Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = ITIM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2221 KB  
Article
Hybrid Web Architecture with AI and Mobile Notifications to Optimize Incident Management in the Public Sector
by Luis Alberto Pfuño Alccahuamani, Anthony Meza Bautista and Hesmeralda Rojas
Computers 2026, 15(1), 47; https://doi.org/10.3390/computers15010047 - 12 Jan 2026
Viewed by 191
Abstract
This study addresses the persistent inefficiencies in incident management within regional public institutions, where dispersed offices and limited digital infrastructure constrain timely technical support. The research aims to evaluate whether a hybrid web architecture integrating AI-assisted interaction and mobile notifications can significantly improve [...] Read more.
This study addresses the persistent inefficiencies in incident management within regional public institutions, where dispersed offices and limited digital infrastructure constrain timely technical support. The research aims to evaluate whether a hybrid web architecture integrating AI-assisted interaction and mobile notifications can significantly improve efficiency in this context. The ITIMS (Intelligent Technical Incident Management System) was designed using a Laravel 10 MVC backend, a responsive Bootstrap 5 interface, and a relational MariaDB/MySQL model optimized with migrations and composite indexes, and incorporated two low-cost integrations: a stateless AI chatbot through the OpenRouter API and asynchronous mobile notifications using the Telegram Bot API managed via Laravel Queues and webhooks. Developed through four Scrum sprints and deployed on an institutional XAMPP environment, the solution was evaluated from January to April 2025 with 100 participants using operational metrics and the QWU usability instrument. Results show a reduction in incident resolution time from 120 to 31 min (74.17%), an 85.48% chatbot interaction success rate, a 94.12% notification open rate, and a 99.34% incident resolution rate, alongside an 88% usability score. These findings indicate that a modular, low-cost, and scalable architecture can effectively strengthen digital transformation efforts in the public sector, especially in regions with resource and connectivity constraints. Full article
Show Figures

Graphical abstract

21 pages, 1185 KB  
Article
Aberrant Expression of BTLA, CD160, SPN, TIM-3, VISTA and TIGIT in Chronic Lymphocytic Leukemia and Psoriasis Patients Compared to Healthy Volunteers
by Katarzyna Skórka, Anita Wdowiak-Filip, Grażyna Stasiak, Joanna Bartosińska, Dorota Krasowska and Krzysztof Giannopoulos
Cancers 2025, 17(13), 2116; https://doi.org/10.3390/cancers17132116 - 24 Jun 2025
Cited by 1 | Viewed by 1031
Abstract
Background: Currently, much attention is focused on the interactions between the leukemic and psoriatic cells showing immunosuppressive activity within the microenvironment. Methods: Our study assessed a collective mRNA expression pattern of crucial immuno-regulatory genes: BTLA, CD160, SPN, TIM-3, VISTA [...] Read more.
Background: Currently, much attention is focused on the interactions between the leukemic and psoriatic cells showing immunosuppressive activity within the microenvironment. Methods: Our study assessed a collective mRNA expression pattern of crucial immuno-regulatory genes: BTLA, CD160, SPN, TIM-3, VISTA, TIGIT, by qRT-PCR, and performed a comparison in two different diseases, chronic lymphocytic leukemia (CLL) and psoriasis (Ps), referring to clinical characteristics. Results: In Ps, all the studied gene expressions, except TIM-3, were higher than in HVs and all the studied gene expressions, except VISTA, were lower than in CLL. However, the expression of TIM-3, a checkpoint inhibitor, was higher in 0 stage of CLL and was lower in advanced stages of the disease, suggesting its possible diagnostic value. Expression of VISTA was higher in Ps than in HVs, as well as in CLL. It is noteworthy that BTLA, CD160 and SPN were overexpressed in CLL and Ps compared to HVs, suggesting its involvement in immune suppression in both diseases. Conclusions: Significant correlations between gene expressions of SPN and BTLA, SPN and TIGIT, CD160 and TIM-3, were observed, indicating a potential shared regulatory mechanism for immune responses which suggests their bidirectional regulatory role on the functioning of immune system cells, depending on the context of inflammatory or neoplastic conditions. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Figure 1

