DPCPX and istradefylline (IST), respectively, in mice despair tests. Biochemical studies were performed to elucidate the action mechanisms of the investigated treatment strategies. The results confirmed that, when administered by itself, Se exerts an antidepressant-like effect in the FST and TST and that this activity is dose-dependent. Further experiments demonstrated that Se (0.25 mg/kg) significantly enhanced the activity of mice in both tests when co-administered with DPCPX (1 mg/kg) and IST (0.5 mg/kg) at doses which would be ineffective if administered individually. Our research revealed that neither DPCPX, IST, nor Se or combinations of the tested substances induced significant changes in the brain-derived neurotrophic factor (BDNF) levels in mice serum vs. the NaCl-treated group. However, we observed a decrease in the mRNA level of antioxidant defense enzymes. Molecular studies also showed changes in the expression of the Slc6a15, Comt, and Adora1 genes, particularly after exposure to the combination of Se and DPCPX, which indicates a beneficial effect and may help to explain the key mechanism of the antidepressant effect. The combination of Se with substances attenuating adenosine neurotransmission may become a new therapeutic strategy for patients with depression. Full article
(This article belongs to the Special Issue Altered Metabolism in Depressive Disorders)
Show Figures

Figure 1

18 pages, 3541 KiB  
Article
Quantitation of the A2A Adenosine Receptor Density in the Striatum of Mice and Pigs with [18F]FLUDA by Positron Emission Tomography
by Daniel Gündel, Magali Toussaint, Thu Hang Lai, Winnie Deuther-Conrad, Paul Cumming, Susann Schröder, Rodrigo Teodoro, Rareş-Petru Moldovan, Francisco Pan-Montojo, Bernhard Sattler, Klaus Kopka, Osama Sabri and Peter Brust
Pharmaceuticals 2022, 15(5), 516; https://doi.org/10.3390/ph15050516 - 22 Apr 2022
Cited by 5 | Viewed by 3671
Abstract
The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in [...] Read more.
The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A2AAR–specific antagonist radiotracer [18F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone–treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time–activity curves to calculate the mean residence time (MRT) by non–compartmental analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of [18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A2AAR availability in the rotenone–treated mice compared to the control–aged group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g−1) and BPND values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non–invasive quantitation of altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET. Full article
Show Figures

Figure 1

15 pages, 2230 KiB  
Review
Pathophysiological Role and Medicinal Chemistry of A2A Adenosine Receptor Antagonists in Alzheimer’s Disease
by Stefania Merighi, Pier Andrea Borea, Katia Varani, Fabrizio Vincenzi, Alessia Travagli, Manuela Nigro, Silvia Pasquini, R. Rama Suresh, Sung Won Kim, Nora D. Volkow, Kenneth A. Jacobson and Stefania Gessi
Molecules 2022, 27(9), 2680; https://doi.org/10.3390/molecules27092680 - 21 Apr 2022
Cited by 20 | Viewed by 5821
Abstract
The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and [...] Read more.
The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer’s disease (AD). This ailment is considered the main form of dementia and is expected to exponentially increase in coming years. The pathological tracts of AD include amyloid peptide-β extracellular accumulation and tau hyperphosphorylation, causing neuronal cell death, cognitive deficit, and memory loss. Interestingly, in vitro and in vivo studies have demonstrated that A2A adenosine receptor antagonists may counteract each of these clinical signs, representing an important new strategy to fight a disease for which unfortunately only symptomatic drugs are available. This review offers a brief overview of the biological effects mediated by A2A adenosine receptors in AD animal and human studies and reports the state of the art of A2A adenosine receptor antagonists currently in clinical trials. As an original approach, it focuses on the crucial role of pharmacokinetics and ability to pass the blood–brain barrier in the discovery of new agents for treating CNS disorders. Considering that A2A receptor antagonist istradefylline is already commercially available for Parkinson’s disease treatment, if the proof of concept of these ligands in AD is confirmed and reinforced, it will be easier to offer a new hope for AD patients. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 2915 KiB  
Review
The Pharmacological Potential of Adenosine A2A Receptor Antagonists for Treating Parkinson’s Disease
by Akihisa Mori, Jiang-Fan Chen, Shinichi Uchida, Cecile Durlach, Shelby M. King and Peter Jenner
Molecules 2022, 27(7), 2366; https://doi.org/10.3390/molecules27072366 - 6 Apr 2022
Cited by 37 | Viewed by 8143
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson’s disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase [...] Read more.
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson’s disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification. Full article
Show Figures

