Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Havrda–Charvát (Tsallis) entropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 761 KiB  
Article
Chaos, Fractionality, Nonlinear Contagion, and Causality Dynamics of the Metaverse, Energy Consumption, and Environmental Pollution: Markov-Switching Generalized Autoregressive Conditional Heteroskedasticity Copula and Causality Methods
by Melike Bildirici, Özgür Ömer Ersin and Blend Ibrahim
Fractal Fract. 2024, 8(2), 114; https://doi.org/10.3390/fractalfract8020114 - 14 Feb 2024
Cited by 7 | Viewed by 2020
Abstract
Metaverse (MV) technology introduces new tools for users each day. MV companies have a significant share in the total stock markets today, and their size is increasing. However, MV technologies are questioned as to whether they contribute to environmental pollution with their increasing [...] Read more.
Metaverse (MV) technology introduces new tools for users each day. MV companies have a significant share in the total stock markets today, and their size is increasing. However, MV technologies are questioned as to whether they contribute to environmental pollution with their increasing energy consumption (EC). This study explores complex nonlinear contagion with tail dependence and causality between MV stocks, EC, and environmental pollution proxied with carbon dioxide emissions (CO2) with a decade-long daily dataset covering 18 May 2012–16 March 2023. The Mandelbrot–Wallis and Lo’s rescaled range (R/S) tests confirm long-term dependence and fractionality, and the largest Lyapunov exponents, Shannon and Havrda, Charvât, and Tsallis (HCT) entropy tests followed by the Kolmogorov–Sinai (KS) complexity measure confirm chaos, entropy, and complexity. The Brock, Dechert, and Scheinkman (BDS) test of independence test confirms nonlinearity, and White‘s test of heteroskedasticity of nonlinear forms and Engle’s autoregressive conditional heteroskedasticity test confirm heteroskedasticity, in addition to fractionality and chaos. In modeling, the marginal distributions are modeled with Markov-Switching Generalized Autoregressive Conditional Heteroskedasticity Copula (MS-GARCH–Copula) processes with two regimes for low and high volatility and asymmetric tail dependence between MV, EC, and CO2 in all regimes. The findings indicate relatively higher contagion with larger copula parameters in high-volatility regimes. Nonlinear causality is modeled under regime-switching heteroskedasticity, and the results indicate unidirectional causality from MV to EC, from MV to CO2, and from EC to CO2, in addition to bidirectional causality among MV and EC, which amplifies the effects on air pollution. The findings of this paper offer vital insights into the MV, EC, and CO2 nexus under chaos, fractionality, and nonlinearity. Important policy recommendations are generated. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

26 pages, 456 KiB  
Article
Some Technical Remarks on Negations of Discrete Probability Distributions and Their Information Loss
by Ingo Klein
Mathematics 2022, 10(20), 3893; https://doi.org/10.3390/math10203893 - 20 Oct 2022
Cited by 2 | Viewed by 2017
Abstract
Negation of a discrete probability distribution was introduced by Yager. To date, several papers have been published discussing generalizations, properties, and applications of negation. The recent work by Wu et al. gives an excellent overview of the literature and the motivation to deal [...] Read more.
Negation of a discrete probability distribution was introduced by Yager. To date, several papers have been published discussing generalizations, properties, and applications of negation. The recent work by Wu et al. gives an excellent overview of the literature and the motivation to deal with negation. Our paper focuses on some technical aspects of negation transformations. First, we prove that independent negations must be affine-linear. This fact was established by Batyrshin et al. as an open problem. Secondly, we show that repeated application of independent negations leads to a progressive loss of information (called monotonicity). In contrast to the literature, we try to obtain results not only for special but also for the general class of ϕ-entropies. In this general framework, we can show that results need to be proven only for Yager negation and can be transferred to the entire class of independent (=affine-linear) negations. For general ϕ-entropies with strictly concave generator function ϕ, we can show that the information loss increases separately for sequences of odd and even numbers of repetitions. By using a Lagrangian approach, this result can be extended, in the neighbourhood of the uniform distribution, to all numbers of repetition. For Gini, Shannon, Havrda–Charvát (Tsallis), Rényi and Sharma–Mittal entropy, we prove that the information loss has a global minimum of 0. For dependent negations, it is not easy to obtain analytical results. Therefore, we simulate the entropy distribution and show how different repeated negations affect Gini and Shannon entropy. The simulation approach has the advantage that the entire simplex of discrete probability vectors can be considered at once, rather than just arbitrarily selected probability vectors. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

