Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Keywords = Hedgehog (HH) signaling pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1623 KiB  
Article
Stromal Hedgehog Signaling Is Associated with Favorable Outcomes in Pancreatic Cancer
by Paul Manoukian, Helene Damhofer, Lan Zhao, Hanneke W. M. van Laarhoven and Maarten F. Bijlsma
Int. J. Mol. Sci. 2025, 26(11), 5200; https://doi.org/10.3390/ijms26115200 - 28 May 2025
Viewed by 622
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway can be observed in various malignancies, particularly in stroma-rich tumors like pancreatic ductal adenocarcinoma (PDAC). In PDAC, Hh signaling is thought to foster an abundant stroma, making it an appealing target for stoma-targeted therapy. However, [...] Read more.
Aberrant activation of the Hedgehog (Hh) signaling pathway can be observed in various malignancies, particularly in stroma-rich tumors like pancreatic ductal adenocarcinoma (PDAC). In PDAC, Hh signaling is thought to foster an abundant stroma, making it an appealing target for stoma-targeted therapy. However, the use of Hh antagonists in the clinic has thus far not been successful. To reassess the clinical merit of Hh-targeted therapy in PDAC, we sought to better characterize the role of Hh signaling in tumor-stroma crosstalk. Here, we show that Hh ligands are not prognostic per se in PDAC, despite being associated with the favorable classical molecular subtype. Perturbing Hh ligand expression in PDAC cells can effectively alter their trans-signaling capacity but does not impact tumor growth in vivo. However, co-injecting PDAC cells with Smo-proficient MEFs resulted in a significant reduction in xenograft growth, suggesting that Hh-related effects on tumor growth are largely mediated through the stroma. By analyzing transcriptomic sequencing data from co-cultures, comprising human PDAC cells and mouse fibroblasts treated with a Hh-blocking antibody, we could identify stromal hits that are responsive to Hh ligands. We then leveraged the obtained set of genes to allow patient stratification based on stromal response to Hh ligands. We believe that a subset of PDAC patients may benefit from the use of Hh-targeted therapies and thereby encourage the use of our stratification tool to guide their use in PDAC clinical care. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 2258 KiB  
Article
Plasma Protein Binding, Biostability, Metabolite Profiling, and CYP450 Phenotype of TPB15 Across Different Species: A Novel Smoothened Inhibitor for TNBC Therapy
by Dingsheng Wen, Boyu Chen, Mingtong Deng, Shaoyu Wu and Shuilin Xie
Pharmaceutics 2025, 17(4), 423; https://doi.org/10.3390/pharmaceutics17040423 - 26 Mar 2025
Viewed by 555
Abstract
Background/Objectives: Triple-negative breast cancer (TNBC) is a major cause of cancer-related deaths among women. The Hedgehog (Hh) signaling pathway plays a critical role in tumor development, and targeting this pathway may provide new therapeutic opportunities for TNBC. TPB15 is a novel smoothened [...] Read more.
Background/Objectives: Triple-negative breast cancer (TNBC) is a major cause of cancer-related deaths among women. The Hedgehog (Hh) signaling pathway plays a critical role in tumor development, and targeting this pathway may provide new therapeutic opportunities for TNBC. TPB15 is a novel smoothened inhibitor of the Hh pathway, showing promising tumor reduction and low-toxicity properties in vivo/vitro. This study aims to evaluate TPB15’s protein binding rates, metabolic stability, and metabolism across different species, including mice, rats, dogs, monkeys, and humans. Methods: TPB15 was synthesized, and its pharmacokinetic profile was assessed. Plasma protein binding was determined using ultrafiltration across multiple species. Stability studies were conducted in plasma and liver microsomes from each species. Additionally, metabolic enzymes in human liver microsomes were characterized with selective CYP450 inhibitors, and high-resolution mass spectrometry was employed to identify metabolites. Results: Plasma protein binding of TPB15 was consistent across species, ranging from 81.5% to 82.4% in humans and rats. After 120 min, TPB15 remained stable in plasma, with retention rates of 97.2–98.3%. The elimination half-life (t1/2) varied from 88 min in monkeys to 630 min in dogs. In human liver microsomes, metabolism was significantly inhibited by sulfaphenazole and ketoconazole, indicating the involvement of CYP3A4 and CYP2C9 enzymes. TPB15 underwent phase I metabolism, producing a major metabolite with a molecular weight of 468.9. Conclusions: TPB15 demonstrates stable pharmacokinetic properties across species, with consistent protein binding and significant variability in half-life. The observed differences in metabolism are primarily attributed to CYP2C9 and CYP3A4, offering valuable insights into its drug development potential. Full article
(This article belongs to the Special Issue Role of Pharmacokinetics in Drug Development and Evaluation)
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Sonidegib Inhibits the Adhesion of Acute Myeloid Leukemia to the Bone Marrow in Hypoxia: An Optical Tweezer Study
by Katarzyna Gdesz-Birula, Sławomir Drobczyński, Krystian Sarat and Kamila Duś-Szachniewicz
Biomedicines 2025, 13(3), 578; https://doi.org/10.3390/biomedicines13030578 - 25 Feb 2025
Cited by 2 | Viewed by 806
Abstract
Background: Acute myeloid leukemia (AML) is a heterogeneous disease highly resistant to chemotherapeutic agents. Leukemia stem cells (LSCs) can enter a dormant state and avoid apoptosis in the protective niche of the bone marrow (BM) microenvironment. Moreover, bone marrow stromal cells protect leukemia [...] Read more.
Background: Acute myeloid leukemia (AML) is a heterogeneous disease highly resistant to chemotherapeutic agents. Leukemia stem cells (LSCs) can enter a dormant state and avoid apoptosis in the protective niche of the bone marrow (BM) microenvironment. Moreover, bone marrow stromal cells protect leukemia cells by promoting pro-survival signaling pathways and drug resistance. Therefore, attenuating interactions between leukemia cells and BM cells may have a positive therapeutic effect. Objectives: In this work, we hypothesized that sondages may inhibit the adhesion of leukemia cells to the bone marrow by inhibiting the Hedgehog (Hh) signaling pathway. The Hedgehog pathway is a key therapeutic target in AML due to its role in leukemic cell growth and survival. Methods: We investigated the effects of sonidegib on the adhesion of individual OCI-AML3 cells to a bone marrow stromal spheroid derived from the HS-5 cell line. For this purpose, we precisely determined the minimum cell-to-cell adhesion time using optical tweezers under normoxic (21% of O2) and hypoxic (1% of O2) conditions. Results: Our results demonstrated that sonidegib significantly increased the minimum cell-to-cell adhesion time necessary for leukemic cells to establish adhesive bonds with bone marrow stromal cells, thereby indicating a reduction in their adhesive properties. Additionally, we showed that sonidegib is particularly effective at hypoxic oxygen concentrations. Conclusions: The results obtained in this study suggest that sonidegib, through its modulation of the Hedgehog signaling pathway, holds promise as a potential therapeutic approach to target leukemic cell adhesion within the bone marrow microenvironment. Full article
(This article belongs to the Special Issue 3D Cell Culture Systems for Biomedical Research)
Show Figures