21 pages, 3178 KB  
Article
The Prediction of Sound Insulation for the Front Wall of Pure Electric Vehicles Based on AFWL-CNN
by Yan Ma, Jie Yan, Jianjiao Deng, Xiaona Liu, Dianlong Pan, Jingjing Wang and Ping Liu
Machines 2025, 13(6), 527; https://doi.org/10.3390/machines13060527 - 17 Jun 2025
Cited by 1 | Viewed by 855
Abstract
The front wall acoustic package system plays a crucial role in automotive design, and its performance directly affects the quality and comfort of the interior noise. In response to the limitations of traditional experimental and simulation methods in terms of accuracy and efficiency, [...] Read more.
The front wall acoustic package system plays a crucial role in automotive design, and its performance directly affects the quality and comfort of the interior noise. In response to the limitations of traditional experimental and simulation methods in terms of accuracy and efficiency, this paper proposes a convolutional neural network (AFWL-CNN) based on adaptive weighted feature learning. Using a data-driven method, the sound insulation performance of the entire vehicle’s front wall acoustic package system was predicted and analyzed based on the original parameters of the front wall acoustic package components, thereby effectively avoiding the shortcomings of traditional TPA and CAE methods. Compared to the traditional CNN model (RMSE = 0.042, MAE = 3.89 dB, I-TIME = 13.67 s), the RMSE of the proposed AFWL-CNN model was optimized to 0.031 (approximately 26.19% improvement), the mean absolute error (MAE) was reduced to 2.84 dB (approximately 26.99% improvement), and the inference time (I-TIME) increased to 17.16 s (approximately 25.53% increase). Although the inference time of the AFWL-CNN model increased by 25.53% compared to the CNN model, it achieved a more significant improvement in prediction accuracy, demonstrating a reasonable trade-off between efficiency and accuracy. Compared to AFWL-LSTM (RMSE = 0.039, MAE = 3.35 dB, I-TIME = 19.81 s), LSTM (RMSE = 0.044, MAE = 4.07 dB, I-TIME = 16.71 s), and CNN–Transformer (RMSE = 0.040, MAE = 3.74 dB, I-TIME = 19.55 s) models, the AFWL-CNN model demonstrated the highest prediction accuracy among the five models. Furthermore, the proposed method was verified using the front wall acoustic package data of a new car model, and the results showed the effectiveness and reliability of this method in predicting the acoustic package performance of the front wall system. This study provides a powerful tool for fast and accurate performance prediction of automotive front acoustic packages, significantly improving design efficiency and providing a data-driven framework that can be used to solve other vehicle noise problems. Full article
(This article belongs to the Special Issue Intelligent Applications in Mechanical Engineering)
Show Figures

Figure 1

43 pages, 1769 KB  
Review
The Role of LAIR1 as a Regulatory Receptor of Antitumor Immune Cell Responses and Tumor Cell Growth and Expansion
by Alessandro Poggi, Serena Matis, Chiara Rosa Maria Uras, Lizzia Raffaghello, Roberto Benelli and Maria Raffaella Zocchi
Biomolecules 2025, 15(6), 866; https://doi.org/10.3390/biom15060866 - 13 Jun 2025
Cited by 1 | Viewed by 2844
Abstract
It is becoming evident that the therapeutic effect of reawakening the immune response is to limit tumor cell growth and expansion. The use of immune checkpoint inhibitors, like blocking antibodies against programmed cell death receptor (PD) 1 and/or cytotoxic T lymphocyte antigen (CTLA) [...] Read more.
It is becoming evident that the therapeutic effect of reawakening the immune response is to limit tumor cell growth and expansion. The use of immune checkpoint inhibitors, like blocking antibodies against programmed cell death receptor (PD) 1 and/or cytotoxic T lymphocyte antigen (CTLA) 4 alone or in combination with other drugs, has led to unexpected positive results in some tumors but not all. Several other molecules inhibiting lymphocyte antitumor effector subsets have been discovered in the last 30 years. Herein, we focus on the leukocyte-associated immunoglobulin (Ig)-like receptor 1 (LAIR1/CD305). LAIR1 represents a typical immunoregulatory molecule expressed on almost all leukocytes, unlike other regulatory receptors expressed on discrete leukocyte subsets. It bears two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the intracytoplasmic protein domain involved in the downregulation of signals mediated by activating receptors. LAIR1 binds to several ligands, such as collagen I and III, complement component 1Q, surfactant protein D, adiponectin, and repetitive interspersed families of polypeptides expressed by erythrocytes infected with Plasmodium malariae. This would suggest LAIR1 involvement in several cell-to-cell interactions and possibly in metabolic regulation. The presence of both cellular and soluble forms of LAIR would indicate a fine regulation of the immunoregulatory activity, as happens for the soluble/exosome-associated forms of PD1 and CTLA4 molecules. As a consequence, LAIR1 appears to play a role in some autoimmune diseases and the immune response against tumor cells. The finding of LAIR1 expression on hematological malignancies, but also on some solid tumors, could open a rationale for the targeting of this molecule to treat neoplasia, either alone or in combination with other therapeutic options. Full article
Show Figures

