Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = Hsp40/J-protein family

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1880 KiB  
Review
Hsp70: A Multifunctional Chaperone in Maintaining Proteostasis and Its Implications in Human Disease
by Manish Kumar Singh, Sunhee Han, Songhyun Ju, Jyotsna S. Ranbhise, Joohun Ha, Seung Geun Yeo, Sung Soo Kim and Insug Kang
Cells 2025, 14(7), 509; https://doi.org/10.3390/cells14070509 - 29 Mar 2025
Cited by 3 | Viewed by 2343
Abstract
Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of client proteins involved in various cellular processes, including transmembrane transport, extracellular vesicle trafficking, complex formation, and [...] Read more.
Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of client proteins involved in various cellular processes, including transmembrane transport, extracellular vesicle trafficking, complex formation, and proteasomal degradation. Its presence in multiple cellular organelles enables it to mediate stress responses, apoptosis, and inflammation, highlighting its significance in disease progression. Initially recognized for its essential roles in protein folding, disaggregation, and degradation, later studies have demonstrated its involvement in several human diseases. Notably, Hsp70 is upregulated in multiple cancers, where it promotes tumor proliferation and serves as a tumor immunogen. Additionally, epichaperome networks stabilize protein–protein interactions in large and long-lived assemblies, contributing to both cancer progression and neurodegeneration. However, extracellular Hsp70 (eHsp70) in the tumor microenvironment can activate immune cells, such as natural killer (NK) cells, suggesting its potential in immunotherapeutic interventions, including CAR T-cell therapy. Given its multifaceted roles in cellular physiology and pathology, Hsp70 holds immense potential as both a biomarker and a therapeutic target across multiple human diseases. This review highlights the structural and functional importance of Hsp70, explores its role in disease pathogenesis, and discusses its potential in diagnostic and therapeutic applications. Full article
Show Figures

Figure 1

23 pages, 9496 KiB  
Article
Genome-Wide Identification and Characterization of Heat Shock Proteins in the Stored-Product Pest Rhyzopertha dominica (Fabricius): Phylogenetic, Structural, and Stress-Induced Expression Analyses
by Yueliang Bai, Yanzhu Xie, Junji Yao, Fangfang Zeng and Dianxuan Wang
Insects 2025, 16(2), 127; https://doi.org/10.3390/insects16020127 - 28 Jan 2025
Cited by 1 | Viewed by 1013
Abstract
Heat shock proteins (HSPs) are crucial molecular chaperones that help organisms maintain protein stability under stress conditions. As a major stored-product pest, Rhyzopertha dominica (Fabricius) faces distinct stresses compared to field insects, primarily due to the specific pest control methods applied during grain [...] Read more.
Heat shock proteins (HSPs) are crucial molecular chaperones that help organisms maintain protein stability under stress conditions. As a major stored-product pest, Rhyzopertha dominica (Fabricius) faces distinct stresses compared to field insects, primarily due to the specific pest control methods applied during grain storage. In this study, a total of 53 HSP genes from five gene families (HSP90, HSP70, HSP60, sHSP, and DnaJ) were identified and characterized using bioinformatics methods. Among them, DnaJ was the largest and the most diverse HSP family in R. dominica. Transcriptome sequencing and RT-qPCR were then used to evaluate HSP gene expression patterns under four storage-related stresses, following a series of bioassays. Extreme high temperature was the strongest inducer of HSP expression, with 12 genes showing over a 10-fold increase. Controlled nitrogen atmosphere also led to considerable upregulation of HSP genes, especially in the HSP70 family. In contrast, phosphine fumigation and K-Obiol grain protectant caused very limited induction of HSP genes, which might have been due to the less severe protein damage caused by chemical stresses compared to physical stresses. Our study provides a theoretical basis for further research on HSP functions in R. dominica. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

