Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = IDMA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14929 KiB  
Article
Progressive Pattern Interleaver with Multi-Carrier Modulation Schemes and Iterative Multi-User Detection in IoT 6G Environments with Multipath Channels
by Shivani Dixit, Varun Shukla, Manoj Kumar Misra, Jose M. Jimenez and Jaime Lloret
Sensors 2024, 24(11), 3648; https://doi.org/10.3390/s24113648 - 4 Jun 2024
Cited by 3 | Viewed by 1200
Abstract
Sixth-generation (6G) wireless networks demand a more efficient implementation of non-orthogonal multiple access (NOMA) schemes for severe multipath fading environments to serve multiple users. Using non-orthogonal multiple access (NOMA) schemes in IoT 6G networks is a promising solution to allow multiple users to [...] Read more.
Sixth-generation (6G) wireless networks demand a more efficient implementation of non-orthogonal multiple access (NOMA) schemes for severe multipath fading environments to serve multiple users. Using non-orthogonal multiple access (NOMA) schemes in IoT 6G networks is a promising solution to allow multiple users to share the same spectral and temporal resource, increasing spectral efficiency and improving the network’s capacity. In this work, we have evaluated the performance of a novel progressive pattern interleaver (PPI) employed to distinguish the users in interleaved division multiple access (IDMA) schemes, suggested by 3GPP guidelines as a NOMA scheme, with two multi-carrier modulation schemes known as single-carrier frequency-division multiple access (SC-FDMA) and orthogonal frequency-division multiplexing (OFDM), resulting in SC-FDMA-IDMA and OFDM-IDMA schemes. Both schemes are multi-carrier schemes with orthogonal sub-carriers to deal against inter-symbol interference (ISI) and orthogonal interleavers for the simultaneous access of multiple users. It has been suggested through simulation outcomes that PPI performance is adequate with SC-FDMA-IDMA and OFDM-IDMA schemes in terms of bit error rate (BER) under multipath channel conditions. Moreover, regarding bandwidth requirement and the implementation complexity of the transmitted interleaver structure, PPI is superior to the conventional random interleaver (RI). Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

17 pages, 807 KiB  
Article
Joint Intra/Inter-Slot Code Design for Unsourced Multiple Access in 6G Internet of Things
by Yuanjie Li, Kai Niu, Chao Dong, Shiqiang Suo and Jiaru Lin
Sensors 2023, 23(1), 242; https://doi.org/10.3390/s23010242 - 26 Dec 2022
Viewed by 2329
Abstract
Unsourced multiple access (UMA) is the technology for massive, low-power, and uncoordinated Internet-of-Things in the 6G wireless system, improving connectivity and energy efficiency on guaranteed reliability. The multi-user coding scheme design is a critical problem for UMA. This paper proposes a UMA coding [...] Read more.
Unsourced multiple access (UMA) is the technology for massive, low-power, and uncoordinated Internet-of-Things in the 6G wireless system, improving connectivity and energy efficiency on guaranteed reliability. The multi-user coding scheme design is a critical problem for UMA. This paper proposes a UMA coding scheme based on the T-Fold IRSA (irregular repetition slotted Aloha) paradigm by using joint Intra/inter-slot code design and optimization. Our scheme adopts interleave-division multiple access (IDMA) to enhance the intra-slot coding gain and the low-complexity joint intra/inter-slot SIC (successive interference cancellation) decoder structure to recover multi-user payloads. Based on the error event decomposition and density evolution analysis, we build a joint intra/inter-slot coding parameter optimization algorithm to minimize the SNR (signal-to-noise ratio) requirement at an expected system packet loss rate. Numerical results indicate that the proposed scheme achieves energy efficiency gain by balancing the intra/inter-slot coding gain while maintaining relatively low implementation complexity. Full article
Show Figures

