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Abstract: Negation of a discrete probability distribution was introduced by Yager. To date, several
papers have been published discussing generalizations, properties, and applications of negation. The
recent work by Wu et al. gives an excellent overview of the literature and the motivation to deal with
negation. Our paper focuses on some technical aspects of negation transformations. First, we prove
that independent negations must be affine-linear. This fact was established by Batyrshin et al. as
an open problem. Secondly, we show that repeated application of independent negations leads to a
progressive loss of information (called monotonicity). In contrast to the literature, we try to obtain
results not only for special but also for the general class of φ-entropies. In this general framework,
we can show that results need to be proven only for Yager negation and can be transferred to the
entire class of independent (=affine-linear) negations. For general φ-entropies with strictly concave
generator function φ, we can show that the information loss increases separately for sequences of
odd and even numbers of repetitions. By using a Lagrangian approach, this result can be extended,
in the neighbourhood of the uniform distribution, to all numbers of repetition. For Gini, Shannon,
Havrda–Charvát (Tsallis), Rényi and Sharma–Mittal entropy, we prove that the information loss has
a global minimum of 0. For dependent negations, it is not easy to obtain analytical results. Therefore,
we simulate the entropy distribution and show how different repeated negations affect Gini and
Shannon entropy. The simulation approach has the advantage that the entire simplex of discrete
probability vectors can be considered at once, rather than just arbitrarily selected probability vectors.

Keywords: negation; Gini entropy; Shannon entropy; Havrda–Charvát (Tsallis) entropy; φ-entropy;
Rényi entropy; Sharma–Mittal entropy; (h, φ)-entropy; Dirichlet distribution; Monte Carlo simulation

MSC: 62E10; 94A16

1. Introduction

In knowledge-based systems, terms with n categories can be characterized by prob-
ability distributions. Let us consider the term ”conservative” and assume that we know
how the conservative population is distributed among the three categories ”right-wing
conservative”, ”conservative” and ”liberal-conservative”. Can we learn anything about
the non-conservative population from this distribution by looking at the negation of the
original distribution? If so, does this not necessarily involve a loss of information, because
the original distribution makes no explicit statement about non-conservatism? Can the
loss of information be measured by any information measure? These are questions that
are still the subject of intense debate that starts with the seminal work of Yager [1]. He
proposed to define negation of a probability distribution by subtracting the probability
distribution from 1 and distributing the sum of negated probabilities equally among the
n categories. The equal distribution can be motivated by Dempster–Shafer theory and a
maximal entropy argument. Technically, the equal distribution means that the negation
of one category’s probability must not depend on the probabilities of the other categories.
Batyrshin et al. [2] call a negation with this property ”independent”. Yager negation and all
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other affine-linear negations are independent. Batyrshin [3] stated this as an open problem
to show that independent negations must be affine-linear. One of our technical remarks
concerns the solution of this open problem.

In particular, for Yager negation, information content and information loss have
been measured by different entropies. Yager [1] discussed Gini entropy. This entropy is
very popular because no complicated calculations are required. However, the question
arises whether the results obtained for Gini entropy can be transferred to other entropies.
Therefore, Gao and Deng [4,5] have considered Shannon and Havrda–Charvát entropy.
Zhang et al. [6] also studied Havrda–Charvát entropy and Wu et al. [7] Shannon entropy
for exponential negations. Srivastava and Maheswari [8] introduced a new kind of entropy
tailored for Yager negation. Their proposal is also based on Shannon entropy. All authors
concluded that negation leads to an information loss. They use a Lagrangian approach to
reach this conclusion. Because the articles mentioned mostly deal with the application of
negations in various scientific fields, the more technical aspects seem to be of less interest. In
particular, the sufficient conditions for optimization have not been investigated. Therefore,
our technical remarks are intended to complete the proofs and generalise the results to the
class of φ-entropies with strictly concave generating function φ.

Negations can be applied not only to the original probability vector, but also to the
negation of a probability vector because negation again gives a probability distribution.
For example, consider a sequence of recursive application of negation of length k + 1. Then,
Yager [1] showed for Yager negation and Batyrshin et al. [3] proved for general affine-
linear negations that the k + 1-times recursively applied negation is given by a recursion
relation that updates the k-times recursively repeated negation by the uniform distribution.
Convergence against the uniform distribution with k→ ∞ is easy to show. We ask whether
this updating rule also applies to entropy of negation. In the tradition of Yager’s work, we
focus on Gini entropy as the preferred information measure. We show that Gini entropy of
k + 1-times repeated independent negations is a convex combination of the Gini entropy of
the uniform distribution and the Gini entropy of the k-times recursively repeated negations.
It is well known that the uniform distribution maximises the Gini entropy and represents the
point of minimum information, maximum dispersion, or maximum uncertainty. Therefore,
this updating formula ensures that negation leads to an information loss as suspected in
the introductory discussion of “conservatism”.