15 pages, 8448 KiB  
Review
The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans
by Michael O. Daniyan, Harpreet Singh and Gregory L. Blatch
Int. J. Mol. Sci. 2024, 25(22), 12302; https://doi.org/10.3390/ijms252212302 - 16 Nov 2024
Viewed by 2014
Abstract
Plasmodium knowlesi is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in Plasmodium falciparum, and shown to contribute to malaria pathology, there is currently very limited [...] Read more.
Plasmodium knowlesi is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in Plasmodium falciparum, and shown to contribute to malaria pathology, there is currently very limited information on the P. knowlesi JDPs (PkJDPs). This review provides a critical analysis of the literature and publicly available data on PkJDPs. Interestingly, the P. knowlesi genome encodes at least 31 PkJDPs, with well over half belonging to the most diverse types which contain only the signature J domain (type IIIs, 19) or a corrupted version of the J domain (type IVs, 2) as evidence of their membership. The more typical PkJDPs containing other domains typical of JDPs in addition to the J domain are much fewer in number (type IIs, 8; type Is, 2). This study indentifies PkJDPs that are potentially involved in: folding of newly synthesized or misfolded proteins within the P. knowlesi cytosol (a canonical type I and certain typical type IIs); protein translocation (a type III) and folding (a type II) in the ER; and protein import into mitochondria (a type III). Interestingly, a type II PkJDP is potentially exported to the host cell cytosol where it may recruit human HSP70 for the trafficking and folding of other exported P. knowlesi proteins. Experimental studies are required on this fascinating family of proteins, not only to validate their role in the pathology of knowlesi malaria, but also because they represent potential anti-malarial drug targets. Full article
Show Figures

Figure 1

17 pages, 10495 KiB  
Article
Genome-Wide Identification and Analysis of Maize DnaJ Family Genes in Response to Salt, Heat, and Cold at the Seedling Stage
by Gang Li, Ziqiang Chen, Xinrui Guo, Dagang Tian, Chenchen Li, Min Lin, Changquan Hu and Jingwan Yan
Plants 2024, 13(17), 2488; https://doi.org/10.3390/plants13172488 - 5 Sep 2024
Cited by 5 | Viewed by 1393
Abstract
DnaJ proteins, also known as HSP40s, play a key role in plant growth and development, and response to environmental stress. However, little comprehensive research has been conducted on the DnaJ gene family in maize. Here, we identify 91 ZmDnaJ genes from maize, which [...] Read more.
DnaJ proteins, also known as HSP40s, play a key role in plant growth and development, and response to environmental stress. However, little comprehensive research has been conducted on the DnaJ gene family in maize. Here, we identify 91 ZmDnaJ genes from maize, which are likely distributed in the chloroplast, nucleus, and cytoplasm. Our analysis revealed that ZmDnaJs were classified into three types, with conserved protein motifs and gene structures within the same type, particularly among members of the same subfamily. Gene duplication events have likely contributed to the expansion of the ZmDnaJ family in maize. Analysis of cis-regulatory elements in ZmDnaJ promoters suggested involvement in stress responses, growth and development, and phytohormone sensitivity in maize. Specifically, four cis-acting regulatory elements associated with stress responses and phytohormone regulation indicated a role in adaptation. RNA-seq analysis showed constitutive expression of most ZmDnaJ genes, some specifically in pollen and endosperm. More importantly, certain genes also responded to salt, heat, and cold stresses, indicating potential interaction between stress regulatory networks. Furthermore, early responses to heat stress varied among five inbred lines, with upregulation of almost tested ZmDnaJ genes in B73 and B104 after 6 h, and fewer genes upregulated in QB1314, MD108, and Zheng58. After 72 h, most ZmDnaJ genes in the heat-sensitive inbred lines (B73 and B104) returned to normal levels, while many genes, including ZmDnaJ55, 79, 88, 90, and 91, remained upregulated in the heat-tolerant inbred lines (QB1314, MD108, and Zheng58) suggesting a synergistic function for prolonged protection against heat stress. In conclusion, our study provides a comprehensive analysis of the ZmDnaJ family in maize and demonstrates a correlation between heat stress tolerance and the regulation of gene expression within this family. These offer a theoretical basis for future functional validation of these genes. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