28 pages, 937 KiB  
Article
Inference for a Kavya–Manoharan Inverse Length Biased Exponential Distribution under Progressive-Stress Model Based on Progressive Type-II Censoring
by Naif Alotaibi, Atef F. Hashem, Ibrahim Elbatal, Salem A. Alyami, A. S. Al-Moisheer and Mohammed Elgarhy
Entropy 2022, 24(8), 1033; https://doi.org/10.3390/e24081033 - 27 Jul 2022
Cited by 15 | Viewed by 2097
Abstract
In this article, a new one parameter survival model is proposed using the Kavya–Manoharan (KM) transformation family and the inverse length biased exponential (ILBE) distribution. Statistical properties are obtained: quantiles, moments, incomplete moments and moment generating function. Different types of entropies such as [...] Read more.
In this article, a new one parameter survival model is proposed using the Kavya–Manoharan (KM) transformation family and the inverse length biased exponential (ILBE) distribution. Statistical properties are obtained: quantiles, moments, incomplete moments and moment generating function. Different types of entropies such as Rényi entropy, Tsallis entropy, Havrda and Charvat entropy and Arimoto entropy are computed. Different measures of extropy such as extropy, cumulative residual extropy and the negative cumulative residual extropy are computed. When the lifetime of the item under use is assumed to follow the Kavya–Manoharan inverse length biased exponential (KMILBE) distribution, the progressive-stress accelerated life tests are considered. Some estimating approaches, such as the maximum likelihood, maximum product of spacing, least squares, and weighted least square estimations, are taken into account while using progressive type-II censoring. Furthermore, interval estimation is accomplished by determining the parameters’ approximate confidence intervals. The performance of the estimation approaches is investigated using Monte Carlo simulation. The relevance and flexibility of the model are demonstrated using two real datasets. The distribution is very flexible, and it outperforms many known distributions such as the inverse length biased, the inverse Lindley model, the Lindley, the inverse exponential, the sine inverse exponential and the sine inverse Rayleigh model. Full article
Show Figures

Figure 1

1 pages, 156 KiB  
Correction
Correction: Brochet et al. A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction. Entropy 2022, 24, 436
by Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Alexandre Huat, Sébastien Thureau, David Pasquier, Isabelle Gardin, Romain Modzelewski, David Gibon, Juliette Thariat, Vincent Grégoire, Pierre Vera and Su Ruan
Entropy 2022, 24(5), 685; https://doi.org/10.3390/e24050685 - 13 May 2022
Cited by 3 | Viewed by 3181
Abstract
Alexandre Huat, Sébastien Thureau, David Pasquier, Isabelle Gardin, Romain Modzelewski, David Gibon, Juliette Thariat and Vincent Grégoire were not included as authors in the original publication [...] Full article
(This article belongs to the Special Issue Application of Entropy to Computer Vision and Medical Imaging)
11 pages, 594 KiB  
Article
A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction
by Thibaud Brochet, Jérôme Lapuyade-Lahorgue, Alexandre Huat, Sébastien Thureau, David Pasquier, Isabelle Gardin, Romain Modzelewski, David Gibon, Juliette Thariat, Vincent Grégoire, Pierre Vera and Su Ruan
Entropy 2022, 24(4), 436; https://doi.org/10.3390/e24040436 - 22 Mar 2022
Cited by 12 | Viewed by 3365 | Correction
Abstract
In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is widely [...] Read more.
In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is widely used as a loss function for most neural networks applied to the segmentation, classification and detection of images. Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy. In this work, we compare these two entropies through a medical application for predicting recurrence in patients with head–neck and lung cancers after treatment. Based on both CT images and patient information, a multitask deep neural network is proposed to perform a recurrence prediction task using cross-entropy as a loss function and an image reconstruction task. Tsallis–Havrda–Charvat cross-entropy is a parameterized cross-entropy with the parameter α. Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy for α=1. The influence of this parameter on the final prediction results is studied. In this paper, the experiments are conducted on two datasets including in total 580 patients, of whom 434 suffered from head–neck cancers and 146 from lung cancers. The results show that Tsallis–Havrda–Charvat entropy can achieve better performance in terms of prediction accuracy with some values of α. Full article
(This article belongs to the Special Issue Application of Entropy to Computer Vision and Medical Imaging)
Show Figures

