Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = IntelliCage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2910 KiB  
Article
Automated Behavioral Analysis of Schizophrenia-like Phenotypes in Repeated MK-801-Treated Mice Using IntelliCage
by Hisayoshi Kubota, Xinjian Zhang, Masoumeh Khalili, Xinzhu Zhou, Yu Wen and Taku Nagai
Int. J. Mol. Sci. 2025, 26(11), 5184; https://doi.org/10.3390/ijms26115184 - 28 May 2025
Viewed by 508
Abstract
Schizophrenia is a psychiatric disorder characterized by positive, negative, and cognitive symptoms. MK-801, an N-methyl-D-aspartate receptor antagonist, has been used to induce schizophrenia-like behaviors in animal models. Here, we employed IntelliCage, an automated system used for tracking behavior, to assess schizophrenia-like behaviors in [...] Read more.
Schizophrenia is a psychiatric disorder characterized by positive, negative, and cognitive symptoms. MK-801, an N-methyl-D-aspartate receptor antagonist, has been used to induce schizophrenia-like behaviors in animal models. Here, we employed IntelliCage, an automated system used for tracking behavior, to assess schizophrenia-like behaviors in MK-801-treated mice under semi-naturalistic conditions. Mice that had been treated with MK-801 for 2 weeks were analyzed for locomotion, emotional, and cognitive functions. Repeated MK-801-treated mice exhibited transient hyperactivity in a novel environment, without significant changes in overall circadian activity. Sucrose preference remained intact, suggesting preserved reward sensitivity. However, less time spent in the corner during the early phase of the competition test indicated reduced competitive behavior for limited water rewards. In the behavioral flexibility test, repeated MK-801-treated mice showed impaired reversal learning, suggesting reduced cognitive flexibility, although the acquisition of initial place discrimination was comparable to that observed in control mice. These behavioral impairments parallel core symptoms of schizophrenia, particularly in the social and cognitive domains. Our findings demonstrate the utility of IntelliCage in detecting behavioral phenotypes over prolonged periods in group-housed settings. This study provides an ecologically valid platform for assessing schizophrenia-like behaviors and may facilitate the development of translationally relevant therapeutic interventions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 721 KiB  
Article
Time Perception Test in IntelliCage System for Preclinical Study: Linking Depression and Serotonergic Modulation
by Olga Sysoeva, Rauf Akhmirov, Maria Zaichenko, Ivan Lazarenko, Anastasiya Rebik, Nadezhda Broshevitskaja, Inna Midzyanovskaya and Kirill Smirnov
Diagnostics 2025, 15(2), 151; https://doi.org/10.3390/diagnostics15020151 - 10 Jan 2025
Viewed by 930
Abstract
Background/Objectives:: The link between serotonergic modulation and depression is under debate; however, serotonin reuptake inhibitors (SRIs) are still the first-choice medicine in this condition. Disturbances in time perception are also reported in depression with one of the behavioral schedules used to study interval [...] Read more.
Background/Objectives:: The link between serotonergic modulation and depression is under debate; however, serotonin reuptake inhibitors (SRIs) are still the first-choice medicine in this condition. Disturbances in time perception are also reported in depression with one of the behavioral schedules used to study interval timing, differential-reinforcement-learning-of-low-rate, having been shown to have high predictive validity for an antidepressant effect. Here, we introduce an IntelliCage research protocol of an interval bisection task that allows more ecologically valid and less time-consuming rodent examination and provides an example of its use to confirm the previously reported acute effect of an SRI, clomipramine, on interval timing (increase in bisection point, D50). Methods: Wistar male rats (n = 25, five groups of 5–8) were trained in the IntelliCage to discriminate between short (1 s) and long (4 s) LED light stimuli by nose poking at the corresponding (left/right) side of the IntelliCage chamber to obtain a drink. When 80% of correct responses were reached, the intermediate durations of 1.7, 2.5, and 3.3 s were introduced. The number of left/right choices for each stimulus and interval timing parameters (bisection point, D50, and timing precision), derived from them, were compared after saline and clomipramine (7 mg/kg, i.p) intraperitoneal administration. Results: Rats successfully learned the task within about a week of training. The slightly increased D50 after clomipramine confirmed previous studies. Conclusions: The introduced protocol has potential to be applicable to preclinical research on depression and potentially other psychopathology, where time perception can be disturbed. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Management of Neuropsychiatric Disorders)
Show Figures