24 pages, 1909 KiB  
Article
Potential of Plant-Based Extracts to Alleviate Sorbitol-Induced Osmotic Stress in Cabbage Seedlings
by Katarzyna Pacyga, Paweł Pacyga, Aleksandra Boba, Bartosz Kozak, Łukasz Wolko, Yelyzaveta Kochneva and Izabela Michalak
Plants 2024, 13(6), 843; https://doi.org/10.3390/plants13060843 - 14 Mar 2024
Cited by 3 | Viewed by 2152
Abstract
In light of expected climate change, it is important to seek nature-based solutions that can contribute to the protection of our planet as well as to help overcome the emerging adverse changes. In an agricultural context, increasing plant resistance to abiotic stress seems [...] Read more.
In light of expected climate change, it is important to seek nature-based solutions that can contribute to the protection of our planet as well as to help overcome the emerging adverse changes. In an agricultural context, increasing plant resistance to abiotic stress seems to be crucial. Therefore, the scope of the presented research was focused on the application of botanical extracts that exerted positive effects on model plants growing under controlled laboratory conditions, as well as plants subjected to sorbitol-induced osmotic stress. Foliar spraying increased the length and fresh mass of the shoots (e.g., extracts from Taraxacum officinale, Trifolium pratense, and Pisum sativum) and the roots (e.g., Solidago gigantea, Hypericum perforatum, and Pisum sativum) of cabbage seedlings grown under stressful conditions, as well as their content of photosynthetic pigments (Pisum sativum, Lens culinaris, and Hypericum perforatum) along with total phenolic compounds (Hypericum perforatum, Taraxacum officinale, and Urtica dioica). The antioxidant activity of the shoots measured with the use of DDPH (Pisum sativum, Taraxacum officinale, Urtica dioica, and Hypericum perforatum), ABTS (Trifolium pratense, Symphytum officinale, Valeriana officinalis, Pisum sativum, and Lens culinaris), and FRAP (Symphytum officinale, Valeriana officinalis, Urtica dioica, Hypericum perforatum, and Taraxacum officinale) assays was also enhanced in plants exposed to osmotic stress. Based on these findings, the most promising formulation based on Symphytum officinale was selected and subjected to transcriptomic analysis. The modification of the expression of the following genes was noted: Bol029651 (glutathione S-transferase), Bol027348 (chlorophyll A-B binding protein), Bol015841 (S-adenosylmethionine-dependent methyltransferases), Bol009860 (chlorophyll A-B binding protein), Bol022819 (GDSL lipase/esterase), Bol036512 (heat shock protein 70 family), Bol005916 (DnaJ Chaperone), Bol028754 (pre-mRNA splicing Prp18-interacting factor), Bol009568 (heat shock protein Hsp90 family), Bol039362 (gibberellin regulated protein), Bol007693 (B-box-type zinc finger), Bol034610 (RmlC-like cupin domain superfamily), Bol019811 (myb_SHAQKYF: myb-like DNA-binding domain, SHAQKYF class), Bol028965 (DA1-like Protein). Gene Ontology functional analysis indicated that the application of the extract led to a decrease in the expression of many genes related to the response to stress and photosynthetic systems, which may confirm a reduction in the level of oxidative stress in plants treated with biostimulants. The conducted studies showed that the use of innovative plant-based products exerted positive effects on crops and can be used to supplement current cultivation practices. Full article
(This article belongs to the Special Issue Crop Improvement under a Changing Climate)
Show Figures