Figure 1

14 pages, 1484 KiB  
Article
Synthesis and Evaluation of Aromatic A-Ring 23-Oxavitamin D3 Analogues as Hedgehog Pathway Inhibitors
by Wang Chen, Feifan Lai and Jianghe Xu
Int. J. Mol. Sci. 2025, 26(4), 1631; https://doi.org/10.3390/ijms26041631 - 14 Feb 2025
Cited by 1 | Viewed by 587
Abstract
The Hedgehog (Hh) signaling pathway plays a crucial role in the initiation and progression of tumors, and Hh inhibitors have been used as potential chemotherapeutic agents for the treatment of basal cell carcinomas (BCCs). Vitamin D3 (VD3) and its derivatives [...] Read more.
The Hedgehog (Hh) signaling pathway plays a crucial role in the initiation and progression of tumors, and Hh inhibitors have been used as potential chemotherapeutic agents for the treatment of basal cell carcinomas (BCCs). Vitamin D3 (VD3) and its derivatives have been identified as potent Hh inhibitors. However, the selectivity of VD3 derivatives to vitamin D receptor (VDR) and the Hh signaling pathway still needs optimization. In this study, a series of aromatic A-ring mimics VD3 analogues that contain a C-23 oxygen atom or incorporate C-25 hydroxyl on side chains were designed and synthesized. These compounds were tested in various cell lines for anti-Hh activity, with analogues 3j and 4i identified as potent inhibitors. Mechanism studies showed their anti-Hh effects are mainly due to targeting Smoothened (Smo) without binding to the cyclopamine site. Structure-activity relationship (SAR) studies revealed that VD3-based inhibitors enhance anti-Hh activity by adding a hydroxyl group at C25 while reducing VDR activity by incorporating an oxygen atom into the side chain. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 4.0)
Show Figures