Figure 1

9 pages, 1879 KiB  
Article
Low-Complexity Address Generation for Multiuser Detectors in IDMA Systems
by Byeong Yong Kong
Electronics 2020, 9(12), 2069; https://doi.org/10.3390/electronics9122069 - 4 Dec 2020
Cited by 5 | Viewed by 1925
Abstract
This paper presents a low-complexity address generation unit (AGU) for multiuser detectors in interleave division multiple access (IDMA) systems. To this end, for the first time, all possible options for designing AGUs are first analyzed in detail. Subsequently, a complexity reduction technique is [...] Read more.
This paper presents a low-complexity address generation unit (AGU) for multiuser detectors in interleave division multiple access (IDMA) systems. To this end, for the first time, all possible options for designing AGUs are first analyzed in detail. Subsequently, a complexity reduction technique is applied to each of those architectures. More specifically, some components in AGUs are relocated to make them shareable and removable without affecting the functionality. The complete transparency of such renovation makes it applicable to any existing multiuser detector without tailoring the interfacing components therein. Measuring the hardware complexity, all the resulting AGUs are compared with each other, and a new architecture simpler than the state-of-the-art one is developed. Implementation results in a 65 nm CMOS process, demonstrating that the proposed AGU can alleviate the equivalent gate count and the power consumption of the prior process by 13% and 31%, respectively. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

20 pages, 5031 KiB  
Article
Study on the Moving Target Tracking Based on Vision DSP
by Xuan Gong, Zichun Le, Hui Wang and Yukun Wu
Sensors 2020, 20(22), 6494; https://doi.org/10.3390/s20226494 - 13 Nov 2020
Cited by 6 | Viewed by 2800
Abstract
The embedded visual tracking system has higher requirements for real-time performance and system resources, and this is a challenge for visual tracking systems with available hardware resources. The major focus of this study is evaluating the results of hardware optimization methods. These optimization [...] Read more.
The embedded visual tracking system has higher requirements for real-time performance and system resources, and this is a challenge for visual tracking systems with available hardware resources. The major focus of this study is evaluating the results of hardware optimization methods. These optimization techniques provide efficient utilization based on limited hardware resources. This paper also uses a pragmatic approach to investigate the real-time performance effect by implementing and optimizing a kernel correlation filter (KCF) tracking algorithm based on a vision digital signal processor (vision DSP). We examine and analyze the impact factors of the tracking system, which include DP (data parallelism), IP (instruction parallelism), and the characteristics of parallel processing of the DSP core and iDMA (integrated direct memory access). Moreover, we utilize a time-sharing strategy to increase the system runtime speed. These research results are also applicable to other machine vision algorithms. In addition, we introduced a scale filter to overcome the disadvantages of KCF for scale transformation. The experimental results demonstrate that the use of system resources and real-time tracking speed also satisfies the expected requirements, and the tracking algorithm with a scale filter can realize almost the same accuracy as the DSST (discriminative scale space tracking) algorithm under a vision DSP environment. Full article
(This article belongs to the Special Issue Object Tracking and Motion Analysis)
Show Figures