Graphical abstract

30 pages, 5120 KiB  
Article
Assessing the Benefit of Dietary Choline Supplementation Throughout Adulthood in the Ts65Dn Mouse Model of Down Syndrome
by Savannah Tallino, Rachel Etebari, Ian McDonough, Hector Leon, Isabella Sepulveda, Wendy Winslow, Samantha K. Bartholomew, Sylvia E. Perez, Elliott J. Mufson and Ramon Velazquez
Nutrients 2024, 16(23), 4167; https://doi.org/10.3390/nu16234167 - 30 Nov 2024
Viewed by 1797
Abstract
Background/Objectives: Down syndrome (DS) is the most common cause of early-onset Alzheimer’s disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake [...] Read more.
Background/Objectives: Down syndrome (DS) is the most common cause of early-onset Alzheimer’s disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied. Perinatal choline supplementation (Ch+) in the Ts65Dn mouse model of DS protects offspring against AD-relevant pathology and improves cognition. Further, dietary Ch+ in adult AD models also ameliorates pathology and improves cognition. However, dietary Ch+ in adult Ts65Dn mice has not yet been explored; thus, this study aimed to supply Ch+ throughout adulthood to determine the effects on cognition and DS co-morbidities. Methods: We fed trisomic Ts65Dn mice and disomic littermate controls either a choline normal (ChN; 1.1 g/kg) or a Ch+ (5 g/kg) diet from 4.5 to 14 months of age. Results: We found that Ch+ in adulthood failed to improve genotype-specific deficits in spatial learning. However, in both genotypes of female mice, Ch+ significantly improved cognitive flexibility in a reverse place preference task in the IntelliCage behavioral phenotyping system. Further, Ch+ significantly reduced weight gain and peripheral inflammation in female mice of both genotypes, and significantly improved glucose metabolism in male mice of both genotypes. Conclusions: Our findings suggest that adulthood choline supplementation benefits behavioral and biological factors important for general well-being in DS and related to AD risk. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

11 pages, 3359 KiB  
Article
Interplay between Learning and Voluntary Wheel Running in Male C57BL/6NCrl Mice
by Laura Niiranen, Ville Stenbäck, Mikko Tulppo, Karl-Heinz Herzig and Kari A. Mäkelä
Int. J. Mol. Sci. 2023, 24(5), 4259; https://doi.org/10.3390/ijms24054259 - 21 Feb 2023
Cited by 1 | Viewed by 3331
Abstract
Exercise is shown to improve cognitive function in various human and animal studies. Laboratory mice are often used as a model to study the effects of physical activity and running wheels provide a voluntary and non-stressful form of exercise. The aim of the [...] Read more.
Exercise is shown to improve cognitive function in various human and animal studies. Laboratory mice are often used as a model to study the effects of physical activity and running wheels provide a voluntary and non-stressful form of exercise. The aim of the study was to analyze whether the cognitive state of a mouse is related to its wheel-running behavior. Twenty-two male C57BL/6NCrl mice (9.5 weeks old) were used in the study. The cognitive function of group-housed mice (n = 5–6/group) was first analyzed in the IntelliCage system followed by individual phenotyping with the PhenoMaster with access to a voluntary running wheel. The mice were divided into three groups according to their running wheel activity: low, average, and high runners. The learning trials in the IntelliCage showed that the high-runner mice exhibited a higher error rate at the beginning of learning trials but improved their outcome and learning performance more compared to the other groups. The high-runner mice ate more compared to the other groups in the PhenoMaster analyses. There were no differences in the corticosterone levels between the groups, indicating similar stress responses. Our results demonstrate that high-runner mice exhibit enhanced learning capabilities prior to access to voluntary running wheels. In addition, our results also show that individual mice react differently when introduced to running wheels, which should be taken into consideration when choosing animals for voluntary endurance exercise studies. Full article
(This article belongs to the Special Issue Advances in Animal Models in Biomedical Research)
Show Figures