The work of Gao and Deng [4,5], Zhang et al. [6] and Wu et al. [7] illustrates the entropy
behaviour in terms of negation by numerical examples. Typical probability vectors were
selected and Yager or exponential negation were applied to this vector. As an alternative, we
propose a numerical procedure to compare φ-entropies for all possible probability vectors.
The numerical way is to draw probability vectors of size n from the Dirichlet distribution
and to simulate the entropy distribution. This procedure is particularly recommended for
dependent negations. In our opinion, there seems to be no analytical way to discuss the
behaviour of dependent negations and the corresponding φ-entropies. For all negations
considered, the entropy distribution is more or less concentrated below the entropy’s
maximum value. What we can learn is that negations that lie above Yager negation
(like exponential negation discussed in [7]) give more concentrated and peaked entropy
distributions and negations that lie below the Yager negation (like the Tsallis negation
with parameter 1/2 [6]) give more spread and less peaked distributions. This confirms the
statement of Wu et al. [7] that recursively repeated exponential negations converge faster
to the uniform distribution than recursively repeated Yager negations.

The specific aims of our paper are as follows.

1. It will be proven that independent negations have to be affine-linear.
2. It will be proven that the uniform distribution maximizes all φ-entropies with strictly

concave generating function φ.
3. It will be proven that the Yager negation minimizes any φ-entropy in the class of affine-

linear negations, with the consequence that the information loss has to be discussed
only for Yager negation.
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4. It will be proven that the information loss, measured by the difference of φ-entropies,
increases separately for odd and even sequences of repetition numbers of Yager
negation.

5. It will be proven that the uniform distribution yields a local minimum of the informa-
tion loss produced by the Yager negation for each φ-entropy.

6. It will be proven that the uniform distribution yields the global minimum of the
information loss produced by the Yager negation for Gini, paired Shannon, Shannon
and Havrda–Charvát entropy.

7. An explicit formula for Yager negation’s information loss in the case of the Gini
entropy will be given.

8. It will be shown that results concerning the information loss of Havrda–Charvát
entropy can be transferred to Rényi and Sharma–Mittal entropies by using the concept
of (h, φ)-entropies with h strictly increasing.

9. An impression of how the information loss behaves for dependent negations when
analytical results do not seem to be available will be given.

The paper is organised along the lines of the abovementioned objectives. After some
definitions in the first section, we show in the second section that independent negations
must be affine-linear. The third section introduces φ-entropies and shows that they are
maximized for the uniform distribution. Moreover, the Yager negation will be identified as
a minimum φ entropy representation of the class of affine-linear negations. The remainder
of the section discusses the information loss of Yager negation for general φ-entropies.
Approaches based on the strict concavity of φ as well as the Lagrangian approach will be
considered. In the fourth section, we elaborate on the results concerning the information loss
for some prominent φ-entropies. The impression could be given that all φ-entropies behave
similarly with respect to a negation. Therefore, we present some examples of entropies
wherein negations behave differently. In the fifth section, we discuss the information loss
for (h, φ)-entropies with strictly increasing function h. In the sixth section, we present the
results of a simulation study for the information loss of dependent negations. The seventh
section summarizes the main results. Three proofs refer to the same bordered Hessian
matrix. For this reason, this matrix is dealt with in Appendix A. Three proofs are moved
out to Appendix B to improve the readability.

2. Definitions

Let

In =

{
(p1, . . . , pn) ∈ [0, 1]n |

n

∑
i=1

pi = 1

}
(1)

be the probability simplex of size n ≥ 1. It contains all discrete probability distributions
with support of size n. A probability transformation maps a discrete probability distribution
to a new discrete probability distribution with support of the same size.

Definition 1.

1. A probability transformation T maps In into In such that

T(p1, . . . , pn) = (T1(p1, . . . , pn), . . . , Tn(p1, . . . , pn)) (2)

with Ti(p1, . . . , pn) ≥ 0, i = 1, 2, . . . , n and ∑n
i=1 Ti(p1, . . . , pn) = 1 for all (p1, . . . , pn)

∈ In.
2. The probability transformation T is independent, if there exists a function T : [0, 1]→ [0, 1]

such that
T(p1, . . . , pn) = (T(p1), . . . , T(pn)) (3)

for all (p1, . . . , pn) ∈ In.
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For an independent transformation, the function Ti depends exactly on the i-th com-
ponent pi and not on the other probabilities pj, j 6= i for j = 1, 2, . . . , n.

Three examples, to be discussed in detail later, are the exponential, the cosine, and the
affine-linear transformation. The first two are not and the last is independent.

Example 1.

1. In Wu et al. [7] an exponential probability transformation with

Ti(p1, . . . , pn) =
e−pi

∑n
l=1 e−pl

, i = 1, 2, . . . , n (4)

was considered.
2. Another example could be the cosinus transformation

Ti(p1, . . . , pn) =
1 + cos(πpi)

n + ∑n
l=1 cos(πpl)

, i = 1, 2, . . . , n. (5)

3. Affine-linear probability transformations are given by

Ti(p1, . . . , n) =
a + bpi
na + b

=: T(pi) (6)

for a and b such that 0 ≤ T(pi) ≤ 1, i = 1, 2, . . . , n.