Figure 1

29 pages, 3745 KiB  
Article
Picture Fuzzy MCDM Approach for Risk Assessment of Railway Infrastructure
by Vladimir Simić, Radovan Soušek and Stefan Jovčić
Mathematics 2020, 8(12), 2259; https://doi.org/10.3390/math8122259 - 21 Dec 2020
Cited by 35 | Viewed by 4517
Abstract
To increase the level of safety and prevent significant accidents, it is essential to prioritize risk factors and assess railway infrastructure. The key question is how to identify unsafe railway infrastructure so authorities can undertake safety improvement projects on time. The paper aims [...] Read more.
To increase the level of safety and prevent significant accidents, it is essential to prioritize risk factors and assess railway infrastructure. The key question is how to identify unsafe railway infrastructure so authorities can undertake safety improvement projects on time. The paper aims to introduce a picture fuzzy group multi-criteria decision-making approach for risk assessment of railway infrastructure. Firstly, picture fuzzy sets are employed for representing and handling risk-related information. Secondly, a picture fuzzy hybrid method based on the direct rating, and Tsallis–Havrda–Charvát entropy is provided to prioritize risk factors. Thirdly, a picture fuzzy measurement of alternatives and ranking according to compromise solution method is developed to rank railway infrastructures. Lastly, the formulated approach is implemented in the Czech Republic context. Two sensitivity analyses verified the high robustness of the formulated approach. The comparative analysis with five state-of-the-art picture fuzzy approaches approved its high reliability. Compared to the state-of-the-art picture fuzzy approaches, the provided three-parametric approach has superior flexibility. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