Figure 1

22 pages, 1936 KiB  
Review
Hedgehog and PI3K/Akt/mTOR Signaling Pathways Involvement in Leukemic Malignancies: Crosstalk and Role in Cell Death
by Mariaconcetta Sicurella, Marica De Chiara and Luca Maria Neri
Cells 2025, 14(4), 269; https://doi.org/10.3390/cells14040269 - 13 Feb 2025
Cited by 4 | Viewed by 1537
Abstract
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These [...] Read more.
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These pathways are often dysregulated in leukemia cells, leading to increased cell growth, survival, and drug resistance while also impairing mechanisms of cell death. In leukemia, the Hh pathway can be abnormally activated by genetic mutations. Additionally, the PI3K/Akt/mTOR pathway is frequently overactive due to genetic changes. A key aspect of these pathways is their interaction: activation of the PI3K/Akt pathway can trigger a non-canonical activation of the Hh pathway, which further promotes leukemia cell growth and survival. Targeted inhibitors of these pathways, such as Gli inhibitors and PI3K/mTOR inhibitors, have shown promise in preclinical and clinical studies. Full article
Show Figures

Figure 1

22 pages, 1041 KiB  
Review
Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research
by Sabina Iluta, Madalina Nistor, Sanda Buruiana and Delia Dima
Life 2025, 15(2), 228; https://doi.org/10.3390/life15020228 - 4 Feb 2025
Cited by 3 | Viewed by 2517
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these [...] Read more.
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