The transformations (4), (5) and the affine-linear transformation (6) with b < 0 are
negative transformations (called negations) in the following sense.

Definition 2.

1. The probability transformation N : In → In with

N(p1, . . . , pn) = (N1(p1, . . . , pn), . . . , Nn(p1, . . . , pn))

is called a negation, if

pi ≤ pj =⇒ Ni(p1, . . . , pn) ≥ Nj(p1, . . . , pn) (7)

for all i, j = 1, 2, . . . , n and (p1, . . . , pn) ∈ In.
2. For independent negations N there exists a function N : [0, 1]→ [0, 1] with

N(p1, . . . , pn) = (N(p1), . . . , N(pn)), (p1, . . . , pn) ∈ In. (8)

N will be called a negator [3].

We will highlight two affine-linear negations that play a central role in what follows.

Example 2. An affine-linear negator is given by

N(p) =
a + bp
na + b

, 0 ≤ p ≤ 1

with b ≤ 0. Yager [1] discussed the special case b = −1 which is now called Yager negator. For
b = 0, we obtain the uniform negator characterizing the uniform distribution (1/n, . . . , 1/n).

The transformations (4), (5) and (6) are of the form

Ti(p1, . . . , pn) =
f (pi)

∑n
l=1 f (pl)

, (p1, . . . , pn) ∈ In (9)
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generated by a function f : [0, 1] → (0, ∞). The division by ∑n
l=1 f (pl) ensures that the

image of the transformation again results in a discrete probability distribution.
If f has a negative slope, f generates a negation

N(p) =
(

f (p1)

∑n
l=1 f (pl)

, . . . ,
f (pn)

∑n
l=1 f (pl)

)
, p = (p1, . . . , pn) ∈ In. (10)

Even though (9) is a function of the whole vector of probabilities, Batyrshin [3] defines

N(pi) :=
f (pi)

∑n
l=1 f (pl)

, (p1, . . . , pn) ∈ In (11)

and calls the N negator as well. This small formal incorrectness simplifies the notation
and will be used in the following. Furthermore, we speak of an independent negator if the
corresponding negation is independent. This formulation also follows Batyrshin [3].

3. Independence and Linearity

The negator (11) can only be independent, if

n

∑
j=1

f (pj) =
n

∑
j=1

f (qj)

holds for (p1, . . . , pn), (q1, . . . , qn) ∈ In. This means that there is constant c 6= 0 with

n

∑
l=1

f (pl) = c, (p1, . . . , pn) ∈ In. (12)

The constant c can be characterized more precisely if the special discrete probability
distribution (1, 0, . . . , 0) is inserted into (12):

c = f (1) + (n− 1) f (0), resp. 1 = N(1) + (n− 1)N(0). (13)

Batyrshin et al. [2] and Batyrshin [3] showed many properties of independent negators
and of affine-linear negators with generating function f (p) = a + bp with a = f (0)
and b = f (1) − f (0). It is easy to verify that affine-linear negators are independent.
Batyrshin et al. [2] identified this as an open problem to show that the converse is also true.
The following theorem gives a proof that independent negators must be affine-linear. For
simplicity, we assume that f is continuous. The proof can be based on weaker assumptions.

Theorem 1. Let f : [0, 1] → [0, ∞) be a continuous function. Then the unique independent
negator is generated by

f (p) = f (0) + ( f (1)− f (0))p, 0 ≤ p ≤ 1 (14)

with f (1) < f (0).

Proof. From (12) and (13) it follows that

n

∑
l=1

f (pl) = f (1) + (n− 1) f (0)

resp.
n−1

∑
l=1

f (pl) = f (1) + (n− 1) f (0)− f (pn).
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Consider n = 2 with p1 = p and p2 = 1− p, this results in

f (1− p) = f (1) + f (0)− f (p). (15)

For general n, it is ∑n−1
l=1 pl = 1− pn and by inserting (15) for p = ∑n−1

l=1 pl we get

n−1

∑
l=1

f (pl) = f (1)− (n− 1) f (0)− f

(
1−

n−1

∑
l=1

pl

)

= f (1)− (n− 1) f (0) + f

(
n−1

∑
l=1

pl

)
− f (1)− f (0),

such that
n−1

∑
l=1

( f (pl)− f (0)) = f

(
n−1

∑
l=1

pl

)
− f (0).

Define g(p) := f (p)− f (0), and then we get the Cauchy functional equation

g

(
n−1

∑
l=1

pl

)
=

n−1

∑
l=1

g(pl)

for n = 2, 3, . . .. If f and therefore g are continuous, it is well-known that the Cauchy
functional equation has the unique solution ([9], p. 51) g(p) = kp. This gives f (p) =
f (0) + kp for 0 ≤ p ≤ 1 with k determined by

n

∑
l=1

f (pl) = n f (0) + k = (n− 1) f (0) + f (1)

as k = f (1)− f (0). The unique independent negator is generated by

f (p) = f (0) + ( f (1)− f (0))p, 0 ≤ p ≤ 1.