Figure 1

12 pages, 1975 KiB  
Article
Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance
by Liuhao Wang, Xuehao Yan, Hongfen Wu, Feifan Wang, Ziqi Zhong, Gang Zheng, Qian Xiao, Kebang Wu and Wei Na
Animals 2024, 14(5), 775; https://doi.org/10.3390/ani14050775 - 29 Feb 2024
Cited by 2 | Viewed by 2044
Abstract
Hainan yellow cattle are indigenous Zebu cattle from southern China known for their tolerance of heat and strong resistance to disease. Generations of adaptation to the tropical environment of southern China and decades of artificial breeding have left identifiable selection signals in their [...] Read more.
Hainan yellow cattle are indigenous Zebu cattle from southern China known for their tolerance of heat and strong resistance to disease. Generations of adaptation to the tropical environment of southern China and decades of artificial breeding have left identifiable selection signals in their genomic makeup. However, information on the selection signatures of Hainan yellow cattle is scarce. Herein, we compared the genomes of Hainan yellow cattle with those of Zebu, Qinchuan, Nanyang, and Yanbian cattle breeds by the composite likelihood ratio method (CLR), Tajima’s D method, and identifying runs of homozygosity (ROHs), each of which may provide evidence of the genes responsible for heat tolerance in Hainan yellow cattle. The results showed that 5210, 1972, and 1290 single nucleotide polymorphisms (SNPs) were screened by the CLR method, Tajima’s D method, and ROH method, respectively. A total of 453, 450, and 325 genes, respectively, were identified near these SNPs. These genes were significantly enriched in 65 Gene Ontology (GO) functional terms and 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (corrected p < 0.05). Five genes—Adenosylhomocysteinase-like 2, DnaJ heat shock protein family (Hsp40) member C3, heat shock protein family A (Hsp70) member 1A, CD53 molecule, and zinc finger and BTB domain containing 12—were recognized as candidate genes associated with heat tolerance. After further functional verification of these genes, the research results may benefit the understanding of the genetic mechanism of the heat tolerance in Hainan yellow cattle, which lay the foundation for subsequent studies on heat stress in this breed. Full article
(This article belongs to the Collection Advances in Cattle Breeding, Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3760 KiB  
Article
Cardiometabolic Changes in Sirtuin1-Heterozygous Mice on High-Fat Diet and Melatonin Supplementation
by Gaia Favero, Igor Golic, Francesca Arnaboldi, Annalisa Cappella, Aleksandra Korac, Maria Monsalve, Alessandra Stacchiotti and Rita Rezzani
Int. J. Mol. Sci. 2024, 25(2), 860; https://doi.org/10.3390/ijms25020860 - 10 Jan 2024
Cited by 2 | Viewed by 2538
Abstract
A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovascular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT) is involved in inflammation, whilst interscapular brown [...] Read more.
A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovascular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT) is involved in inflammation, whilst interscapular brown adipose tissue (iBAT) drives metabolism in obese rodents. Melatonin, a pineal indoleamine, acting as a SIRT1 modulator, may alleviate cardiometabolic damage. In the present study, we morphologically characterized the heart, eWAT, and iBAT in male heterozygous SIRT1+/− mice (HET mice) on a high-fat diet (60%E lard) versus a standard rodent diet (8.5% E fat) and drinking melatonin (10 mg/kg) for 16 weeks. Wild-type (WT) male C57Bl6/J mice were similarly fed for comparison. Cardiomyocyte fibrosis and endoplasmic reticulum (ER) stress response worsened in HET mice on a high-fat diet vs. other groups. Lipid peroxidation, ER, and mitochondrial stress were assessed by 4 hydroxy-2-nonenal (4HNE), glucose-regulated protein78 (GRP78), CCAA/enhancer-binding protein homologous protein (CHOP), heat shock protein 60 (HSP60), and mitofusin2 immunostainings. Ultrastructural analysis indicated the prevalence of atypical inter-myofibrillar mitochondria with short, misaligned cristae in HET mice on a lard diet despite melatonin supplementation. Abnormal eWAT adipocytes, crown-like inflammatory structures, tumor necrosis factor alpha (TNFα), and iBAT whitening characterized HET mice on a hypercaloric fatty diet and were maintained after melatonin supply. All these data suggest that melatonin’s mechanism of action is strictly linked to full SIRT1 expression, which is required for the exhibition of effective antioxidant and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Recent Advances in Apoptosis and Autophagy)
Show Figures