29 pages, 2260 KiB  
Review
Hedgehog Signaling Pathway in Fibrosis and Targeted Therapies
by Yuchen Hu, Linrui Peng, Xinyu Zhuo, Chan Yang and Yuwei Zhang
Biomolecules 2024, 14(12), 1485; https://doi.org/10.3390/biom14121485 - 22 Nov 2024
Cited by 4 | Viewed by 2338
Abstract
Hedgehog (Hh) signaling is a well-established developmental pathway; it is crucial for early embryogenesis, cell differentiation, and damage-driven regeneration. It is being increasingly recognized that dysregulated Hh signaling is also involved in fibrotic diseases, which are characterized by excessive extracellular matrix deposition that [...] Read more.
Hedgehog (Hh) signaling is a well-established developmental pathway; it is crucial for early embryogenesis, cell differentiation, and damage-driven regeneration. It is being increasingly recognized that dysregulated Hh signaling is also involved in fibrotic diseases, which are characterized by excessive extracellular matrix deposition that compromises tissue architecture and function. As in-depth insights into the mechanisms of Hh signaling are obtained, its complex involvement in fibrosis is gradually being illuminated. Notably, some Hh-targeted inhibitors are currently under exploration in preclinical and clinical trials as a means to prevent fibrosis progression. In this review, we provide a concise overview of the biological mechanisms involved in Hh signaling. We summarize the latest advances in our understanding of the roles of Hh signaling in fibrogenesis across the liver, kidneys, airways, and lungs, as well as other tissues and organs, with an emphasis on both the shared features and, more critically, the distinct functional variations observed across these tissues and organs. We thus highlight the context dependence of Hh signaling, as well as discuss the current status and the challenges of Hh-targeted therapies for fibrosis. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 1596 KiB  
Article
Hedgehog Pathway Is a Regulator of Stemness in HER2-Positive Trastuzumab-Resistant Breast Cancer
by Idris Er and Asiye Busra Boz Er
Int. J. Mol. Sci. 2024, 25(22), 12102; https://doi.org/10.3390/ijms252212102 - 11 Nov 2024
Cited by 3 | Viewed by 1305
Abstract
HER2 overexpression occurs in 20–30% of breast cancers and is associated with poor prognosis. Trastuzumab is a standard treatment for HER2-positive breast cancer; however, resistance develops in approximately 50% of patients within a year. The Hedgehog (Hh) signalling pathway, known for its role [...] Read more.
HER2 overexpression occurs in 20–30% of breast cancers and is associated with poor prognosis. Trastuzumab is a standard treatment for HER2-positive breast cancer; however, resistance develops in approximately 50% of patients within a year. The Hedgehog (Hh) signalling pathway, known for its role in maintaining stemness in various cancers, may contribute to trastuzumab resistance in HER2-positive breast cancer. This study aimed to investigate the role of Hedgehog signalling in maintaining stemness and contributing to trastuzumab resistance in HER2-positive breast cancer cell lines. Trastuzumab-resistant HER2-positive breast cancer cell lines, SKBR3 and HCC1954, were developed through continuous trastuzumab exposure. Cells were treated with GANT61 (Hh inhibitor, IC50:10 µM) or SAG21K (Hh activator, IC50:100 nM) for 24 h to evaluate the Hedgehog signalling response. Stemness marker expression (Nanog, Sox2, Bmi1, Oct4) was measured using qRT-PCR. The combination index (CI) of GANT61 with trastuzumab was calculated using CompuSyn software (version 1.0) to identify synergistic doses (CI < 1). The synergistic concentrations’ impact on stemness markers was assessed. Data were analysed using two-way ANOVA and Tukey’s post hoc test (p < 0.05). Trastuzumab-resistant cells exhibited increased Hedgehog signalling activity. Treatment with GANT61 significantly downregulated stemness marker expression, while SAG21K treatment led to their upregulation in both SKBR3-R and HCC1954-R cells. The combination of GANT61 and trastuzumab demonstrated a synergistic effect, markedly reducing the expression of stemness markers. These findings indicate that Hedgehog signalling plays a pivotal role in maintaining stemness in trastuzumab-resistant cells, and that the inhibition of this pathway may prevent tumour progression. Hedgehog signalling is crucial in regulating stemness in trastuzumab-resistant HER2-positive breast cancer. Targeting this pathway could overcome resistance and enhance trastuzumab efficacy. Further studies should explore the clinical potential of Hedgehog inhibitors in combination therapies. Full article
(This article belongs to the Special Issue Hormone Receptors and Signaling in Breast Cancer)
Show Figures