The corresponding affine-linear negator generated by (14) is

N(p) =
f (0) + ( f (1)− f (0))p
(n− 1) f (0) + f (1)

, 0 ≤ p ≤ 1. (16)

The following collection of properties for affine-linear negators has already been
proven by Batyrshin et al. [2]. These properties are needed to show some results concerning
the entropy of negations. Set

A := N(0) =
f (0)

(n− 1) f (0) + f (1)
and B = N(1)− N(0) =

f (1)− f (0)
(n− 1) f (0) + f (1)

and then N(p) = A + Bp for 0 ≤ p ≤ 1.

Remark 1.

1. −1/(n− 1) ≤ B ≤ 0.
2. N(p) ∈ [0, 1/n] for p ≥ 1/n, N(p) ∈ [1/n, 1/(n− 1)] for p ≤ 1/n. This means that,

depending on n, an independent negator takes on values in a very small interval.
3. N(p) can be equivalently represented as the convex combination of the constant (or uniform)

negator NU(p) = 1/n and the Yager negator NY(p) = (1− p)/(n− 1) for 0 ≤ p ≤ 1.
This means, there exists an α ∈ [0, 1] such that

N(p) = αNU(p) + (1− α)NY(p), 0 ≤ p ≤ 1. (17)
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For an affine-linear negator N, there is an alternative representation as difference
between the negator and the uniform distribution:

N(p)− 1
n
= B

(
p− 1

n

)
, 0 ≤ p ≤ 1. (18)

Yager [1] already considered the repeated use of negation. According to Batyrshin [3],
N(k+1)(p) denotes the negator after k + 1-times repeated use of N. By using (18) and by
induction it is easy to show

N(k+1)(p)− 1
n
= Bk+1

(
p− 1

n

)
= B

(
N(k)(p)− 1

n

)
, 0 ≤ p ≤ 1, (19)

or, equivalently,

N(k+1)(p) = (1− Bk+1)
1
n
+ Bk+1 p = (1− B)

1
n
+ BN(k)(p), 0 ≤ p ≤ 1 (20)

for k = 0, 1, 2, 3, . . . [2]. The recursion relation (20) starts with B(0)(p) = p. From Remark 1,
we know that |B| < 1, such that Bk → 0 for k→ ∞. This means that (Nk(p)− 1/n)k=1,2,...
is an alternating sequence converging to 0.

4. Information Loss for Independent Negations and General φ-Entropies
4.1. φ-Entropies

Yager [1] decided to discuss the Gini entropy based on its simple formula. This leads to
the question whether the results proven for the Gini entropy also apply to other entropies.
In the literature, the Shannon and the so-called Havrda–Charvát (or Tsallis) entropy have
been the focus of discussion. These entropies are special cases of a broader class of entropies.
In a recent paper, Ilić et al. [10]) gave an excellent overview of what they call ”generalized
entropic forms”. For our purposes, it is sufficient to consider φ-entropies introduced by
Burbea and Rao [11] and (h, φ)-entropies introduced by Salicrú et al. [12].

Definition 3. Let φ : [0, 1]→ [0, ∞) be strictly concave on [0, 1] with φ′′(p) < 0 for 0 ≤ p ≤ 1.
Then,

Hφ(p) =
n

∑
i=1

φ(pi), p = (p1, . . . , pn) ∈ In (21)

is called φ-entropy with generating function φ.

Examples for φ-entropies are

Example 3.

1. Gini (or quadratic) entropy: φ(u) = u(1− u) [13–16].
2. Shannon entropy: φ(u) = −u ln u [17].
3. Havrda–Charvát (or Daróczy or Tsallis) entropy: φ(u) = −u(uq−1 − 1)/(q− 1) [18–20].
4. Paired Shannon entropy: φ(u) = −u ln u− (1− u) ln(1− u) [11].
5. Paired Havrda–Charvát (or Tsallis) entropy: φ(u) = −u(uq−1− 1)/(q− 1)− (1− u)((1−

u)q−1 − 1)/(q− 1) [11].
6. Modified paired Shannon entropy: φ(u) = −u ln u − (1/(n − 1) − u) ln(1/(n − 1) −

u) [8].
7. Leik entropy: φ(u) = min{u, 1− u} [21,22].
8. Entropy introduced by Shafee: φ(u) = −uα ln u [23].

Notice that the entropy-generating functions of the Leik entropy is only concave and
not strictly concave, and the entropy-generating function of the entropy introduced by
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Shafee is strictly concave only for 1/2 ≤ α ≤ 1. We will discuss both entropies in detail in
the Examples 4 and 5.

