Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = IR pump-probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1722 KiB  
Article
Development of Interface-Specific Two-Dimensional Vibrational–Electronic (i2D-VE) Spectroscopy for Vibronic Couplings at Interfaces
by Yuqin Qian, Zhi-Chao Huang-Fu, Jesse B. Brown and Yi Rao
Spectrosc. J. 2025, 3(1), 1; https://doi.org/10.3390/spectroscj3010001 - 3 Jan 2025
Cited by 1 | Viewed by 1497
Abstract
Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used [...] Read more.
Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used to extensively study molecular systems, providing unique information such as coherence sensitivity, molecular configurations, enhanced resolution, and correlated states and their dynamics. However, the analogy of interfacial 2D spectroscopy has fallen behind. Our recent work presented interface-specific 2D-EV spectroscopy (i2D-EV). In this work, we develop interface-specific two-dimensional vibrational–electronic spectroscopy (i2D-VE). The fourth-order spectroscopy is based on a Mach–Zehnder IR interferometer that accurately controls the time delay of an IR pump pulse pair for vibrational transitions, followed by broadband interface second-harmonic generation to probe electronic transitions. We demonstrate step-by-step how a fourth-order i2D-VE spectrum of AP3 molecules at the air/water interface was collected and analyzed. The line shape and signatures of i2D-VE peaks reveal solvent correlations and the spectral nature of vibronic couplings. Together, i2D-VE and i2D-EV spectroscopy provide coupling of different behaviors of the vibrational ground state or excited states with electronic states of molecules at interfaces and surfaces. The methodology presented here could also probe dynamic couplings of electronic and vibrational motions at interfaces and surfaces, extending the usefulness of the rich data that are obtained. Full article
Show Figures

Figure 1

16 pages, 2144 KiB  
Article
Mild Hyperthermia-Induced Thermogenesis in the Endoplasmic Reticulum Defines Stress Response Mechanisms
by Barbara Dukic, Zsófia Ruppert, Melinda E. Tóth, Ákos Hunya, Ágnes Czibula, Péter Bíró, Ádám Tiszlavicz, Mária Péter, Gábor Balogh, Miklós Erdélyi, Gyula Timinszky, László Vígh, Imre Gombos and Zsolt Török
Cells 2024, 13(13), 1141; https://doi.org/10.3390/cells13131141 - 3 Jul 2024
Cited by 2 | Viewed by 2255
Abstract
Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result [...] Read more.
Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress. Full article
Show Figures

Figure 1

23 pages, 5245 KiB  
Article
Study of the Myosin Relay Helix Peptide by Molecular Dynamics Simulations, Pump-Probe and 2D Infrared Spectroscopy
by Holly Freedman and Jack A. Tuszynski
Int. J. Mol. Sci. 2024, 25(12), 6406; https://doi.org/10.3390/ijms25126406 - 10 Jun 2024
Cited by 1 | Viewed by 2633
Abstract
The Davydov model was conjectured to describe how an amide I excitation created during ATP hydrolysis in myosin might be significant in providing energy to drive myosin’s chemomechanical cycle. The free energy surfaces of the myosin relay helix peptide dissolved in 2,2,2-trifluoroethanol (TFE), [...] Read more.
The Davydov model was conjectured to describe how an amide I excitation created during ATP hydrolysis in myosin might be significant in providing energy to drive myosin’s chemomechanical cycle. The free energy surfaces of the myosin relay helix peptide dissolved in 2,2,2-trifluoroethanol (TFE), determined by metadynamics simulations, demonstrate local minima differing in free energy by only ~2 kT, corresponding to broken and stabilized hydrogen bonds, respectively. Experimental pump-probe and 2D infrared spectroscopy were performed on the peptide dissolved in TFE. The relative heights of two peaks seen in the pump-probe data and the corresponding relative volumes of diagonal peaks seen in the 2D-IR spectra at time delays between 0.5 ps and 1 ps differ noticeably from what is seen at earlier or later time delays or in the linear spectrum, indicating that a vibrational excitation may influence the conformational state of this helix. Thus, it is possible that the presence of an amide I excitation may be a direct factor in the conformational state taken on by the myosin relay helix following ATP hydrolysis in myosin. Full article
(This article belongs to the Special Issue Conformational Studies of Proteins and Peptides)
Show Figures