Figure 1

21 pages, 1629 KB  
Review
CD300a: An Innate Immune Checkpoint Shaping Tumor Immunity and Therapeutic Opportunity
by Jei-Ming Peng and Hui-Ying Liu
Cancers 2025, 17(11), 1786; https://doi.org/10.3390/cancers17111786 - 27 May 2025
Cited by 3 | Viewed by 2863 | Correction
Abstract
CD300 family members are immunoglobulin superfamily receptors that regulate immune cell function through either activating or inhibitory signals. Among them, CD300a is a prototypical inhibitory receptor, highly expressed in both myeloid and lymphoid lineages, and plays a pivotal role in the pathogenesis of [...] Read more.
CD300 family members are immunoglobulin superfamily receptors that regulate immune cell function through either activating or inhibitory signals. Among them, CD300a is a prototypical inhibitory receptor, highly expressed in both myeloid and lymphoid lineages, and plays a pivotal role in the pathogenesis of inflammation and tumor immunity. CD300a transduces inhibitory signals in several immune cells—including mast cells, eosinophils, monocytes, dendritic cells (DCs), neutrophils, and natural killer (NK) cells—by recruiting SHP-1 phosphatase to immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and suppressing activation pathways such as Toll-like receptor (TLR)-MyD88 and FcεRI signaling. Recent studies suggest that tumor cells may hijack CD300a-associated pathways to establish an immunosuppressive microenvironment that facilitates immune evasion, tumor survival, and potentially metastatic spread. Proposed mechanisms include reduced DC-mediated type I interferon (IFN) production, diminished NK cell cytotoxicity, and negative regulation of mast cell– and eosinophil-dependent anti-tumor responses. Although some of these findings are derived from in vivo models, the cumulative evidence positions CD300a as a critical immune checkpoint in tumor-associated immune regulation. In addition to its established roles in hematologic malignancies—including chronic lymphocytic leukemia, acute lymphoblastic leukemia, and acute myeloid leukemia—CD300a has also been implicated in modulating tumor-associated immune responses in other pathological contexts. While most studies emphasize its immune cell–mediated effects, emerging evidence suggests that CD300a may directly influence tumor progression by regulating immune homeostasis, intracellular signaling, and tumor microenvironment interactions. Collectively, these findings establish CD300a as a pleiotropic immunoregulatory molecule in both hematologic and non-hematologic malignancies, underscoring the need to further explore its broader relevance and therapeutic potential in cancer immunology. Full article
Show Figures

Figure 1

13 pages, 1226 KB  
Review
New Therapeutic Targets TIGIT, LAG-3 and TIM-3 in the Treatment of Advanced, Non-Small-Cell Lung Cancer
by Jacek Kabut, Anita Gorzelak-Magiera and Iwona Gisterek-Grocholska
Int. J. Mol. Sci. 2025, 26(9), 4096; https://doi.org/10.3390/ijms26094096 - 25 Apr 2025
Cited by 3 | Viewed by 3827
Abstract
The introduction of immunotherapy and target therapy into clinical practice has become a chance for many patients with cancer to prolong their survival while maintaining optimal quality of life. Treatment of lung cancer is excellent evidence of the progress of medical therapies. An [...] Read more.
The introduction of immunotherapy and target therapy into clinical practice has become a chance for many patients with cancer to prolong their survival while maintaining optimal quality of life. Treatment of lung cancer is excellent evidence of the progress of medical therapies. An understanding of the mechanisms of tumor development has led to the evolution of new methods of treatment. Immunoreceptors of T cells with the immunoglobulin domain ITIM, TIM-3 (T-cell immunoglobulin- and mucin domain-3-containing molecule 3), and LAG-3 (lymphocyte activation gene-3) represent new interesting therapeutic targets. The combination of anti-PD-1 and anti-CTLA-4 blockade has proven the possibility of strengthening the anti-tumor response by acting via two separate mechanisms. Adding additional checkpoints to the PD-1 blockade offers hope for further improvements in the effects of the treatment of patients and expanding the group responding to immunotherapy. This paper presents new promising molecular targets along with studies demonstrating the treatment results using them. Full article
(This article belongs to the Special Issue Advanced Molecular Research in Benign and Malignant Lung Disease)
Show Figures