A basic axiom that all entropies should satisfy is that they must be maximal for the
uniform distribution pi = 1/n, i = 1, 2, . . . , n. This axiom is part of the Shannon–Khinchin
axioms that justify Shannon entropy. However, we do not choose an axiomatic approach. To
show that the definition of an entropy is useful, we have at least to prove that the uniform
distribution maximizes this entropy. This will be done for φ-entropies. It seems useful
to unify the partially incomplete proofs given separately in the literature for individual
entropies [7,8].

Theorem 2. Let φ : [0, 1] → [0, ∞) be strictly concave on [0, 1] with φ′′(p) < 0 for 0 ≤ p ≤ 1
and Hφ the corresponding φ entropy. Then,

Hφ(p) ≤ Hφ(1/n, . . . , 1/n), p ∈ In

and n = 2, 3, . . ..

Proof. Consider the Lagrangian function

L(p, λ) =
n

∑
i=1

φ(pi) + λ

(
n

∑
i=1

pi − 1

)
, p = (p1, . . . , pn) ∈ In (22)

and the derivatives
∂L(p, λ)

∂pi
= φ′(pi) + λ

resp.
∂L2(p, λ)

∂pi∂pj
=

{
φ′′(pi) for i = j

0 for i 6= j

for i, j = 1, 2, . . . , n and p = (p1, . . . , pn) ∈ In. The necessary condition for an optimum (for
a stationary point) is φ′(pi) = −λ, i = 1, 2, . . . , n. φ′ has to be strictly decreasing because
φ′′(p) < 0, 0 ≤ p ≤ 1. This means that the inverse function (φ′)−1 exists. It is

pi = pj = (φ′)−1(λ), i = 1, 2, . . . , n.

All probabilities are identical and add up to 1 such that pi = 1/n, i = 1, 2, . . . , n. The
uniform distribution is the only stationary point of the Lagrangian function (22). To show
that this stationary point belongs to a global maximum of (22) we consider the bordered
Hessian matrix (see Lemma A1) with xi := φ′′(pi) < 0, i = 1, 2, . . . , n. Let Λm denote the
determinant of the upper left m×m-matrix for m = 3, 4, . . . , n + 1. For a local maximum,
we have to show that (−1)m−1Λm > 0 for m = 3, 4, . . . , n + 1 [24] (p. 203). In the appendix
(see Lemma A1), we prove that

Λm = − ∑
Im−2

m−2

∏
j=1

φ′′(pi)

with
Im−2 = {(i1, . . . , im−2) ∈ {1, 2, . . . , m}m−1|i1 < i2 < . . . < im−2}

for m = 3, 4, . . . , n + 1. For m odd, it is ∏m−2
j=1 φ′′(pi) < 0 and (−1)m−1(−∏m−2

j=1 φ′′(pi)) >

0. For m even, we get ∏m−2
j=1 φ′′(pi) > 0 and (−1)m−1(−∏m−2

j=1 φ′′(pi)) > 0 such that

(−1)m−1Λm > 0 for m = 3, 4, . . . , n + 1. Therefore, the uniform distribution is not only a
stationary point, but also the point where (22) has a global maximum.

The importance of the fact that the entropy-generating function is strictly concave
shall be illustrated by two examples.
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Example 4. We consider the Leik entropy [21,22]

HL(p) =
n

∑
i=1

min{pi, 1− pi} =
n

∑
i=1

1
2
−
∣∣∣∣pi −

1
2

∣∣∣∣, p = (p1, . . . , pn) ∈ In. (23)

The generating function corresponding to (23) is φ(u) = min{u, 1− u}, 0 ≤ u ≤ 1. φ is concave
but not strictly concave. If pi < 1/2 for i = 1, 2, . . . , n, then it is HL(p1, . . . , pn) = 1. For
independent negators N we know from Remark 1 that N(p) ≤ 1/(n− 1) ≤ 1/2, 0 ≤ p ≤ 1 and
n > 2. This means that the Leik entropy cannot distinguish between the information content of
different independent negations and different numbers of repetitions of independent negations.

Example 5. Let us consider an entropy introduced by Shafee [23] as

−
n

∑
i=1

pα
i ln pi, (p1, . . . , pn) ∈ In. (24)

This entropy is part of the family of Sharma–Taneja–Mittal entropies [10] and a simple
generalization of Shannon entropy (α = 1). The entropy generating function is

φ(u) = −uα ln u 0 ≤ u ≤ 1

with derivatives
φ′(u) = −uα−1(α ln u + 1), 0 ≤ u ≤ 1

and
φ′′(u) = −uα−2(α(α− 1) ln u + 2α− 1), 0 ≤ u ≤ 1.

φ is strictly concave for 1/2 ≤ α ≤ 1.
Now, we want to show that (24), depending on n, has a local maximum or a local minimum

for (1/n, . . . , 1/n). If we solve φ′′(p∗) = 0 then

p∗ = e−1/α−1/(α−1).

Consider α < 1/2. Then it is p∗ < 1 with φ′′(p) < 0 for p < p∗ and φ′′(p) > 0 for p > p∗.
If n is large enough such that 1/n < p∗, then φ′′(1/n) < 0 and, following the proof of

Theorem 2, (1/n, . . . , 1/n) gives a local maximum of (24). For α = 0.2, we get p∗ = 0.0235 such
that 1/n < 0.0235 for n > 42.

