Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = High Test Peroxide (HTP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11695 KiB  
Article
Experimental Investigation of PWM Throttling in a 50-Newton-Class HTP Monopropellant Thruster: Analysis of Pressure Surges and Oscillations
by Suk Min Choi and Christian Bach
Aerospace 2025, 12(5), 418; https://doi.org/10.3390/aerospace12050418 - 8 May 2025
Viewed by 457
Abstract
High-test peroxide (HTP) monopropellant thrusters are being considered for spacecraft lander missions due to their simplicity and reduced toxicity compared to traditional propellants. Pulse-Width Modulation (PWM) throttling is a key technique for precise thrust control in such systems. However, PWM throttling can lead [...] Read more.
High-test peroxide (HTP) monopropellant thrusters are being considered for spacecraft lander missions due to their simplicity and reduced toxicity compared to traditional propellants. Pulse-Width Modulation (PWM) throttling is a key technique for precise thrust control in such systems. However, PWM throttling can lead to pressure surges and oscillations in the propellant feed system, potentially compromising system reliability. This study investigates the influence of PWM parameters, specifically duty cycle and frequency, on pressure surges and oscillations in a 50-newton-class HTP monopropellant thruster. The objective is to identify stable operating conditions that mitigate these effects, thereby enhancing the reliability of PWM throttling for lander applications. An experimental setup was developed, including a 50-newton-class thruster with a MnO2/La/Al2O3 catalyst and a solenoid valve for PWM control. Cold flow tests using water characterized the valve response and water hammer effects, while hot fire tests with 90 wt.% HTP were used to evaluate thruster performance under steady-state and PWM conditions. Analytical methods, including Joukowsky’s equation and power spectral density analysis, were used to interpret the data and understand the underlying mechanisms. The results showed that while surge pressures generally aligned with steady-state values, specific PWM conditions led to amplified surges, particularly at low duty cycles. Additionally, high duty cycles induced chugging instability. The natural frequencies of the feed system were found to play a crucial role in these phenomena. Stable operating conditions were identified by avoiding duty cycles that cause constructive interference of pressure waves. This research demonstrates that by carefully selecting PWM parameters based on the feed system’s dynamic characteristics, pressure surges and oscillations can be minimized, ensuring reliable operation of HTP monopropellant thrusters in PWM throttling mode. These findings contribute to the development of more efficient and safer propulsion systems for spacecraft landers. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

33 pages, 7190 KiB  
Article
Evaluation and Performance Optimization of a Hydrogen Peroxide-Based Green Monopropellant Thruster for Steady-State Operations
by Uğur Kokal, Mustafa Baysal, Nur Ber Emerce, Yiğit Yıldız, Arif Karabeyoğlu and İbrahim Özkol
Aerospace 2025, 12(2), 136; https://doi.org/10.3390/aerospace12020136 - 12 Feb 2025
Viewed by 1280
Abstract
Hydrogen peroxide (High Test Peroxide, HTP) emerges as a promising candidate for green space propulsion applications due to its lower toxicity compared to liquid conventional propellants such as hydrazine and nitrogen tetroxide. This study aims to optimize the performance and reliability of HTP [...] Read more.
Hydrogen peroxide (High Test Peroxide, HTP) emerges as a promising candidate for green space propulsion applications due to its lower toxicity compared to liquid conventional propellants such as hydrazine and nitrogen tetroxide. This study aims to optimize the performance and reliability of HTP monopropellant thrusters, focusing on catalyst bed stability, efficiency, and durability during extended steady-state operations. Key parameters, including catalyst bed packing, pellet size, bed load, and HTP concentration, were investigated in this study for their impact on the steady-state performance, using the pressure loss across the catalyst bed as an indicator of catalyst deterioration. Results indicate that an optimal pressure drop of 1–1.5 bar across the catalyst bed provides optimal stability and durability. To evaluate transient characteristics, effects of bed load, HTP concentration, and pre-heating temperature on thruster response times were investigated. Following the optimization process, a lifetime test with an HTP throughput of 6 kg was conducted to monitor performance variations over time. Additionally, the blowdown characteristics of the thruster were analyzed to assess performance under end-of-life conditions. The experiments in this study demonstrate that HTP monopropellant thrusters are viable candidates for reliable space missions, particularly for long-duration operations such as station-keeping maneuvers. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