Figure 1

14 pages, 882 KiB  
Review
Hedgehog Signalling Pathway and Its Role in Shaping the Architecture of Intestinal Epithelium
by Adrianna Konopka, Kamil Gawin and Marcin Barszcz
Int. J. Mol. Sci. 2024, 25(22), 12007; https://doi.org/10.3390/ijms252212007 - 8 Nov 2024
Cited by 3 | Viewed by 2263
Abstract
The hedgehog (Hh) signalling pathway plays a key role in both embryonic and postnatal development of the intestine and is responsible for gut homeostasis. It regulates stem cell renewal, formation of the villous–crypt axis, differentiation of goblet and Paneth cells, the cell cycle, [...] Read more.
The hedgehog (Hh) signalling pathway plays a key role in both embryonic and postnatal development of the intestine and is responsible for gut homeostasis. It regulates stem cell renewal, formation of the villous–crypt axis, differentiation of goblet and Paneth cells, the cell cycle, apoptosis, development of gut innervation, and lipid metabolism. Ligands of the Hh pathway, i.e., Indian hedgehog (Ihh) and Sonic hedgehog (Shh), are expressed by superficial enterocytes but act in the mesenchyme, where they are bound by a Patched receptor localised on myofibroblasts and smooth muscle cells. This activates a cascade leading to the transcription of target genes, including those encoding G1/S-specific cyclin-D2 and -E1, B-cell lymphoma 2, fibroblast growth factor 4, and bone morphogenetic protein 4. The Hh pathway is tightly connected to Wnt signalling. Ihh is the major ligand in the Hh pathway. Its activation inhibits proliferation, while its blocking induces hyperproliferation and triggers a wound-healing response. Thus, Ihh is a negative feedback regulator of cell proliferation. There are data indicating that diet composition may affect the expression of the Hh pathway genes and proteins, which in turn, induces changes in mucosal architecture. This was shown for fat, vitamin A, haem, berberine, and ovotransferrin. The Hh signalling is also affected by the intestinal microbiota, which affects the intestinal barrier integrity. This review highlights the critical importance of the Hh pathway in shaping the intestinal mucosa and summarises the results obtained so far in research on the effect of dietary constituents on the activity of this pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1143 KiB  
Article
Curcumin and Methotrexate: A Promising Combination for Osteosarcoma Treatment via Hedgehog Pathway Inhibition
by Giulia Giliberti, Maria Maddalena Marrapodi, Giuseppe Di Feo, Elvira Pota, Martina Di Martino, Daniela Di Pinto, Francesca Rossi and Alessandra Di Paola
Int. J. Mol. Sci. 2024, 25(20), 11300; https://doi.org/10.3390/ijms252011300 - 21 Oct 2024
Cited by 2 | Viewed by 2491
Abstract
Osteosarcoma (OS) is the most severe bone tumor in children. A chemotherapy regimen includes a combination of high-dose Methotrexate (MTX), doxorubicin, and cisplatin. These drugs cause acute and chronic side effects, such as infections, thrombocytopenia, neutropenia, DNA damage, and inflammation. Therefore, to identify [...] Read more.
Osteosarcoma (OS) is the most severe bone tumor in children. A chemotherapy regimen includes a combination of high-dose Methotrexate (MTX), doxorubicin, and cisplatin. These drugs cause acute and chronic side effects, such as infections, thrombocytopenia, neutropenia, DNA damage, and inflammation. Therefore, to identify new therapeutic strategies, effective and with a safety profile, is necessary. The Hedgehog (Hh) signaling pathway involved in tumorigenesis is active in OS. Hh components Patched receptor 1 (PTCH1), Smoothened (SMO), and glioma-associated oncogene homolog transcription factors (GLI1 and GLI2) are overexpressed in OS cell lines and patient samples. Curcumin (CUR)—with antioxidant and anti-cancer properties—downregulates Hh components in cancer, inhibiting progression. This study investigates CUR effects on the MG-63 OS cell line, alone and combined with MTX, to propose a novel therapeutic approach. Our study suggests CUR as a novel therapeutic agent in OS, particularly when combined with MTX. Targeting the Hh signaling pathway, CUR and MTX showed significant pro-apoptotic effects, increasing the BAX/Bcl-2 ratio and total apoptotic cell percentage. They reduced the expression of Hh pathway components (PTCH1, SMO, GLI1, and GLI2), inhibiting OS cell proliferation, survival, and invasion. CUR and MTX combined determined a β-Catenin decrease and a trend toward reducing NF-kB and matrix metalloproteinases (MMP-2 and MMP-9). Our findings suggest CUR as a support to OS treatment, improving outcomes and reducing the adverse effects of current therapies. Full article
Show Figures