For smaller n with 1/n > p∗, it is φ′′(1/n) > 0. We again consider the bordered Hessian
matrix (see Lemma A1). Λm denotes the determinant of the upper left m × m-matrix for m =
3, 4, . . . , n + 1. For a local minimum, we have to show that (−1)Λm > 0 for m = 3, 4, . . . , n +
1 [24] (p. 203) with

Λm = − ∑
Im−2

m−2

∏
j=1

φ′′(1/n)

and
Im−2 = {(i1, . . . , im−2) ∈ {1, 2, . . . , m}m−1|i1 < i2 < . . . < im−2}

for m = 3, 4, . . . , n + 1. With φ′′(1/n) > 0, we immediately see that −1Λm > 0 for m =
3, 4, . . . n + 1.

For α < 1, φ′′(p) < 0 for p > p∗ and φ′′(p) > 0 for p < p∗. By using this property, a
similar argument can be applied to show that the uniform distribution can be a point at which (24)
has either a local maximum or a local minimum.

The important overall result is that the uniform distribution does not maximize (24) for all n.

Let N be a negation, and then we want to check the property of monotonicity

Hφ(N(p)) ≥ Hφ(p) (25)
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in a most general setting. In other words, this means that the information loss caused by
the negation

Hφ(N(p))− Hφ(p) (26)

is non-negative.
From (25) we can conclude

Hφ(N(p)) ≥ Hφ(p) =⇒ Hφ(N(k+1)(p)) ≥ Hφ(N(k)(p)), k = 1, 2, . . . .

N(p) can be considered as a new vector of probabilities for which (25) holds and so on.
Table 1 gives an overview about the results concerning (25) that will be proven in the

following. Without loss of generality, we can restrict the discussion to Yager negations as
will be shown in the next section.

Table 1. Property of monotonicity for several entropies H.

Entropy Source Result Method

φ Theorem 4 H(N(2)
Y (p)) ≥ H(p) strict concavity

φ Theorem 5 H(NY(p)) ≥ H(p) Lagrange
for p = (1/n, . . . , 1/n)

paired Shannon Theorem 6 H(NY(p)) ≥ H(p) Lagrange
Shannon Theorem 7 H(NY(p)) ≥ H(p) Lagrange

Havrda-Charvát Theorem 8 H(NY(p)) ≥ H(p) Lagrange
Gini Theorem 10 H(NY(p)) ≥ H(p) updating formula
Leik Example 6 H(NY(p)) ≥ H(p) H(NY(p)) = 1

Rényi Theorem 11 H(NY(p)) ≥ H(p) transformation
Sharma-Mittal Theorem 12 H(NY(p)) ≥ H(p) transformation

Uffink Remark 2 H(NY(p)) ≥ H(p) transformation

4.2. Yager Negation Minimizes φ-Entropies

In Remark 1 we quote a result proven by [2]. Any affine-linear negator can be rep-
resented as a convex combination of the uniform and the Yager negator. This means that
uniform and Yager negators are the vertices for each independent negator. The uniform
negator is known to maximize any φ entropy. Therefore, it is not surprising that the con-
vex combination can be used to show that the Yager negator NY(p) = (1− p)/(n − 1)
minimizes any φ-entropy with strictly concave generating function φ in the class of all
affine-linear negators.

Theorem 3. Let φ : [0, 1] → (0, ∞) be strictly concave, N(p) = (N(p1), . . . , N(pn)) an
independent (= affine-linear) negation with negator N and

NY(p) =
(

1− p1

n− 1
, . . . ,

1− pn

n− 1

)
(27)

the Yager negation for p = (p1, . . . , pn) ∈ In. Then, the following applies:

Hφ(N(p)) ≥ Hφ(NY(p)), p ∈ In. (28)

Proof. From the strict concavity of φ follows for 0 ≤ p ≤ 1:

φ(N(p)) = φ

(
α

1
n
+ (1− α)

1− p
n− 1

)
≥ αφ

(
1
n

)
+ (1− α)φ

(
1− p
n− 1

)
.

This implies that the φ-entropy of N is greater than the convex combination of the
φ-entropies of the uniform and the Yager negator:

Hφ(N(p)) ≥ αHφ

(
1
n

, . . . ,
1
n

)
+ (1− α)Hφ(NY(p)).
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The maximum property of the uniform negator leads to

Hφ

(
1
n

, . . . ,
1
n

)
≥ Hφ(NY(p))

such that
Hφ(N(p)) ≥ Hφ(NY(p)), p ∈ In

follows.