Figure 1

12 pages, 1682 KiB  
Article
C57bl/6 Mice Show Equivalent Taste Preferences toward Ruminant and Industrial Trans Fatty Acids
by Farzad Mohammadi, Nicolas Bertrand and Iwona Rudkowska
Nutrients 2023, 15(3), 610; https://doi.org/10.3390/nu15030610 - 24 Jan 2023
Cited by 1 | Viewed by 2385
Abstract
Two distinct types of trans fatty acids (TFA) are found in the diet. Industrial TFA such as elaidic acid (EA) have deleterious effects on metabolic risk factors, and oppositely ruminant TFA including trans-palmitoleic acid (TPA) may have beneficial effects. The objective is to [...] Read more.
Two distinct types of trans fatty acids (TFA) are found in the diet. Industrial TFA such as elaidic acid (EA) have deleterious effects on metabolic risk factors, and oppositely ruminant TFA including trans-palmitoleic acid (TPA) may have beneficial effects. The objective is to evaluate the taste preference between EA, TPA, lecithin or water. In this study, 24 female C57BL/6 mice were microchipped and placed in two separate IntelliCages®. Nano encapsulated TFA or lecithin were added to drinking water in different corners of the cage with normal diet. The study was carried out over 5 weeks, during which mice were exposed to water only (weeks 1 and 3), TFA or lecithin (week 2), and EA or TPA (weeks 4 and 5). Mice weights, corner visits, nose pokes (NP), and lick number were measured each week. The results demonstrated that mice consume more TFA, either EA or TPA, compared with lecithin. In addition, the mice licked more EA compared with TPA in one cage; conversely, in the other cage they licked more TPA compared with EA. However, when TFA positions were swapped, mice had equal licks for EA and TPA. In sum, mice preferred TFA, in equal matter compared with controls; therefore, the results demonstrate the potential for TFA-type substitution in diet. Full article
Show Figures

Figure 1

20 pages, 2946 KiB  
Article
Generation and Characterization of a Novel Angelman Syndrome Mouse Model with a Full Deletion of the Ube3a Gene
by Linn Amanda Syding, Agnieszka Kubik-Zahorodna, Petr Nickl, Vendula Novosadova, Jana Kopkanova, Petr Kasparek, Jan Prochazka and Radislav Sedlacek
Cells 2022, 11(18), 2815; https://doi.org/10.3390/cells11182815 - 9 Sep 2022
Cited by 8 | Viewed by 3296
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficits in maternally inherited UBE3A. The disease is characterized by intellectual disability, impaired motor skills, and behavioral deficits, including increased anxiety and autism spectrum disorder features. The mouse models used so far in [...] Read more.
Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficits in maternally inherited UBE3A. The disease is characterized by intellectual disability, impaired motor skills, and behavioral deficits, including increased anxiety and autism spectrum disorder features. The mouse models used so far in AS research recapitulate most of the cardinal AS characteristics. However, they do not mimic the situation found in the majority of AS patients who have a large deletion spanning 4–6 Mb. There is also a large variability in phenotypes reported in the available models, which altogether limits development of therapeutics. Therefore, we have generated a mouse model in which the Ube3a gene is deleted entirely from the 5′ UTR to the 3′ UTR of mouse Ube3a isoform 2, resulting in a deletion of 76 kb. To investigate its phenotypic suitability as a model for AS, we employed a battery of behavioral tests directed to reveal AS pathology and to find out whether this model better mirrors AS development compared to other available models. We found that the maternally inherited Ube3a-deficient line exhibits robust motor dysfunction, as seen in the rotarod and DigiGait tests, and displays abnormalities in additional behavioral paradigms, including reduced nest building and hypoactivity, although no apparent cognitive phenotype was observed in the Barnes maze and novel object recognition tests. The AS mice did, however, underperform in more complex cognition tasks, such as place reversal in the IntelliCage system, and exhibited a different circadian rhythm activity pattern. We show that the novel UBE3A-deficient model, based on a whole-gene deletion, is suitable for AS research, as it recapitulates important phenotypes characteristic of AS. This new mouse model provides complementary possibilities to study the Ube3a gene and its function in health and disease as well as possible therapeutic interventions to restore function. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