Figure 1

19 pages, 3066 KiB  
Article
Antimicrobial Monomers for Polymeric Dental Restoratives: Cytotoxicity and Physicochemical Properties
by Diane R. Bienek, Stanislav A. Frukhtbeyn, Anthony A. Giuseppetti, Ugochukwu C. Okeke and Drago Skrtic
J. Funct. Biomater. 2018, 9(1), 20; https://doi.org/10.3390/jfb9010020 - 27 Feb 2018
Cited by 6 | Viewed by 7981
Abstract
A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N′-([1,1′-biphenyl]-2,2′-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide [...] Read more.
A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N′-([1,1′-biphenyl]-2,2′-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide (IDMA2), intended for utilization in bi-functional antimicrobial and remineralizing composites, were synthesized, purified with an ethanol-diethyl ether-hexane solvent system, and validated by nuclear magnetic resonance (1H and 13C NMR) spectroscopy, mass spectrometry, and Fourier-transform infrared spectroscopy. When incorporated into light-curable urethane dimethacrylate (UDMA)/polyethylene glycol-extended UDMA (PEG-U)/ethyl 2-(hydroxymethyl)acrylate (EHMA) (assigned UPE) resins, IDMAs did not affect the overall resins’ hydrophilicity/hydrophobicity balance (water contact angle: 60.8–65.5°). The attained degrees of vinyl conversion (DVC) were consistently higher in both IDMA-containing copolymers and their amorphous calcium phosphate (ACP) composites (up to 5% and 20%, respectively) reaching 92.5% in IDMA2 formulations. Notably, these high DVCs values were attained without an excessive increase in polymerization stress. The observed reduction in biaxial flexure strength of UPE-IDMA ACP composites should not prevent further evaluation of these materials as multifunctional Class V restoratives. In direct contact with human gingival fibroblasts, at biologically relevant concentrations, IDMAs did not adversely affect cell viability or their metabolic activity. Ion release from the composites was indicative of their strong remineralization potential. The above, early-phase biocompatibility and physicochemical tests justify further evaluation of these experimental materials to identify formulation(s) suitable for clinical testing. Successful completion is expected to yield a new class of restoratives with well-controlled bio-function, which will physicochemically, mechanically, and biologically outperform the conventional Class V restoratives. Full article
(This article belongs to the Special Issue Dental Implant Materials and Biomaterials)
Show Figures

Graphical abstract

13 pages, 1623 KiB  
Article
Multi-User Detection for Sporadic IDMA Transmission Based on Compressed Sensing
by Bo Li, Rui Du, Wenjing Kang and Gongliang Liu
Entropy 2017, 19(7), 334; https://doi.org/10.3390/e19070334 - 5 Jul 2017
Cited by 7 | Viewed by 4415
Abstract
The Internet of Things (IoT) is placing new demands on existing communication systems. The limited orthogonal resources do not meet the demands of massive connectivity of future IoT systems that require efficient multiple access. Interleave-division multiple access (IDMA) is a promising method of [...] Read more.
The Internet of Things (IoT) is placing new demands on existing communication systems. The limited orthogonal resources do not meet the demands of massive connectivity of future IoT systems that require efficient multiple access. Interleave-division multiple access (IDMA) is a promising method of improving spectral efficiency and supporting massive connectivity for IoT networks. In a given time, not all sensors signal information to an aggregation node, but each node transmits a short frame on occasion, e.g., time-controlled or event-driven. The sporadic nature of the uplink transmission, low data rates, and massive connectivity in IoT scenarios necessitates minimal control overhead communication schemes. Therefore, sensor activity and data detection should be implemented on the receiver side. However, the current chip-by-chip (CBC) iterative multi-user detection (MUD) assumes that sensor activity is precisely known at the receiver. In this paper, we propose three schemes to solve the MUD problem in a sporadic IDMA uplink transmission system. Firstly, inspired by the observation of sensor sparsity, we incorporate compressed sensing (CS) to MUD in order to jointly perform activity and data detection. Secondly, as CS detection could provide reliable activity detection, we combine CS and CBC and propose a CS-CBC detector. In addition, a CBC-based MUD named CBC-AD is proposed to provide a comparable baseline scheme. Full article
(This article belongs to the Special Issue Multiuser Information Theory)
Show Figures

Figure 1

19 pages, 358 KiB  
Article
Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks
by Shanshan Li, Xiaotian Zhou, Cheng-Xiang Wang, Dongfeng Yuan and Wensheng Zhang
Sensors 2017, 17(7), 1566; https://doi.org/10.3390/s17071566 - 4 Jul 2017
Cited by 12 | Viewed by 5565
Abstract
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power [...] Read more.
In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. Full article
(This article belongs to the Special Issue Energy Harvesting Sensors for Long Term Applications in the IoT Era)
Show Figures

Figure 1

Back to TopTop