Graphical abstract

29 pages, 13064 KiB  
Review
Application of Nanotechnology and Phytochemicals in Anticancer Therapy
by Jin Hee Kim, Boluwatife Olamide Dareowolabi, Rekha Thiruvengadam and Eun-Yi Moon
Pharmaceutics 2024, 16(9), 1169; https://doi.org/10.3390/pharmaceutics16091169 - 5 Sep 2024
Cited by 6 | Viewed by 2479
Abstract
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has [...] Read more.
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has been adopted for the postsurgical care of patients with cancer. However, conventional medicines have shown major challenges such as drug resistance, a high level of drug toxicity, and different drug responses, due to tumor heterogeneity. Nanotechnology-based therapeutic formulations could effectively overcome the challenges faced by conventional treatment methods. In particular, the combined use of nanomedicine with natural phytochemicals can enhance tumor targeting and increase the efficacy of anticancer agents with better solubility and bioavailability and reduced side effects. However, there is limited evidence in relation to the application of phytochemicals in cancer treatment, particularly focusing on nanotechnology. Therefore, in this review, first, we introduce the drug carriers used in advanced nanotechnology and their strengths and limitations. Second, we provide an update on well-studied nanotechnology-based anticancer therapies related to the carcinogenesis process, including signaling pathways related to transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), Wnt, poly(ADP-ribose) polymerase (PARP), Notch, and Hedgehog (HH). Third, we introduce approved nanomedicines currently available for anticancer therapy. Fourth, we discuss the potential roles of natural phytochemicals as anticancer drugs. Fifth, we also discuss the synergistic effect of nanocarriers and phytochemicals in anticancer therapy. Full article
(This article belongs to the Special Issue Anti-Cancer Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 4928 KiB  
Article
Effects of Isoxazolyl Steroids on Key Genes of Sonic Hedgehog Cascade Expression in Tumor Cells
by Anna Aleksandrova, Arif Mekhtiev, Olga Timoshenko, Elena Kugaevskaya, Tatiana Gureeva, Alisa Gisina, Maria Zavialova, Kirill Scherbakov, Anton Rudovich, Vladimir Zhabinskii and Vladimir Khripach
Molecules 2024, 29(17), 4026; https://doi.org/10.3390/molecules29174026 - 26 Aug 2024
Cited by 1 | Viewed by 1319
Abstract
Activation of the Hedgehog (Hh) signaling pathway is often associated with the progression of various types of cancer. The purpose of study was to search for inhibitors of the Hh signaling pathway among eight compounds belonging to the group of isoxazolyl steroids. The [...] Read more.
Activation of the Hedgehog (Hh) signaling pathway is often associated with the progression of various types of cancer. The purpose of study was to search for inhibitors of the Hh signaling pathway among eight compounds belonging to the group of isoxazolyl steroids. The evaluation of the effectiveness of the compounds was based on the analysis of their cytotoxicity, effect on the cell cycle, on the expression of key Hh-signaling-pathway genes (Ptch1, Smo, and Gli1) and putative target genes MMP-2 and MMP-9. Four compounds with the most pronounced cytotoxic effect were identified: compounds 1, 2 (HeLa cells) and 3, 4 (A549 cells). Compounds 1 and 2 significantly reduced the expression of the Ptch1, Smo, Gli1 genes, but had the opposite effect on MMP-2 gene expression: Compound 1 increased it, and compound 2 decreased it. Compounds 3 and 4 did not have a noticeable inhibitory effect on the expression of the Shh pathway receptors, but significantly inhibited MMP-2 and MMP-9 expression. Thus, it was shown that inhibition of the Shh signaling pathway by isoxazolyl steroids can have the opposite effect on MMPs gene expression, which is what should be taken into account in further studies of these compounds as therapeutic agents. Full article
Show Figures

Graphical abstract

20 pages, 5978 KiB  
Article
Identification of Novel GANT61 Analogs with Activity in Hedgehog Functional Assays and GLI1-Dependent Cancer Cells
by Dina Abu Rabe, Lhoucine Chdid, David R. Lamson, Christopher P. Laudeman, Michael Tarpley, Naglaa Elsayed, Ginger R. Smith, Weifan Zheng, Maria S. Dixon and Kevin P. Williams
Molecules 2024, 29(13), 3095; https://doi.org/10.3390/molecules29133095 - 28 Jun 2024
Cited by 4 | Viewed by 2452
Abstract
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at [...] Read more.
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors. Full article
Show Figures