Graphical abstract

19 pages, 9703 KiB  
Article
Physiological and RNA-Seq Analyses on Exogenous Strigolactones Alleviating Drought by Improving Antioxidation and Photosynthesis in Wheat (Triticum aestivum L.)
by Miao Song, Naiyue Hu, Sumei Zhou, Songxin Xie, Jian Yang, Wenqi Ma, Zhengkai Teng, Wenxian Liang, Chunyan Wang, Mingna Bu, Shuo Zhang, Xiwen Yang and Dexian He
Antioxidants 2023, 12(10), 1884; https://doi.org/10.3390/antiox12101884 - 20 Oct 2023
Cited by 9 | Viewed by 2679
Abstract
Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress [...] Read more.
Drought poses a significant challenge to global wheat production, and the application of exogenous phytohormones offers a convenient approach to enhancing drought tolerance of wheat. However, little is known about the molecular mechanism by which strigolactones (SLs), newly discovered phytohormones, alleviate drought stress in wheat. Therefore, this study is aimed at elucidating the physiological and molecular mechanisms operating in wheat and gaining insights into the specific role of SLs in ameliorating responses to the stress. The results showed that SLs application upregulated the expression of genes associated with the antioxidant defense system (Fe/Mn-SOD, PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR, GRXC1, and GRXC15), chlorophyll biogenesis (CHLH, and CPX), light-harvesting chlorophyll A-B binding proteins (WHAB1.6, and LHC Ib-21), electron transfer (PNSL2), E3 ubiquitin-protein ligase (BB, CHIP, and RHY1A), heat stress transcription factor (HSFA1, HSFA4D, and HSFC2B), heat shock proteins (HSP23.2, HSP16.9A, HSP17.9A, HSP21, HSP70, HSP70-16, HSP70-17, HSP70-8, HSP90-5, and HSP90-6), DnaJ family members (ATJ1, ATJ3, and DJA6), as well as other chaperones (BAG1, CIP73, CIPB1, and CPN60I). but the expression level of genes involved in chlorophyll degradation (SGR, NOL, PPH, PAO, TIC55, and PTC52) as well as photorespiration (AGT2) was found to be downregulated by SLs priming. As a result, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, and chlorophyll content and photosynthetic rate were increased, which indicated the alleviation of drought stress in wheat. These findings demonstrated that SLs alleviate drought stress by promoting photosynthesis through enhancing chlorophyll levels, and by facilitating ROS scavenging through modulation of the antioxidant system. The study advances understandings of the molecular mechanism underlying SLs-mediated drought alleviation and provides valuable insights for implementing sustainable farming practice under water restriction. Full article
Show Figures

Figure 1

12 pages, 1813 KiB  
Article
Human Endogenous Retrovirus-H-Derived miR-4454 Inhibits the Expression of DNAJB4 and SASH1 in Non-Muscle-Invasive Bladder Cancer
by Eun Gyung Park, Du Hyeong Lee, Woo Ryung Kim, Yun Ju Lee, Woo Hyeon Bae, Jung-min Kim, Hae Jin Shin, Hongseok Ha, Joo Mi Yi, Ssang Goo Cho, Yung Hyun Choi, Sun Hee Leem, Hee Jae Cha, Sang Woo Kim and Heui Soo Kim
Genes 2023, 14(7), 1410; https://doi.org/10.3390/genes14071410 - 7 Jul 2023
Cited by 7 | Viewed by 2773
Abstract
Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially [...] Read more.
Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially cancer. A few studies have revealed that long non-coding RNAs that are transcribed from HERV sequences affect cancer progression. However, there is no study on microRNAs derived from HERVs related to cancer. In this study, we identified 29 microRNAs (miRNAs) derived from HERV sequences in the human genome. In particular, we discovered that miR-4454, which is HERV-H-derived miRNA, was upregulated in non-muscle-invasive bladder cancer (NMIBC) cells. To figure out the effects of upregulated miR-4454 in NMIBC, genes whose expression was downregulated in NMIBC, as well as tumor suppressor genes, were selected as putative target genes of miR-4454. The dual-luciferase assay was used to determine the negative relationship between miR-4454 and its target genes, DNAJB4 and SASH1, and they were confirmed to be promising target genes of miR-4454. Taken together, this study suggests that the upregulation of miR-4454 derived from HERV-H in NMIBC reduces the expression of the tumor suppressor genes, DNAJB4 and SASH1, to promote NMIBC progression. Full article
(This article belongs to the Special Issue Mobile-Element-Related Genetic Variation)
Show Figures