Figure 1

8 pages, 209 KB  
Perspective
LAG3, TIM3 and TIGIT: New Targets for Immunotherapy and Potential Associations with Radiotherapy
by Camil Ciprian Mireștean, Roxana Irina Iancu and Dragoș Petru Teodor Iancu
Curr. Oncol. 2025, 32(4), 230; https://doi.org/10.3390/curroncol32040230 - 15 Apr 2025
Cited by 6 | Viewed by 3847
Abstract
The combination of immunotherapy and radiotherapy has demonstrated synergistic potential, especially when a combination of immune checkpoint inhibitors (ICIs) is administered. Cytotoxic T-Lymphocyte-Associated Protein-4 (CTLA-4) inhibitors and Programmed Death-Ligand 1 (PD-L1) inhibitors or Programmed Cell Death Protein 1 (PD-1) inhibitors have been assessed [...] Read more.
The combination of immunotherapy and radiotherapy has demonstrated synergistic potential, especially when a combination of immune checkpoint inhibitors (ICIs) is administered. Cytotoxic T-Lymphocyte-Associated Protein-4 (CTLA-4) inhibitors and Programmed Death-Ligand 1 (PD-L1) inhibitors or Programmed Cell Death Protein 1 (PD-1) inhibitors have been assessed in both clinical and preclinical studies; the addition of radiotherapy activates immunomodulatory mechanisms materialized by an effect similar to “in situ” vaccination or the “abscopal” distant response of lesions outside the irradiation field. The new therapeutic targets (T cell immune-receptor with Ig and ITIM domains (TIGIT), Lymphocyte activating gene 3 (LAG-3), and T cell Ig- and mucin-domain-containing molecule-3 (TIM-3)) associated with traditional ICIs and radiotherapy open new perspectives to the concept of immuno-radiotherapy. The dynamic evaluation of T lymphocyte expression involved in the antitumor immune response, both in the tumor microenvironment (TME) and in the tumor itself, could have biomarker value in assessing the response to combination therapy with traditional and new ICIs in association with irradiation. Preclinical data justify the initiation of clinical trials in various tumor pathologies to explore this concept. Full article
(This article belongs to the Special Issue The Evolving Landscape of Precision Medicine in Radiation Oncology)
19 pages, 2484 KB  
Article
TIM8 Deficiency in Yeast Induces Endoplasmic Reticulum Stress and Shortens the Chronological Lifespan
by Dong Tang, Wenbin Guan, Xiaodi Yang, Zhongqin Li, Wei Zhao and Xinguang Liu
Biomolecules 2025, 15(2), 271; https://doi.org/10.3390/biom15020271 - 12 Feb 2025
Cited by 1 | Viewed by 1599
Abstract
Yeast TIM8 was initially identified as a homolog of human TIMM8A/DDP1, which is associated with human deafness–dystonia syndrome. Tim8p is located in the mitochondrial intermembrane space and forms a hetero-oligomeric complex with Tim13p to facilitate protein transport through the TIM22 translocation system. Previous [...] Read more.
Yeast TIM8 was initially identified as a homolog of human TIMM8A/DDP1, which is associated with human deafness–dystonia syndrome. Tim8p is located in the mitochondrial intermembrane space and forms a hetero-oligomeric complex with Tim13p to facilitate protein transport through the TIM22 translocation system. Previous research has indicated that TIM8 is not essential for yeast survival but does affect the import of Tim23p in the absence of the Tim8-Tim13 complex. Previous research on TIM8 has focused mainly on its involvement in the mitochondrial protein transport pathway, and the precise biological function of TIM8 remains incompletely understood. In this study, we provide the first report that yeast TIM8 is associated with the endoplasmic reticulum (ER) stress response and chronological senescence. We found that deletion of TIM8 leads to both oxidative stress and ER stress in yeast cells while increasing resistance to the ER stress inducer tunicamycin (TM), which is accompanied by an enhanced basic unfolded protein response (UPR). More importantly, TIM8 deficiency can lead to a shortened chronological lifespan (CLS) but does not affect the replicative lifespan (RLS). Moreover, we found that improving the antioxidant capacity further increased TM resistance in the tim8Δ strain. Importantly, we provide evidence that the knockdown of TIMM8A in ARPE-19 human retinal pigment epithelium cells can also induce ER stress, suggesting the potential function of the TIM8 gene in ER stress is conserved from budding yeast to higher eukaryotes. In summary, these results suggest novel roles for TIM8 in maintaining ER homeostasis and CLS maintenance. Full article
(This article belongs to the Special Issue The Endoplasmic Reticulum Stress in Yeast and Fungal Cells)
Show Figures