Graphical abstract

19 pages, 6499 KiB  
Article
GLI Transcriptional Targets S100A7 and KRT16 Show Upregulated Expression Patterns in Epidermis Overlying the Tumor Mass in Melanoma Samples
by Matea Kurtović, Nikolina Piteša, Josipa Čonkaš, Helena Hajpek, Majda Vučić, Vesna Musani, Petar Ozretić and Maja Sabol
Int. J. Mol. Sci. 2024, 25(11), 6084; https://doi.org/10.3390/ijms25116084 - 31 May 2024
Viewed by 1768
Abstract
Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) [...] Read more.
Although not completely understood, the role of the Hedgehog-GLI (HH-GLI) signaling pathway in melanoma and epithelial skin tumors has been reported before. In this study, we confirmed in various melanoma cell line models that keratin 16 (KRT16) and S100 Calcium-Binding Protein A7 (S100A7) are transcriptional targets of GLI Family Zinc Finger (GLI) proteins. Besides their important role in protecting and maintaining the epidermal barrier, keratins are somehow tightly connected with the S100 family of proteins. We found that stronger expression of KRT16 indeed corresponds to stronger expression of S100A7 in our clinical melanoma samples. We also report a trend regarding staining of GLI1, which corresponds to stronger staining of GLI3, KRT16, and S100A7 proteins. The most interesting of our findings is that all the proteins are detected specifically in the epidermis overlying the tumor, but rarely in the tumor itself. The examined proteins were also not detected in the healthy epidermis at the edges of the sample, suggesting that the staining is specific to the epidermis overlaying the tumor mass. Of all proteins, only S100A7 demonstrated a statistically significant trend regarding tumor staging and staining intensity. Results from our clinical samples prove that immune infiltration is an important feature of melanoma. Pigmentophages and tumor-infiltrating lymphocytes (TIL) demonstrate a significant association with tumor stage, while mononuclear cells are equally present in all stages. For S100A7, we found an association between the number of TILs and staining intensity. Considering these new findings presented in our study, we suggest a more detailed examination of the possible role of the S100A7 protein as a biomarker in melanoma. Full article
(This article belongs to the Special Issue Melanoma: Molecular Mechanisms and Therapy)
Show Figures

Figure 1

15 pages, 1262 KiB  
Review
Is the Hedgehog Pathway Involved in the Pathophysiology of Schizophrenia? A Systematic Review of Current Evidence of Neural Molecular Correlates and Perspectives on Drug Development
by Antonio Del Casale, Martina Nicole Modesti, Giovanna Gentile, Cecilia Guariglia, Stefano Ferracuti, Maurizio Simmaco and Marina Borro
Curr. Issues Mol. Biol. 2024, 46(6), 5322-5336; https://doi.org/10.3390/cimb46060318 - 27 May 2024
Cited by 1 | Viewed by 1590
Abstract
Among the pathophysiological correlates of schizophrenia, recent research suggests a potential role for the Hedgehog (Hh) signalling pathway, which has been traditionally studied in embryonic development and oncology. Its dysregulation may impact brain homeostasis, neuroplasticity, and potential involvement in neural processes. This systematic [...] Read more.
Among the pathophysiological correlates of schizophrenia, recent research suggests a potential role for the Hedgehog (Hh) signalling pathway, which has been traditionally studied in embryonic development and oncology. Its dysregulation may impact brain homeostasis, neuroplasticity, and potential involvement in neural processes. This systematic review provides an overview of the involvement of Hh signalling in the pathophysiology of schizophrenia and antipsychotic responses. We searched the PubMed and Scopus databases to identify peer-reviewed scientific studies focusing on Hh and schizophrenia, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, finally including eight studies, including three articles focused on patients with schizophrenia, two animal models of schizophrenia, two animal embryo studies, and one cellular differentiation study. The Hh pathway is crucial in the development of midbrain dopaminergic neurons, neuroplasticity mechanisms, regulating astrocyte phenotype and function, brain-derived neurotrophic factor expression, brain glutamatergic neural transmission, and responses to antipsychotics. Overall, results indicate an involvement of Hh in the pathophysiology of schizophrenia and antipsychotic responses, although an exiguity of studies characterises the literature. The heterogeneity between animal and human studies is another main limitation. Further research can lead to better comprehension and the development of novel personalised drug treatments and therapeutic interventions. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

Back to TopTop