Figure 1

15 pages, 5508 KiB  
Article
Genome-Wide Identification and Analysis of the Hsp40/J-Protein Family Reveals Its Role in Soybean (Glycine max) Growth and Development
by Muhammad Khuram Razzaq, Reena Rani, Guangnan Xing, Yufei Xu, Ghulam Raza, Muqadas Aleem, Shahid Iqbal, Muhammad Arif, Zahid Mukhtar, Henry T. Nguyen, Rajeev K. Varshney, Kadambot H. M. Siddique and Junyi Gai
Genes 2023, 14(6), 1254; https://doi.org/10.3390/genes14061254 - 12 Jun 2023
Cited by 9 | Viewed by 3523
Abstract
The J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development. We [...] Read more.
The J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development. We also revealed their phylogeny, structure, motif analysis, chromosome location, and expression. Based on their evolutionary links, we divided the 111 potential soybean J-proteins into 12 main clades (I–XII). Gene-structure estimation revealed that each clade had an exon-intron structure resembling or comparable to others. Most soybean J-protein genes lacked introns in Clades I, III, and XII. Moreover, transcriptome data obtained from a publicly accessible soybean database and RT-qPCR were used to examine the differential expression of DnaJ genes in various soybean tissues and organs. The expression level of DnaJ genes indicated that, among 14 tissues, at least one tissue expressed the 91 soybean genes. The findings suggest that J-protein genes could be involved in the soybean growth period and offer a baseline for further functional research into J-proteins' role in soybean. One important application is the identification of J-proteins that are highly expressed and responsive during flower and seed development in soybean. These genes likely play crucial roles in these processes, and their identification can contribute to breeding programs to improve soybean yield and quality. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Plants)
Show Figures

Figure 1

14 pages, 2558 KiB  
Article
DNAJA4 Promotes the Replication of the Chinese Giant Salamander Iridovirus
by Zijing Liu, Daofa Xie, Xianhui He, Tianhong Zhou and Wei Li
Genes 2023, 14(1), 58; https://doi.org/10.3390/genes14010058 - 24 Dec 2022
Cited by 2 | Viewed by 2138
Abstract
The DNAJ family, a class of chaperone proteins involved in protein folding, assembly, and transport, plays an essential role in viral infections. However, the role of DNAJA4 (DnaJ Heat Shock Protein Family (Hsp40) Member A4) in the ranavirus infection has not been reported. [...] Read more.
The DNAJ family, a class of chaperone proteins involved in protein folding, assembly, and transport, plays an essential role in viral infections. However, the role of DNAJA4 (DnaJ Heat Shock Protein Family (Hsp40) Member A4) in the ranavirus infection has not been reported. This study demonstrates the function of the epithelial papilloma of carp (EPC) DNAJA4 in Chinese giant salamander (Andrias davidianus) iridovirus (CGSIV) replication. DNAJA4 consists of 1479 base pairs and encodes a 492 amino acid polypeptide. Sequence analysis has shown that EPC DNAJA4 contains a conserved J domain and shares 84% homology with Danio rerio DNAJA4 and 68% homology with Homo sapiens DNAJA4. EPC DNAJA4 was localized in the cytoplasm, and its expression was significantly upregulated after CGSIV infection. Overexpression of EPC DNAJA4 promotes CGSIV replication and CGSIV DNA replication. siRNA knockdown of DNAJA4 expression attenuates CGSIV replication and viral DNA replication. Overexpression and interference experiments have proved that EPC DNAJA4 is a pro-viral factor. Co-IP, GST–pulldown, and immunofluorescence confirmed the interaction between EPC DNAJA4 and CGSIV proliferating cell nuclear antigen (PCNA). Our results demonstrate for the first time that EPC DNAJA4 is involved in viral infection by promoting viral DNA replication and interacting with proteins associated with viral replication. Full article
(This article belongs to the Special Issue Molecular Biology of Animal Viruses)
Show Figures