Graphical abstract

29 pages, 9628 KB  
Review
The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications
by Adam Merenstein, Loiy Obeidat, Apostolos Zaravinos and Benjamin Bonavida
Cancers 2025, 17(1), 19; https://doi.org/10.3390/cancers17010019 - 25 Dec 2024
Cited by 7 | Viewed by 2546
Abstract
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive [...] Read more.
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients. However, not all patients responded to CPIs, due to various mechanisms of immune resistance. One such mechanism is that, in addition to PD-1 expression on CD8 T cells, other inhibitory receptors exist, such as Lymphocyte Activation Gene 3 (LAG-3), T cell Immunoglobulin Mucin 3 (TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). These inhibitory receptors might be active in the presence of the above approved CPIs. Clearly, it is clinically challenging to block all such inhibitory receptors simultaneously using conventional antibodies. To circumvent this difficulty, we sought to target a potential transcription factor that may be involved in the molecular regulation of more than one inhibitory receptor. The transcription factor Yin Yang1 (YY1) was found to regulate the expression of PD-1, LAG-3, and TIM3. Therefore, we hypothesized that targeting YY1 in CD8 T cells should inhibit the expression of these receptors and, thus, prevent the inactivation of the anti-tumor CD8 T cells by these receptors, by corresponding ligands to tumor cells. This strategy should result in the prevention of immune evasion, leading to the inhibition of tumor growth. In addition, this strategy will be particularly effective in a subset of cancer patients who were unresponsive to approved CPIs. In this review, we discuss the regulation of LAG-3 by YY1 as proof of principle for the potential use of targeting YY1 as an alternative therapeutic approach to preventing the immune evasion of cancer. We present findings on the molecular regulations of both YY1 and LAG-3 expressions, the direct regulation of LAG-3 by YY1, the various approaches to targeting YY1 to evade immune evasion, and their clinical challenges. We also present bioinformatic analyses demonstrating the overexpression of LAG-3, YY1, and PD-L1 in various cancers, their associations with immune infiltrates, and the fact that when LAG-3 is hypermethylated in its promoter region it correlates with a better overall survival. Hence, targeting YY1 in CD8 T cells will result in restoring the anti-tumor immune response and tumor regression. Notably, in addition to the beneficial effects of targeting YY1 in CD8 T cells to inhibit the expression of inhibitory receptors, we also suggest targeting YY1 overexpressed in the tumor cells, which will also inhibit PD-L1 expression and other YY1-associated pro-tumorigenic activities. Full article
(This article belongs to the Special Issue Cancer Immunotherapy in Clinical and Translational Research)
Show Figures