21 pages, 40654 KiB  
Article
Monoethanolamine-Based Fuels Hypergolic with Rocket-Grade Hydrogen Peroxide
by Luca Caffiero, Stefania Carlotti and Filippo Maggi
Aerospace 2024, 11(4), 309; https://doi.org/10.3390/aerospace11040309 - 16 Apr 2024
Cited by 2 | Viewed by 3122
Abstract
The object of this work is to study the ignition performances of promising catalytically promoted amino-based green fuels to be used in combination with rocket-grade hydrogen peroxide. The main hypergolic parameter, the ignition delay time, was experimentally determined with an automated drop test [...] Read more.
The object of this work is to study the ignition performances of promising catalytically promoted amino-based green fuels to be used in combination with rocket-grade hydrogen peroxide. The main hypergolic parameter, the ignition delay time, was experimentally determined with an automated drop test setup. Additionally, the kinematic viscosity was experimentally measured, while the CEA2 software was used to determine the ideal rocket performances of the propellants. Three inorganic copper salts were selected as catalysts to be used in combination with monoethanolamine in concentrations ranging from 0.5 wt% to 20 wt%. Then, N,N-dimethylethylenediamine was introduced as part of a blend with monoethanolamine to target the high viscosity and low gravimetric specific impulse of the fuel for the pure monoethanolamine case. Due to the reduced monoethanolamine and low additive content, some formulations were observed to be characterized by gravimetric specific impulse higher than 320 s, and kinematic viscosity lower than 5 cSt while retaining ignition delay times shorter than 30 ms with 98 wt% HTP. Finally, the addition of ethanol to the blend was preliminarily investigated to improve the additive solubility. The effects on the ignition delay time were found to depend on the concentration ratio of the two amines. Full article
(This article belongs to the Special Issue Aerospace Combustion Engineering (2nd Edition))
Show Figures

Figure 1

13 pages, 5463 KiB  
Article
Impact of Hydrogen Peroxide Concentration on Manganese Oxide and Platinum Catalyst Bed Performance
by Adrian Parzybut, Pawel Surmacz and Zbigniew Gut
Aerospace 2023, 10(6), 556; https://doi.org/10.3390/aerospace10060556 - 12 Jun 2023
Cited by 9 | Viewed by 3730
Abstract
This study investigates the use of MnxOy/Al2O3 and Pt/Al2O3 catalysts for the decomposition of hydrogen peroxide in thrusters. It describes the purpose, procedures, performance, and conclusions coming from the test campaign of the [...] Read more.
This study investigates the use of MnxOy/Al2O3 and Pt/Al2O3 catalysts for the decomposition of hydrogen peroxide in thrusters. It describes the purpose, procedures, performance, and conclusions coming from the test campaign of the catalyst lifetimes. In particular, eight different propellant samples with two different catalysts were tested twice (in order to exclude uncertainty). Similar operating and starting conditions were applied. All hot tests were performed in a thruster-like catalyst bed configuration with a propellant injector and outlet nozzle. Each bed was filled with the same mass of catalyst (for the same type of catalyst). The results show that platinum is a more effective catalyst than manganese oxides for the decomposition of hydrogen peroxide. The findings have important implications for the development of catalysts for “green” propellants. Full article
Show Figures