Figure 1

13 pages, 5997 KiB  
Article
Cloning of Two HSP Genes of Eriocheir hepuensis and Their Expression under Vibrio parahaemolyticus Stress
by Qianni Fu, Jinxia Liu, Tianjiao Ren, Zining Zhang, Zihang Ma, Zhenyu Lan, Yitao Duan, Ziwei Liang, Boyu Chen, Yan Zhang, Peng Zhu and Yongyan Liao
Fishes 2022, 7(6), 372; https://doi.org/10.3390/fishes7060372 - 5 Dec 2022
Viewed by 2128
Abstract
Heat shock proteins (HSPs) are molecular chaperone proteins that can help maintain cellular protein homeostasis, assist in correcting the folding of cellular proteins, and protect organisms from stress when the body is under stress conditions such as temperature changes or bacterial infections. In [...] Read more.
Heat shock proteins (HSPs) are molecular chaperone proteins that can help maintain cellular protein homeostasis, assist in correcting the folding of cellular proteins, and protect organisms from stress when the body is under stress conditions such as temperature changes or bacterial infections. In this study, the HSP10 and HSP40 genes of Eriocheir hepuensis were cloned and named Eh-HSP10 and Eh-HSP40. The results show that the coding sequence length of the HSP10 and HSP40 genes of E. hepuensis was 309 bp and 1191 bp, encoding 102 and 396 amino acids, respectively. The results of protein domain prediction show that Eh-HSP10 has a Cpn10 domain. The Eh-HSP40 protein contains a DnaJ domain, which is characteristic of the HSP40 gene family. The results of qRT-PCR show that the Eh-HSP10 and Eh-HSP40 genes were expressed in different normal tissues, with the highest expression in the heart. Under Vibrio parahaemolyticus stress, the Eh-HSP10 genes peaked at 6 h, and the Eh-HSP40 peaked at 9 h in the hepatopancreas. In the gill, Eh-HSP10 showed a double peak at 24 and 48 h, and the expression of Eh-HSP40 was time-dependent. In the heart, the expression of Eh-HSP10 increased first and then decreased, whereas Eh-HSP40 peaked at 48 h. The results indicate that the Eh-HSP10 and Eh-HSP40 proteins may play a role in protecting E. hepuensis under V. parahaemolyticus infection and that they may be involved in the innate immune response of E. hepuensis against bacteria. Full article
(This article belongs to the Special Issue Recent Advances in Crab Aquaculture)
Show Figures