8 pages, 254 KiB  
Article
Entropic Distance for Nonlinear Master Equation
by Tamás Sándor Biró, András Telcs and Zoltán Néda
Universe 2018, 4(1), 10; https://doi.org/10.3390/universe4010010 - 4 Jan 2018
Cited by 4 | Viewed by 2920
Abstract
More and more works deal with statistical systems far from equilibrium, dominated by unidirectional stochastic processes, augmented by rare resets. We analyze the construction of the entropic distance measure appropriate for such dynamics. We demonstrate that a power-like nonlinearity in the state probability [...] Read more.
More and more works deal with statistical systems far from equilibrium, dominated by unidirectional stochastic processes, augmented by rare resets. We analyze the construction of the entropic distance measure appropriate for such dynamics. We demonstrate that a power-like nonlinearity in the state probability in the master equation naturally leads to the Tsallis (Havrda–Charvát, Aczél–Daróczy) q-entropy formula in the context of seeking for the maximal entropy state at stationarity. A few possible applications of a certain simple and linear master equation to phenomena studied in statistical physics are listed at the end. Full article
50 pages, 393 KiB  
Article
Entropies from Coarse-graining: Convex Polytopes vs. Ellipsoids
by Nikos Kalogeropoulos
Entropy 2015, 17(9), 6329-6378; https://doi.org/10.3390/e17096329 - 15 Sep 2015
Cited by 9 | Viewed by 5531
Abstract
We examine the Boltzmann/Gibbs/Shannon SBGS and the non-additive Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Sq and the Kaniadakis κ-entropy Sκ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between [...] Read more.
We examine the Boltzmann/Gibbs/Shannon SBGS and the non-additive Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Sq and the Kaniadakis κ-entropy Sκ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells in coarse-graining and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky’s theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint. Full article
(This article belongs to the Special Issue Geometry in Thermodynamics)
31 pages, 315 KiB  
Article
Ricci Curvature, Isoperimetry and a Non-additive Entropy
by Nikos Kalogeropoulos
Entropy 2015, 17(3), 1278-1308; https://doi.org/10.3390/e17031278 - 16 Mar 2015
Cited by 10 | Viewed by 5707
Abstract
Searching for the dynamical foundations of Havrda-Charvát/Daróczy/ Cressie-Read/Tsallis non-additive entropy, we come across a covariant quantity called, alternatively, a generalized Ricci curvature, an N-Ricci curvature or a Bakry-Émery-Ricci curvature in the configuration/phase space of a system. We explore some of the implications [...] Read more.
Searching for the dynamical foundations of Havrda-Charvát/Daróczy/ Cressie-Read/Tsallis non-additive entropy, we come across a covariant quantity called, alternatively, a generalized Ricci curvature, an N-Ricci curvature or a Bakry-Émery-Ricci curvature in the configuration/phase space of a system. We explore some of the implications of this tensor and its associated curvature and present a connection with the non-additive entropy under investigation. We present an isoperimetric interpretation of the non-extensive parameter and comment on further features of the system that can be probed through this tensor. Full article
(This article belongs to the Special Issue Entropic Aspects in Statistical Physics of Complex Systems)
15 pages, 257 KiB  
Article
On a Generalized Entropy Measure Leading to the Pathway Model with a Preliminary Application to Solar Neutrino Data
by Arak M. Mathai and Hans J. Haubold
Entropy 2013, 15(10), 4011-4025; https://doi.org/10.3390/e15104011 - 25 Sep 2013
Cited by 29 | Viewed by 6024
Abstract
An entropy for the scalar variable case, parallel to Havrda-Charvat entropy, was introduced by the first author, and the properties and its connection to Tsallis non-extensive statistical mechanics and the Mathai pathway model were examined by the authors in previous papers. In the [...] Read more.
An entropy for the scalar variable case, parallel to Havrda-Charvat entropy, was introduced by the first author, and the properties and its connection to Tsallis non-extensive statistical mechanics and the Mathai pathway model were examined by the authors in previous papers. In the current paper, we extend the entropy to cover the scalar case, multivariable case, and matrix variate case. Then, this measure is optimized under different types of restrictions, and a number of models in the multivariable case and matrix variable case are obtained. Connections of these models to problems in statistical and physical sciences are pointed out. An application of the simplest case of the pathway model to the interpretation of solar neutrino data by applying standard deviation analysis and diffusion entropy analysis is provided. Full article
(This article belongs to the Special Issue Dynamical Systems)
Show Figures

Figure 1

24 pages, 10102 KiB  
Article
Tsallis Entropy for Geometry Simplification
by Pascual Castelló, Carlos González, Miguel Chover, Mateu Sbert and Miquel Feixas
Entropy 2011, 13(10), 1805-1828; https://doi.org/10.3390/e13101805 - 29 Sep 2011
Cited by 4 | Viewed by 7730
Abstract
This paper presents a study and a comparison of the use of different information-theoretic measures for polygonal mesh simplification. Generalized measures from Information Theory such as Havrda–Charvát–Tsallis entropy and mutual information have been applied. These measures have been used in the error metric [...] Read more.
This paper presents a study and a comparison of the use of different information-theoretic measures for polygonal mesh simplification. Generalized measures from Information Theory such as Havrda–Charvát–Tsallis entropy and mutual information have been applied. These measures have been used in the error metric of a surfaces implification algorithm. We demonstrate that these measures are useful for simplifying three-dimensional polygonal meshes. We have also compared these metrics with the error metrics used in a geometry-based method and in an image-driven method. Quantitative results are presented in the comparison using the root-mean-square error (RMSE). Full article
(This article belongs to the Special Issue Tsallis Entropy)
Show Figures

Figure 1

Back to TopTop