Graphical abstract

13 pages, 2823 KiB  
Article
Investigation of the Vibrational Characteristics of 6-Isocyano-1-Methyl-1H-Indole: Utilizing the Isonitrile Group as an Infrared Probe
by Min You, Zilin Gao, Liang Zhou, Changyuan Guo and Qiang Guo
Molecules 2023, 28(19), 6939; https://doi.org/10.3390/molecules28196939 - 5 Oct 2023
Cited by 1 | Viewed by 1495
Abstract
Indole derivatives have garnered considerable attention in the realm of biochemistry due to their multifaceted properties. In this study, we undertake a systematic investigation of the vibrational characteristics of a model indole derivative, 6-isocyano-1-methyl-1H-indole (6ICMI), by employing a combination of FTIR, IR pump-probe [...] Read more.
Indole derivatives have garnered considerable attention in the realm of biochemistry due to their multifaceted properties. In this study, we undertake a systematic investigation of the vibrational characteristics of a model indole derivative, 6-isocyano-1-methyl-1H-indole (6ICMI), by employing a combination of FTIR, IR pump-probe spectroscopy, and theoretical calculations. Our findings demonstrate a strong dependence of the isonitrile stretching frequency of 6ICMI on the polarizability of protic solvents and the density of hydrogen-bond donor groups in the solvent when the isonitrile group is bonded to aromatic groups. Both experimental and theoretical analyses unveil a significant correlation between the isonitrile stretch vibration of 6ICMI and the solvent acceptor number of alcohols. Furthermore, the polarization-controlled infrared pump-probe conducted on 6ICMI in dimethyl sulfoxide provides additional support for the potential use of the isonitrile stretching mode of 6ICMI as an effective infrared probe for local environments. Full article
(This article belongs to the Special Issue IR Spectroscopy: An Emerging Analytical Tool)
Show Figures

Graphical abstract

7 pages, 1539 KiB  
Article
Ultrafast Continuum IR Generation and Its Application in IR Spectroscopy
by Chaiho Lim, Kwanghee Park, Yeongseok Chae, Kyungwon Kwak and Minhaeng Cho
Int. J. Mol. Sci. 2022, 23(21), 13245; https://doi.org/10.3390/ijms232113245 - 31 Oct 2022
Cited by 2 | Viewed by 3244
Abstract
The spectral range of femtosecond time-resolved infrared spectroscopy is limited by the bandwidth of mid-IR pulses (100~400 cm−1) generated from the combination of Ti:Sapphire amplifier, Optical Parametric Amplifier (OPA), and Difference Frequency Generation (DFG). To overcome this limitation, we implement a [...] Read more.
The spectral range of femtosecond time-resolved infrared spectroscopy is limited by the bandwidth of mid-IR pulses (100~400 cm−1) generated from the combination of Ti:Sapphire amplifier, Optical Parametric Amplifier (OPA), and Difference Frequency Generation (DFG). To overcome this limitation, we implement a compact continuum mid-IR source producing ultrafast pulses that span the frequency range from 1000 to 4200 cm−1 (from 10 to 2.4 μm), which utilize the mixing of fundamental, second-harmonic, and third-harmonic of 800 nm pulse in the air. After building an IR spectrometer with continuum IR and a monochromator, we found that the distortion of the measured IR spectrum originated from the contamination of higher-order diffraction. We used bandpass filters to eliminate the higher-order contributions and correct the measured IR spectrum. We further characterized the spectral properties of fundamental, second-harmonic, and third-harmonic fields after the plasmonic filamentation process, which helps to improve the efficiency of the continuum IR generation. Using the generated continuum IR pulses, we measured the IR absorption spectrum of a water–benzonitrile mixture, which was found to be consistent with the spectrum obtained with a commercial FT-IR spectrometer. The present work will be useful for the efficient generation of continuum IR pulses for IR pump-probe and two-dimensional IR spectroscopy experiments in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Physical Chemistry and Chemical Physics in Korea)
Show Figures