Figure 1

14 pages, 2047 KB  
Article
Enhancement of Human Immunodeficiency Virus-Specific CD8+ T Cell Responses with TIGIT Blockade Involves Trogocytosis
by Nazanin Ghasemi, Kayla A. Holder, Danielle P. Ings and Michael D. Grant
Pathogens 2024, 13(12), 1137; https://doi.org/10.3390/pathogens13121137 - 23 Dec 2024
Viewed by 1635
Abstract
Natural killer (NK) and CD8+ T cell function is compromised in human immunodeficiency virus type 1 (HIV-1) infection by increased expression of inhibitory receptors such as TIGIT (T cell immunoreceptor with Ig and ITIM domains). Blocking inhibitory receptors or their ligands with [...] Read more.
Natural killer (NK) and CD8+ T cell function is compromised in human immunodeficiency virus type 1 (HIV-1) infection by increased expression of inhibitory receptors such as TIGIT (T cell immunoreceptor with Ig and ITIM domains). Blocking inhibitory receptors or their ligands with monoclonal antibodies (mAb) has potential to improve antiviral immunity in general and facilitate HIV eradication strategies. We assessed the impact of TIGIT engagement and blockade on cytotoxicity, degranulation, and interferon-gamma (IFN-γ) production by CD8+ T cells from persons living with HIV (PLWH). The effect of TIGIT engagement on non-specific anti-CD3-redirected cytotoxicity was assessed in redirected cytotoxicity assays, and the effect of TIGIT blockade on HIV-specific CD8+ T cell responses was assessed by flow cytometry. In 14/19 cases where peripheral blood mononuclear cells (PBMC) mediated >10% redirected cytotoxicity, TIGIT engagement reduced the level of cytotoxicity to <90% of control values. We selected PLWH with >1000 HIV Gag or Nef-specific IFN-γ spot forming cells per million PBMC to quantify the effects of TIGIT blockade on HIV-specific CD8+ T cell responses by flow cytometry. Cell surface TIGIT expression decreased on CD8+ T cells from 23/40 PLWH following TIGIT blockade and this loss was associated with increased anti-TIGIT mAb fluorescence on monocytes. In total, 6 of these 23 PLWH had enhanced HIV-specific CD8+ T cell degranulation and IFN-γ production with TIGIT blockade, compared to 0/17 with no decrease in cell surface TIGIT expression. Reduced CD8+ T cell TIGIT expression with TIGIT blockade involved trogocytosis by circulating monocytes, suggesting that an effector monocyte population and intact fragment crystallizable (Fc) functions are required for mAb-based TIGIT blockade to effectively enhance HIV-specific CD8+ T cell responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

13 pages, 618 KB  
Review
Novel Immune Checkpoint Inhibitor Targets in Advanced or Metastatic Renal Cell Carcinoma: State of the Art and Future Perspectives
by Samuele Compagno, Chiara Casadio, Linda Galvani, Matteo Rosellini, Andrea Marchetti, Elisa Tassinari, Pietro Piazza, Angelo Mottaran, Matteo Santoni, Riccardo Schiavina, Francesco Massari and Veronica Mollica
J. Clin. Med. 2024, 13(19), 5738; https://doi.org/10.3390/jcm13195738 - 26 Sep 2024
Cited by 7 | Viewed by 3447
Abstract
Immune checkpoint inhibitors (ICI) have become the cornerstone of treatment in renal cell carcinoma (RCC), for both metastatic disease and in an adjuvant setting. However, an adaptive resistance from cancer cells may arise during ICI treatment, therefore many studies are focusing on additional [...] Read more.
Immune checkpoint inhibitors (ICI) have become the cornerstone of treatment in renal cell carcinoma (RCC), for both metastatic disease and in an adjuvant setting. However, an adaptive resistance from cancer cells may arise during ICI treatment, therefore many studies are focusing on additional immune checkpoint inhibitor pathways. Promising targets of immunotherapeutic agents under investigation include T cell immunoglobulin and ITIM domain (TIGIT), immunoglobulin-like transcript 4 (ILT4), lymphocyte activation gene-3 (LAG-3), vaccines, T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and chimeric antigen receptor (CAR) T cells. In this review of the literature, we recollect the current knowledge of the novel treatment strategies in the field of immunotherapy that are being investigated in RCC and analyze their mechanism of action, their activity and the clinical studies that are currently underway. Full article
(This article belongs to the Special Issue Clinical Applications of Tumor Immunotherapy)
Show Figures