Figure 1

20 pages, 6724 KiB  
Article
Development of POLON—A Green Microsatellite Propulsion Module Utilizing 98% Hydrogen Peroxide
by Jakub Gramatyka, Przemysław Paszkiewicz, Damian Grabowski, Adrian Parzybut, Daria Bodych, Krzysztof Wróblewski, Paweł Surmacz and Krzysztof Pietrzak
Aerospace 2022, 9(6), 297; https://doi.org/10.3390/aerospace9060297 - 31 May 2022
Cited by 7 | Viewed by 5050
Abstract
The following paper presents the key design and test activities associated with the development of POLON—a green microsatellite propulsion module using 98% Hydrogen Peroxide (HTP). POLON, which stands for “Polish Propulsion Module”, is the first step toward the development of a full, ready-to-be-commercialized [...] Read more.
The following paper presents the key design and test activities associated with the development of POLON—a green microsatellite propulsion module using 98% Hydrogen Peroxide (HTP). POLON, which stands for “Polish Propulsion Module”, is the first step toward the development of a full, ready-to-be-commercialized satellite propulsion system at the Łukasiewicz—Institute of Aviation (Ł-IoA). The development of an entire microsatellite propulsion system within the frame of the POLON project effort is the natural milestone on the Ł-IoA green propulsion roadmap, which so far embodied research on fundamental HTP chemistry, work on elementary propulsion technologies, as well as the development of individual propulsion components. Within this article, POLON propulsion development logic is introduced first, and the major challenges associated with utilizing HTP for an orbital propulsion system are described. Consequently, the specific R&D activities aimed at mitigating the identified issues and risks are discussed. Those cover analytical as well as experimental work, including, but not limited to, HTP compatibility studies with candidate construction materials, waterhammer effect studies, HTP catalyst testing and evaluation, and propellant tank manufacturing studies. The initial results for those activities are presented and, finally, further development plans are discussed. Full article
Show Figures

Figure 1

23 pages, 24094 KiB  
Review
Development of Green Storable Hybrid Rocket Propulsion Technology Using 98% Hydrogen Peroxide as Oxidizer
by Adam Okninski, Pawel Surmacz, Bartosz Bartkowiak, Tobiasz Mayer, Kamil Sobczak, Michal Pakosz, Damian Kaniewski, Jan Matyszewski, Grzegorz Rarata and Piotr Wolanski
Aerospace 2021, 8(9), 234; https://doi.org/10.3390/aerospace8090234 - 24 Aug 2021
Cited by 42 | Viewed by 13784
Abstract
This paper presents the development of indigenous hybrid rocket technology, using 98% hydrogen peroxide as an oxidizer. Consecutive steps are presented, which started with interest in hydrogen peroxide and the development of technology to obtain High Test Peroxide, finally allowing concentrations of up [...] Read more.
This paper presents the development of indigenous hybrid rocket technology, using 98% hydrogen peroxide as an oxidizer. Consecutive steps are presented, which started with interest in hydrogen peroxide and the development of technology to obtain High Test Peroxide, finally allowing concentrations of up to 99.99% to be obtained in-house. Hydrogen peroxide of 98% concentration (mass-wise) was selected as the workhorse for further space propulsion and space transportation developments. Over the course nearly 10 years of the technology’s evolution, the Lukasiewicz Research Network—Institute of Aviation completed hundreds of subscale hybrid rocket motor and component tests. In 2017, the Institute presented the first vehicle in the world to have demonstrated in-flight utilization for 98% hydrogen peroxide. This was achieved by the ILR-33 AMBER suborbital rocket, which utilizes a hybrid rocket propulsion as the main stage. Since then, three successful consecutive flights of the vehicle have been performed, and flights to the Von Karman Line are planned. The hybrid rocket technology developments are described. Advances in hybrid fuel technology are shown, including the testing of fuel grains. Theoretical studies and sizing of hybrid propulsion systems for spacecraft, sounding rockets and small launch vehicles have been performed, and planned further developments are discussed. Full article
(This article belongs to the Special Issue Hybrid Rocket(Volume II))
Show Figures

Figure 1

Back to TopTop