Figure 1

1 pages, 171 KiB  
Abstract
Solid-State Laser Intra-Cavity Photothermal Sensor (SLIPS) for Gas Detection with Parts-Per-Billion Sensitivity
by Grzegorz Dudzik and Krzysztof Abramski
Eng. Proc. 2022, 21(1), 34; https://doi.org/10.3390/engproc2022021034 - 29 Aug 2022
Cited by 2 | Viewed by 1090
Abstract
We report a novel, miniaturized gas sensor configuration with ppbv (parts-per-billion by volume) sensitivity, where detection of the gas sample concentration is realized inside a Nd:YVO4/YVO4/Air-Gap structure (2 × 2 × 14 mm3) of the double-beam, monolithic [...] Read more.
We report a novel, miniaturized gas sensor configuration with ppbv (parts-per-billion by volume) sensitivity, where detection of the gas sample concentration is realized inside a Nd:YVO4/YVO4/Air-Gap structure (2 × 2 × 14 mm3) of the double-beam, monolithic diode-pumped solid-state laser (DPSSL) resonator operating at 1064 nm. Both generated probe and reference beams are passed through an ultra-compact sensing volume (4 μL) of the air-gap section filled with gas molecules. Simultaneously, an auxiliary laser beam is targeted on the absorption line of a measured gas sample and focused on a 1064 nm probe beam only. Due to the absorption effect, excited gas molecules are heated locally, resulting in a negligible change in a gas refractive index (RI), which is inherent to the photothermal effect (PT). Hence, the PT-induced variations of the gas RI inside the laser resonator are modulating the optical path-length of the probe beam, which resulted in a significant optical frequency shift of the probe beam against the reference one. The optical frequency changes were measured by applying the heterodyne detection technique, where both 1064 nm beams were coupled onto the near-infrared (near-IR) high-speed photodiode (PD), resulting in a beat note signal readout down-converted into the radio-frequency (RF) domain. The RF mixer was used to shift the beat note in frequency accordingly to the frequency modulation (FM) demodulator range. The demodulator converts the beat note frequency changes into a proportional voltage signal. To provide better gas sensor properties, a typical wavelength modulation spectroscopy (WMS) technique was additionally used. The solid-state laser intra-cavity photothermal sensor (SLIPS) is a unique approach to gas spectroscopy, which provides tens of ppbv sensitivity, more than 5000 signal-to-noise (SNR) ratio, baseline-free measurements, miniature, versatile and non-complex sensor setup based on inexpensive DPSSL technology. The SLIPS has no limitation in terms of the excitation wavelength because only one near-IR detector for signal retrieval is needed. Full article
(This article belongs to the Proceedings of The 9th International Symposium on Sensor Science)
12 pages, 639 KiB  
Article
Linear and Non-Linear Middle Infrared Spectra of Penicillin G in the CO Stretching Mode Region
by Elena Ragnoni, Sara Catalini, Maurizio Becucci, Andrea Lapini and Paolo Foggi
Symmetry 2021, 13(1), 106; https://doi.org/10.3390/sym13010106 - 8 Jan 2021
Cited by 3 | Viewed by 3868
Abstract
In this work we report the linear and non-linear IR spectral response characterization of the CO bonds of PenicillinG sodium salt in D2O and in [...] Read more.
In this work we report the linear and non-linear IR spectral response characterization of the CO bonds of PenicillinG sodium salt in D2O and in DMSOd6 solutions. In order to better characterize the spectral IR features in the CO stretching region, broadband middle infrared pump-probe spectra are recorded. The role of hydrogen bonds in determining the inhomogeneous broadening and in tuning anharmonicity of the different types of oscillators is exploited. Narrow band pump experiments, at the three central frequencies of βlactam, amide and carboxylate CO stretching modes, identify the couplings between the different types of CO oscillators opening the possibility to gather structural dynamic information. Our results show that the strongest coupling is between the βlactam and the carboxylate CO vibrational modes. Full article
(This article belongs to the Special Issue Symmetry and Molecular Spectroscopy)
Show Figures

Figure 1

11 pages, 2146 KiB  
Review
Atomic, Molecular and Cluster Science with the Reaction Microscope Endstation at FLASH2
by Severin Meister, Hannes Lindenblatt, Florian Trost, Kirsten Schnorr, Sven Augustin, Markus Braune, Rolf Treusch, Thomas Pfeifer and Robert Moshammer
Appl. Sci. 2020, 10(8), 2953; https://doi.org/10.3390/app10082953 - 24 Apr 2020
Cited by 10 | Viewed by 3661
Abstract
The reaction microscope (REMI) endstation for atomic and molecular science at the free-electron laser FLASH2 at DESY in Hamburg is presented together with a brief overview of results recently obtained. The REMI allows coincident detection of electrons and ions that emerge from atomic [...] Read more.
The reaction microscope (REMI) endstation for atomic and molecular science at the free-electron laser FLASH2 at DESY in Hamburg is presented together with a brief overview of results recently obtained. The REMI allows coincident detection of electrons and ions that emerge from atomic or molecular fragmentation reactions in the focus of the extreme-ultraviolet (XUV) free-electron laser (FEL) beam. A large variety of target species ranging from atoms and molecules to small clusters can be injected with a supersonic gas-jet into the FEL focus. Their ionization and fragmentation dynamics can be studied either under single pulse conditions, or for double pulses as a function of their time delay by means of FEL-pump–FEL-probe schemes and also in combination with a femtosecond infrared (IR) laser. In a recent upgrade, the endstation was further extended by a light source based on high harmonic generation (HHG), which is now available for upcoming FEL/HHG pump–probe experiments. Full article
(This article belongs to the Special Issue Science at X-ray Free Electron Lasers)
Show Figures