From Theorem 3, we can conclude that the property of monotonicity (25) must only
be investigated for the Yager negation. Monotonicity for the Yager negation implies
monotonicity for any independent (=affine-linear) negation:

Corollary 1. Let φ : [0, 1] → (0, ∞) be strictly concave, N an independent (=affine-linear)
negation. Then, it is

Hφ(NY(p)) ≥ Hφ(p) =⇒ Hφ(N(p)) ≥ Hφ(p), p ∈ In. (29)

Proof. Let Hφ(NY(p)) ≥ Hφ(p), p ∈ In. From (28) follows

Hφ(N(p)) ≥ Hφ(NY(p)) ≥ Hφ(p), p ∈ In.

4.3. φ-Entropy and Yager Negation

In the literature, in addition to Gini entropy, Havrda–Charvát (or Tsallis) entropy
was considered for Yager negation [4–6]. Srivastava and and Maheshwari [8] discussed a
modified version of the Shannon entropy and Gao and Deng [4] Shannon entropy for Yager
negation. We want to investigate whether the property of monotonicity (25) applies to all
φ-entropies. Without further assumptions on the entropy-generating function φ, we can
only prove a weaker version of (25), as Theorem 4 shows.

Theorem 4. Let φ : [0, 1]→ (0, ∞) be strictly concave. Then, it holds

Hφ(NY(NY(p))) ≥ Hφ(p), p ∈ In.

Proof. The Yager negation is affine-linear with B = −1/(n− 1). From (20), we get for
0 ≤ p ≤ 1

N(2)
Y (p) =

1
n
(1− B) + BNY(p)

=
1
n
(1− B) + B

(
1
n
(1− B) + Bp

)
=

1
n
(1− B) +

1
n
(B− B2) + B2 p

= (1− B2)
1
n
+ B2 p.

Due to strict concavity of φ and B2 ≤ 1 (see Remark 1) it is

φ

(
(1− B2)

1
n
+ B2 p

)
≥ (1− B2)φ

(
1
n

)
+ B2φ(p), 0 ≤ p ≤ 1.
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Inserting into the entropy formula (21) gives

Hφ(N
(2)
Y (p)) =

n

∑
i=1

φ(N(2)
Y (pi))

=
n

∑
i=1

φ

(
(1− B2)

1
n
+ B2 pi

)
≥ (1− B2)

n

∑
i=1

φ

(
1
n

)
+ B2

n

∑
i=1

φ(pi).

Again, we have ∑n
i=1 φ

(
1
n

)
≥ ∑n

i=1 φ(pi) such that

Hφ(N
(2)
Y (p)) ≥ Hφ(p), p ∈ In.

The difference to (25) is that φ-entropy increases separately for sequences of odd
numbers and sequences of even numbers of repeated uses of negation. This means
that Hφ(N(1)(p)) ≤ Hφ(N(3)(p)) ≤ Hφ(N(5)(p))) and Hφ(N(2)(p)) ≤ Hφ(N(4)(p)) ≤
Hφ(N(6)(p)) and so on. We have no general proof that, for example, Hφ(N1)(p)) ≤
Hφ(N(2)(p)) holds. This result is not surprising considering that only an odd number of
applications of a negation lead back to a negation. Both the original probability vector (=
identical transformation) and all even numbers of repeated applications of a negation are
non-negative transformations.

4.4. Lagrangian Approach

To see whether the property of monotonicity (25) does not hold only for sequences of
odd and even k separately, we choose a Lagrangian approach with the aim to show that the
uniform distribution is a stationary point where the information loss

Hφ(NY(p))− Hφ(p), p ∈ In (30)

is minimal. The minimum value is 0, because NY(1/n, . . . , 1/n) = (1/n, . . . , 1/n). Then
(30) must be non-negative and the property of monotonicity (25) is satisfied in the neigh-
bourhood of the uniform distribution.

Theorem 5. Let n > 1, φ be twice differentiable and φ′′(p) < 0. Then

L(p; λ) = Hφ(NY(p))− Hφ(p) + λ

(
n

∑
i=1

pi − 1

)
. (31)

has a local minimum for p = (1/n, . . . , 1/n).

Proof. The necessary condition of optimality is

∂L(p, λ)

∂pi
= − 1

n− 1
φ′
(

1− pi
n− 1

)
− φ′(pi) + λ = 0, i = 1, 2, . . . , n.

Set

g(p) := − 1
n− 1

φ′
(

1− p
n− 1

)
− φ′(p), 0 ≤ p ≤ 1, (32)

and then the necessary condition of optimality means that

g(pi) = g(pj), i, j = 1, 2, . . . , n. (33)
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One solution of (33), and therefore stationary point of (31), is p = (p1, . . . , pn) with
pi = pj, i, j = 1, 2, . . . , n. With ∑n

i=1 pi = 1 it is pi = 1/n, i = 1, 2, . . . , n. To show that the
uniform distribution is the point where (31) has a local minimum, we need to investigate
the second derivatives of (31):

∂2L(p, λ)

∂p2
i

= g′(pi) =

(
1

n− 1

)2
φ′′
(

1− pi
n− 1

)
− φ′′(pi), i = 1, 2, . . . , n

and
∂2L(p, λ)

∂pi∂pj
= 0, i 6= j, i, j = 1, 2, . . . , n.