Figure 1

13 pages, 1365 KB  
Article
CD33 and SHP-1/PTPN6 Interaction in Alzheimer’s Disease
by Lien Beckers, Mamunur Rashid, Annie J. Lee, Zena K. Chatila, Kirstin A. Tamucci, Ryan C. Talcoff, Jennifer L. Hall, David A. Bennett, Badri N. Vardarajan and Elizabeth M. Bradshaw
Genes 2024, 15(9), 1204; https://doi.org/10.3390/genes15091204 - 13 Sep 2024
Cited by 4 | Viewed by 3220
Abstract
Large-scale genetic studies have identified numerous genetic risk factors that suggest a central role for innate immune cells in susceptibility to Alzheimer’s disease (AD). CD33, an immunomodulatory transmembrane sialic acid binding protein expressed on myeloid cells, was identified as one such genetic risk [...] Read more.
Large-scale genetic studies have identified numerous genetic risk factors that suggest a central role for innate immune cells in susceptibility to Alzheimer’s disease (AD). CD33, an immunomodulatory transmembrane sialic acid binding protein expressed on myeloid cells, was identified as one such genetic risk factor associated with Alzheimer’s disease. Several studies explored the molecular outcomes of genetic variation at the CD33 locus. It has been determined that the risk variant associated with AD increases the expression of the large isoform of CD33 (CD33M) in innate immune cells and alters its biological functions. CD33 is thought to signal via the interaction of its ITIM motif and the protein tyrosine phosphatase, SHP-1. Here, we utilize different molecular and computational approaches to investigate how AD-associated genetic variation in CD33 affects its interaction with SHP-1 in human microglia and microglia-like cells. Our findings demonstrate a genotype-dependent interaction between CD33 and SHP-1, which may functionally contribute to the AD risk associated with this CD33 variant. We also found that CD33-PTPN6 (SHP-1) gene–gene interactions impact AD-related traits, while CD33-PTPN11 (SHP-2) interactions do not. Full article
(This article belongs to the Special Issue Genetic Basis of Neurodegenerative Disorders)
Show Figures

Figure 1

22 pages, 2496 KB  
Article
Surface Immune Checkpoints as Potential Biomarkers in Physiological Pregnancy and Recurrent Pregnancy Loss
by Michał Zych, Monika Kniotek, Aleksander Roszczyk, Filip Dąbrowski, Robert Jędra and Radosław Zagożdżon
Int. J. Mol. Sci. 2024, 25(17), 9378; https://doi.org/10.3390/ijms25179378 - 29 Aug 2024
Cited by 6 | Viewed by 3287
Abstract
Due to the genetic diversity between the mother and the fetus, heightened control over the immune system during pregnancy is crucial. Immunological parameters determined by clinicians in women with idiopathic recurrent spontaneous abortion (RSA) include the quantity and activity of Natural Killer (NK) [...] Read more.
Due to the genetic diversity between the mother and the fetus, heightened control over the immune system during pregnancy is crucial. Immunological parameters determined by clinicians in women with idiopathic recurrent spontaneous abortion (RSA) include the quantity and activity of Natural Killer (NK) and Natural Killer T (NKT) cells, the quantity of regulatory T lymphocytes, and the ratio of pro-inflammatory cytokines, which indicate imbalances in Th1 and Th2 cell response. The processes are controlled by immune checkpoint proteins (ICPs) expressed on the surface of immune cells. We aim to investigate differences in the expression of ICPs on T cells, T regulatory lymphocytes, NK cells, and NKT cells in peripheral blood samples collected from RSA women, pregnant women, and healthy multiparous women. We aim to discover new insights into the role of ICPs involved in recurrent pregnancy loss. Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from blood samples obtained from 10 multiparous women, 20 pregnant women (11–14th week of pregnancy), and 20 RSA women, at maximum of 72 h after miscarriage. The PBMCs were stained for flow cytometry analysis. Standard flow cytometry immunophenotyping of PBMCs was performed using antibodies against classical lymphocyte markers, including CD3, CD4, CD8, CD56, CD25, and CD127. Additionally, ICPs were investigated using antibodies against Programmed Death Protein-1 (PD-1, CD279), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3, CD366), V-domain Ig suppressor of T cell activation (VISTA), T cell immunoglobulin and ITIM domain (TIGIT), and Lymphocyte activation gene 3 (LAG-3). We observed differences in the surface expression of ICPs in the analyzed subpopulations of lymphocytes between early pregnancy and RSA, after miscarriage, and in women. We noted diminished expression of PD-1 on T lymphocytes (p = 0.0046), T helper cells (CD3CD4 positive cells, p = 0.0165), T cytotoxic cells (CD3CD8 positive cells, p = 0.0046), T regulatory lymphocytes (CD3CD4CD25CD127 low positive cells, p = 0.0106), and NKT cells (CD3CD56/CD16 positive cells, p = 0.0438), as well as LAG-3 on lymphocytes T (p = 0.0225) T helper, p = 0.0426), T cytotoxic cells (p = 0.0458) and Treg (p = 0.0293), and cells from RSA women. Impaired expression of TIM-3 (p = 0.0226) and VISTA (p = 0.0039) on CD8 cytotoxic T and NK (TIM3 p = 0.0482; VISTA p = 0.0118) cells was shown, with an accompanying increased expression of TIGIT (p = 0.0211) on NKT cells. The changes in the expression of surface immune checkpoints indicate their involvement in the regulation of pregnancy. The data might be utilized to develop specific therapies for RSA women based on the modulation of ICP expression. Full article
(This article belongs to the Special Issue Research Advances in Reproductive Immunology)
Show Figures