Figure 1

13 pages, 2576 KiB  
Article
Non-Invasive Assessment of Locally Overexpressed Human Adenosine 2A Receptors in the Heart of Transgenic Mice
by Daniel Gündel, Thu Hang Lai, Sladjana Dukic-Stefanovic, Rodrigo Teodoro, Winnie Deuther-Conrad, Magali Toussaint, Klaus Kopka, Rareş-Petru Moldovan, Peter Boknik, Britt Hofmann, Ulrich Gergs, Joachim Neumann and Peter Brust
Int. J. Mol. Sci. 2022, 23(3), 1025; https://doi.org/10.3390/ijms23031025 - 18 Jan 2022
Cited by 2 | Viewed by 2672
Abstract
A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively [...] Read more.
A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure. Full article
Show Figures

Figure 1

23 pages, 857 KiB  
Review
Systematic Review on Parkinson’s Disease Medications, Emphasizing on Three Recently Approved Drugs to Control Parkinson’s Symptoms
by Palanisamy Sivanandy, Tan Choo Leey, Tan Chi Xiang, Tan Chi Ling, Sean Ang Wey Han, Samantha Lia Anak Semilan and Phoon Kok Hong
Int. J. Environ. Res. Public Health 2022, 19(1), 364; https://doi.org/10.3390/ijerph19010364 - 30 Dec 2021
Cited by 51 | Viewed by 6887
Abstract
Parkinson’s Disease (PD) is a disease that involves neurodegeneration and is characterised by the motor symptoms which include muscle rigidity, tremor, and bradykinesia. Other non-motor symptoms include pain, depression, anxiety, and psychosis. This disease affects up to ten million people worldwide. The pathophysiology [...] Read more.
Parkinson’s Disease (PD) is a disease that involves neurodegeneration and is characterised by the motor symptoms which include muscle rigidity, tremor, and bradykinesia. Other non-motor symptoms include pain, depression, anxiety, and psychosis. This disease affects up to ten million people worldwide. The pathophysiology behind PD is due to the neurodegeneration of the nigrostriatal pathway. There are many conventional drugs used in the treatment of PD. However, there are limitations associated with conventional drugs. For instance, levodopa is associated with the on-off phenomenon, and it may induce wearing off as time progresses. Therefore, this review aimed to analyze the newly approved drugs by the United States-Food and Drug Administration (US-FDA) from 2016–2019 as the adjuvant therapy for the treatment of PD symptoms in terms of efficacy and safety. The new drugs include safinamide, istradefylline and pimavanserin. From this review, safinamide is considered to be more efficacious and safer as the adjunct therapy to levodopa as compared to istradefylline in controlling the motor symptoms. In Study 016, both safinamide 50 mg (p = 0.0138) and 100 mg (p = 0.0006) have improved the Unified Parkinson’s Disease Rating Scale (UPDRS) part III score as compared to placebo. Improvement in Clinical Global Impression—Change (CGI-C), Clinical Global Impression—Severity of Illness (CGI-S) and off time were also seen in both groups of patients following the morning levodopa dose. Pimavanserin also showed favorable effects in ameliorating the symptoms of Parkinson’s Disease Psychosis (PDP). A combination of conventional therapy and non-pharmacological treatment is warranted to enhance the well-being of PD patients. Full article
(This article belongs to the Section Aging)
Show Figures

Figure 1

Back to TopTop