Graphical abstract

17 pages, 3890 KiB  
Article
DNAJA3 Interacts with PEDV S1 Protein and Inhibits Virus Replication by Affecting Virus Adsorption to Host Cells
by Jingyou Zheng, Qin Gao, Jidong Xu, Xiaohan Xu, Ying Shan, Fushan Shi, Min Yue, Fang He, Weihuan Fang and Xiaoliang Li
Viruses 2022, 14(11), 2413; https://doi.org/10.3390/v14112413 - 31 Oct 2022
Cited by 5 | Viewed by 2859
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts [...] Read more.
Porcine epidemic diarrhea virus (PEDV) infection causes huge economic losses to the pig industry worldwide. DNAJA3, a member of the Hsp40 family proteins, is known to play an important role in the replication of several viruses. However, it remains unknown if it interacts with PEDV. We found that DNAJA3 interacted with PEDV S1, initially with yeast two-hybrid screening and later with Co-IP, GST pull-down, and confocal imaging. Further experiments showed the functional relationship between DNAJA3 and PEDV in the infected IPEC-J2 cells. DNAJA3 overexpression significantly inhibited PEDV replication while its knockdown had the opposite effect, suggesting that it is a negative regulator of PEDV replication. In addition, DNAJA3 expression could be downregulated by PEDV infection possibly as the viral strategy to evade the suppressive role of DNAJA3. By gene silencing and overexpression, we were able to show that DNAJA3 inhibited PEDV adsorption to IPEC-J2 cells but did not affect virus invasion. In conclusion, our study provides clear evidence that DNAJA3 mediates PEDV adsorption to host cells and plays an antiviral role in IPEC-J2 cells. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 2129 KiB  
Review
Regulation of Translation, Translocation, and Degradation of Proteins at the Membrane of the Endoplasmic Reticulum
by Lea Daverkausen-Fischer, Margarethe Draga and Felicitas Pröls
Int. J. Mol. Sci. 2022, 23(10), 5576; https://doi.org/10.3390/ijms23105576 - 17 May 2022
Cited by 14 | Viewed by 5409
Abstract
The endoplasmic reticulum (ER) of mammalian cells is the central organelle for the maturation and folding of transmembrane proteins and for proteins destined to be secreted into the extracellular space. The proper folding of target proteins is achieved and supervised by a complex [...] Read more.
The endoplasmic reticulum (ER) of mammalian cells is the central organelle for the maturation and folding of transmembrane proteins and for proteins destined to be secreted into the extracellular space. The proper folding of target proteins is achieved and supervised by a complex endogenous chaperone machinery. BiP, a member of the Hsp70 protein family, is the central chaperone in the ER. The chaperoning activity of BiP is assisted by ER-resident DnaJ (ERdj) proteins due to their ability to stimulate the low, intrinsic ATPase activity of BiP. Besides their co-chaperoning activity, ERdj proteins also regulate and tightly control the translation, translocation, and degradation of proteins. Disturbances in the luminal homeostasis result in the accumulation of unfolded proteins, thereby eliciting a stress response, the so-called unfolded protein response (UPR). Accumulated proteins are either deleterious due to the functional loss of the respective protein and/or due to their deposition as intra- or extracellular protein aggregates. A variety of metabolic diseases are known to date, which are associated with the dysfunction of components of the chaperone machinery. In this review, we will delineate the impact of ERdj proteins in controlling protein synthesis and translocation under physiological and under stress conditions. A second aspect of this review is dedicated to the role of ERdj proteins in the ER-associated degradation pathway, by which unfolded or misfolded proteins are discharged from the ER. We will refer to some of the most prominent diseases known to be based on the dysfunction of ERdj proteins. Full article
Show Figures

Figure 1

15 pages, 1353 KiB  
Review
The Astonishing Large Family of HSP40/DnaJ Proteins Existing in Leishmania
by Jose Carlos Solana, Lorena Bernardo, Javier Moreno, Begoña Aguado and Jose M. Requena
Genes 2022, 13(5), 742; https://doi.org/10.3390/genes13050742 - 23 Apr 2022
Cited by 11 | Viewed by 6159
Abstract
Abrupt environmental changes are faced by Leishmania parasites during transmission from a poikilothermic insect vector to a warm-blooded host. Adaptation to harsh environmental conditions, such as nutrient deprivation, hypoxia, oxidative stress and heat shock needs to be accomplished by rapid reconfiguration of gene [...] Read more.
Abrupt environmental changes are faced by Leishmania parasites during transmission from a poikilothermic insect vector to a warm-blooded host. Adaptation to harsh environmental conditions, such as nutrient deprivation, hypoxia, oxidative stress and heat shock needs to be accomplished by rapid reconfiguration of gene expression and remodeling of protein interaction networks. Chaperones play a central role in the maintenance of cellular homeostasis, and they are responsible for crucial tasks such as correct folding of nascent proteins, protein translocation across different subcellular compartments, avoiding protein aggregates and elimination of damaged proteins. Nearly one percent of the gene content in the Leishmania genome corresponds to members of the HSP40 family, a group of proteins that assist HSP70s in a variety of cellular functions. Despite their expected relevance in the parasite biology and infectivity, little is known about their functions or partnership with the different Leishmania HSP70s. Here, we summarize the structural features of the 72 HSP40 proteins encoded in the Leishmania infantum genome and their classification into four categories. A review of proteomic data, together with orthology analyses, allow us to postulate cellular locations and possible functional roles for some of them. A detailed study of the members of this family would provide valuable information and opportunities for drug discovery and improvement of current treatments against leishmaniasis. Full article
(This article belongs to the Special Issue Genetic Mechanisms Involved in Microbial Stress Responses)
Show Figures

Figure 1

Back to TopTop