Figure 1

21 pages, 2769 KB  
Article
IOS-1002, a Stabilized HLA-B57 Open Format, Exerts Potent Anti-Tumor Activity
by Anahita Rafiei, Marco Gualandi, Chia-Lung Yang, Richard Woods, Anil Kumar, Kathrin Brunner, John Sigrist, Hilmar Ebersbach, Steve Coats, Christoph Renner and Osiris Marroquin Belaunzaran
Cancers 2024, 16(16), 2902; https://doi.org/10.3390/cancers16162902 - 21 Aug 2024
Cited by 2 | Viewed by 3192
Abstract
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present [...] Read more.
HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1). In addition, we show that the IgG4 Fc backbone is required for engagement to Fcγ receptors and potent activation of macrophage phagocytosis. IOS-1002 blocks the immunosuppressive ITIM and SHP1/2 phosphatase signaling cascade, reduces the expression of immunosuppressive M2-like polarization markers of macrophages and differentiation of monocytes to myeloid-derived suppressor cells, enhances tumor cell phagocytosis in vitro and potentiates activation of T and NK cells. Lastly, IOS-1002 demonstrates efficacy in an ex vivo patient-derived tumor sample tumoroid model. IOS-1002 is a first-in-class multi-target and multi-functional human-derived HLA molecule that activates anti-tumor immunity and is currently under clinical evaluation. Full article
Show Figures

Figure 1

15 pages, 2991 KB  
Review
The World of Immunotherapy Needs More Than PD-1/PD-L1—Two of the New Kids on the Block: LAG-3 and TIGIT
by João Martins Gama, Paulo Teixeira and Rui Caetano Oliveira
Onco 2024, 4(3), 116-130; https://doi.org/10.3390/onco4030010 - 1 Jul 2024
Cited by 1 | Viewed by 5940
Abstract
Immunotherapy has paved the way for the development of solid tumor new treatments in the last decade. The approval of immune checkpoint inhibitors such as anti PD-1/PD-L1 provided a revolution with optimal results. However, a considerable proportion of patients experience adverse therapeutic effects, [...] Read more.
Immunotherapy has paved the way for the development of solid tumor new treatments in the last decade. The approval of immune checkpoint inhibitors such as anti PD-1/PD-L1 provided a revolution with optimal results. However, a considerable proportion of patients experience adverse therapeutic effects, and up to 50% may develop secondary resistance in the first three to five years. This has prompted the need for identifying new targets for immunotherapy that have good tolerance and biosafety and, of course, good tumoral response, either alone or in combination. Two of these new targets are the Lymphocyte-activation gene 3 (LAG-3) and the T cell immunoglobulin and ITIM domain (TIGIT). They are responsible for several interactions with the immune system, prompting an immunosuppressive phenotype in the tumor microenvironment. Both LAG-3 and TIGIT can be druggable, alone or in combination with anti-PD-1/PD-L1, with rather safe profiles making them attractive. In this review, we highlight some of the immune mechanisms of TIGIT and LAG-3 and their detection by immunohistochemistry, providing some insight into their use in the clinical setting. Full article
Show Figures

Figure 1

Back to TopTop