13 pages, 2021 KiB  
Article
Effects of β-Hydroxy β-Methylbutyrate Supplementation on Working Memory and Hippocampal Long-Term Potentiation in Rodents
by Alejandro Barranco, Llenalia Garcia, Agnes Gruart, Jose Maria Delgado-Garcia, Ricardo Rueda and Maria Ramirez
Nutrients 2022, 14(5), 1090; https://doi.org/10.3390/nu14051090 - 5 Mar 2022
Cited by 6 | Viewed by 3061
Abstract
β-hydroxy β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, has been shown to preserve muscle mass and strength during aging. The signaling mechanism by which HMB elicits its favorable effects on protein metabolism in skeletal muscle is also preserved in the [...] Read more.
β-hydroxy β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, has been shown to preserve muscle mass and strength during aging. The signaling mechanism by which HMB elicits its favorable effects on protein metabolism in skeletal muscle is also preserved in the brain. However, there are only a few studies, all at relatively high doses, addressing the effect of HMB supplementation on cognition. This study evaluated the effects of different doses of HMB on the potentiation of hippocampal synapses following the experimental induction of long-term potentiation (LTP) in the hippocampus of behaving rats, as well as on working memory test (delayed matching-to-position, DMTP) in mice. HMB doses in rats were 225 (low), 450 (medium), and 900 (high) mg/kg body weight/day and were double in mice. Rats who received medium or high HMB doses improved LTP, suggesting that HMB administration enhances mechanisms related to neuronal plasticity. In the DMTP test, mice that received any of the tested doses of HMB performed better than the control group in the overall test with particularities depending on the dose and the task phase. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

16 pages, 2012 KiB  
Article
Increased Fat Taste Preference in Progranulin-Deficient Mice
by Lana Schumann, Annett Wilken-Schmitz, Sandra Trautmann, Alexandra Vogel, Yannick Schreiber, Lisa Hahnefeld, Robert Gurke, Gerd Geisslinger and Irmgard Tegeder
Nutrients 2021, 13(11), 4125; https://doi.org/10.3390/nu13114125 - 17 Nov 2021
Cited by 4 | Viewed by 3082
Abstract
Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn [...] Read more.
Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn−/−) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn−/−) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn−/− mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn−/− mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition. Full article
(This article belongs to the Special Issue Implications of Taste and Olfaction in Nutrition and Health)
Show Figures

Figure 1

17 pages, 4503 KiB  
Article
Trehalose Reduces Nerve Injury Induced Nociception in Mice but Negatively Affects Alertness
by Vanessa Kraft, Katja Schmitz, Annett Wilken-Schmitz, Gerd Geisslinger, Marco Sisignano and Irmgard Tegeder
Nutrients 2021, 13(9), 2953; https://doi.org/10.3390/nu13092953 - 25 Aug 2021
Cited by 5 | Viewed by 3690
Abstract
Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as [...] Read more.
Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer’s disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a “side effect” of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness. Full article
Show Figures

Figure 1

14 pages, 3443 KiB  
Article
Amelioration of Cognitive and Behavioral Deficits after Traumatic Brain Injury in Coagulation Factor XII Deficient Mice
by Christian Stetter, Simon Lopez-Caperuchipi, Sarah Hopp-Krämer, Michael Bieber, Christoph Kleinschnitz, Anna-Leena Sirén and Christiane Albert-Weißenberger
Int. J. Mol. Sci. 2021, 22(9), 4855; https://doi.org/10.3390/ijms22094855 - 3 May 2021
Cited by 6 | Viewed by 3576
Abstract
Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits [...] Read more.
Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII−/− mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII−/− mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII−/− mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII−/− mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII−/− mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery. Full article
Show Figures

Figure 1

Back to TopTop