Figure 1

13 pages, 2014 KiB  
Article
Ultrafast Backbone Protonation in Channelrhodopsin-1 Captured by Polarization Resolved Fs Vis-pump—IR-Probe Spectroscopy and Computational Methods
by Till Stensitzki, Suliman Adam, Ramona Schlesinger, Igor Schapiro and Karsten Heyne
Molecules 2020, 25(4), 848; https://doi.org/10.3390/molecules25040848 - 14 Feb 2020
Cited by 7 | Viewed by 3895
Abstract
Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. [...] Read more.
Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast protonation changes at the counterion complex comprising Asp299 and Glu169. In combination with homology modelling and quantum mechanics/molecular mechanics (QM/MM) geometry optimization we assign the protonation dynamics to ultrafast deprotonation of Glu169, and transient protonation of the Glu169 backbone, followed by a proton transfer from the backbone to the carboxylate group of Asp299 on a timescale of tens of picoseconds. The second proton transfer is not related to retinal dynamics and reflects pure protein changes in the first photoproduct. We assume these protein dynamics to be the first steps in a cascade of protein-wide changes resulting in channel conductivity. Full article
(This article belongs to the Special Issue New Studies of Photoisomerization)
Show Figures

Graphical abstract

12 pages, 749 KiB  
Article
The TeraFERMI Electro-Optic Sampling Set-Up for Fluence-Dependent Spectroscopic Measurements
by Nidhi Adhlakha, Paola Di Pietro, Federica Piccirilli, Paolo Cinquegrana, Simone Di Mitri, Paolo Sigalotti, Simone Spampinati, Marco Veronese, Stefano Lupi and Andrea Perucchi
Condens. Matter 2020, 5(1), 8; https://doi.org/10.3390/condmat5010008 - 20 Jan 2020
Cited by 6 | Viewed by 3342
Abstract
TeraFERMI is the THz beamline at the FERMI free-electron-laser facility in Trieste (Italy). It uses superradiant Coherent Transition Radiation emission to produce THz pulses of 10 to 100 μ J intensity over a spectral range which can extend up to 12 THz. TeraFERMI [...] Read more.
TeraFERMI is the THz beamline at the FERMI free-electron-laser facility in Trieste (Italy). It uses superradiant Coherent Transition Radiation emission to produce THz pulses of 10 to 100 μ J intensity over a spectral range which can extend up to 12 THz. TeraFERMI can be used to perform non-linear, fluence-dependent THz spectroscopy and THz-pump/IR-probe measurements. We describe in this paper the optical set-up based on electro-optic-sampling, which is presently in use in our facility and discuss the properties of a representative THz electric field profile measured from our source. The measured electric field profile can be understood as the superimposed emission from two electron bunches of different length, as predicted by electron beam dynamics simulations. Full article
Show Figures

Figure 1

14 pages, 2532 KiB  
Article
Do Osmolytes Impact the Structure and Dynamics of Myoglobin?
by Dorota Kossowska, Kyungwon Kwak and Minhaeng Cho
Molecules 2018, 23(12), 3189; https://doi.org/10.3390/molecules23123189 - 3 Dec 2018
Cited by 10 | Viewed by 4617
Abstract
Osmolytes are small organic compounds that can affect the stability of proteins in living cells. The mechanism of osmolytes’ protective effects on protein structure and dynamics has not been fully explained, but in general, two possibilities have been suggested and examined: a direct [...] Read more.
Osmolytes are small organic compounds that can affect the stability of proteins in living cells. The mechanism of osmolytes’ protective effects on protein structure and dynamics has not been fully explained, but in general, two possibilities have been suggested and examined: a direct interaction of osmolytes with proteins (water replacement hypothesis), and an indirect interaction (vitrification hypothesis). Here, to investigate these two possible mechanisms, we studied myoglobin-osmolyte systems using FTIR, UV-vis, CD, and femtosecond IR pump-probe spectroscopy. Interestingly, noticeable changes are observed in both the lifetime of the CO stretch of CO-bound myoglobin and the spectra of UV-vis, CD, and FTIR upon addition of the osmolytes. In addition, the temperature-dependent CD studies reveal that the protein’s thermal stability depends on molecular structure, hydrogen-bonding ability, and size of osmolytes. We anticipate that the present experimental results provide important clues about the complicated and intricate mechanism of osmolyte effects on protein structure and dynamics in a crowded cellular environment. Full article
(This article belongs to the Special Issue Vibrational Probes of Biomolecular Structure and Dynamics)
Show Figures

Graphical abstract

14 pages, 3368 KiB  
Article
Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet
by Liangdong Zhu, Weimin Liu, Yanli Wang and Chong Fang
Appl. Sci. 2015, 5(2), 48-61; https://doi.org/10.3390/app5020048 - 16 Apr 2015
Cited by 19 | Viewed by 9787
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of [...] Read more.
Femtosecond stimulated Raman spectroscopy (FSRS) is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM) laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range. Full article
Show Figures

Graphical abstract

Back to TopTop