For pi = 1/n we get

xi :=
∂2L(p, λ)

∂p2
i

∣∣∣∣∣
pi=1/n

=

((
1

n− 1

)2
− 1

)
φ′′
(

1
n

)
> 0.

Again, consider the bordered Hessian matrix in the appendix (see Lemma A1). Let
Λm denote the determinant of the upper left m×m-matrix of the bordered Hessian matrix
for m = 3, 4, . . . , n + 1. For a local minimum we have to show that −1Λm > 0 for m =
3, 4, . . . , n + 1 [24] (p. 203). From

−1Λm = −
(
− ∑

Im−2

m−2

∏
j=1

xij

)
> 0

with
Im−2 = {(i1, . . . , im−2) ∈ {1, 2, . . . , m}m−2|i1 < i2 < . . . < im−2}

for m = 3, 4, . . . , n + 1, we can conclude that (31) has a local minimum for
p = (1(n, . . . , 1/n).

The question is whether there are more points where (31) has a local minimum. If not,
the uniform distribution characterizes a global minimum of (31). Because the minimum is
0, the difference (30) is non-negative for all p ∈ In and the φ-entropy has the property of
monotonicity (25). Two criteria are taken into account. If one of these criteria is satisfied,
there is no further local minimum.

1. The first criterion is that the function (32) is strictly monotone on [0, 1]. In this case,
one can conclude from g(pi) = g(pj) that pi = pj = 1/n, i = 1, 2, . . . , n. In Section 5.1,
it will be shown that this criterion can be applied to paired Shannon entropy.

2. The second criterion allows (32) to be non-monotone. In principle, there could be
other candidates (p∗1 , . . . , p∗n) satisfying (33). If we can show that these candidates
violate the restriction that the probabilities add to 1, we are left with the uniform
distribution as the only point where (31) has a local minimum. This criterion can be
applied for Shannon and Havrda–Charvát entropy (see Sections 5.2 and 5.3).

5. Information Loss for Special Entropies
5.1. Paired Shannon Entropy and Yager Negation

The paired Shannon entropy

HpS(p) = −
n

∑
i=1

pi ln pi −
n

∑
i=1

(1− pi) ln(1− pi) p = (p1, . . . , pn) (34)

is given by a generating function φ being twice differentiable such that

φ(u) = −u ln u− (1− u) ln(1− u), φ′(u) = − ln u + ln(1− u),

φ′′(u) = −1/(u(1− u)) < 0, 0 < u < 1.
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As announced, we investigate the monotonicity of the function (32). The proof is given
in Appendix B.

Lemma 1. For φ(p) = −p ln p, 0 < p < 1, the function (32) is given by

g(p) = −n− 2
n− 1

ln(1− p)− 1
n− 1

ln(n− 2 + p) + ln p, 0 < p < 1

and strictly increasing on (0, 1).

Then it follows that for the paired Shannon entropy and the Yager negation, the
condition of monotonicity holds.

Theorem 6. Let HpS be the paired Shannon entropy and NY be the Yager negation. Then, it holds
that

HpS(NY(p))− HpS(p) ≥ 0, p = (p1, . . . , pn) ∈ In. (35)

Proof. From Theorem 5, we know that the uniform distribution is the point where the
difference HsP(NY(p))− HsP(p has a local minimum with value 0 under the restriction
∑n

i=1 pi = 1. By Lemma 1, g is strictly increasing, so g(pi) = g(pj) can only hold for
pi = pj = 1/n, i, j = 1, 2, . . . , n. This means that there are no other local minima and the
difference has a global minimum for the uniform distribution.

Srivastava and Maheshwari [8] discussed a modified version of paired Shannon
entropy. They considered the generating function

φ(u) = −u ln u−
(

1
n− 1

− u
)

ln
(

1
n− 1

− u
)

, 0 < u < 1.

Let NY be Yager negator, and then this modification is motivated by the fact that
NY(p) ≤ 1/(n− 1), 0 ≤ p ≤ 1. The maximal upper bound 1 can only be assumed for
n = 2. However, there are at least two drawbacks to this choice for φ. The first is that this
entropy depends on the length n of the probability vector. A variation of n means to define
a new entropy. The second concerns the property of monotonicity (25). The entropy of
the Yager negation has to be compared with the entropy of the original probability vector
p = (p1, . . . , pn) ∈ In:

−
n

∑
i=1

pi ln pi −
n

∑
i=1

(
1

n− 1
− pi

)
ln
(

1
n− 1

− pi

)
.

For pi > 1/(n− 1), this entropy difference is not well-defined.

5.2. Shannon Entropy and Yager Negation

The Shannon entropy is given by

HS(p) = −
n

∑
i=1

pi ln pi p = (p1, . . . , pn) ∈ In. (36)

The corresponding generating function is twice differentiable with

φ(u) = −u ln u, φ′(u) = − ln u, φ′′(u) = −1/u < 0, 0 < u < 1.

Again, we consider the function (32). Unlike Lemma 1, this function is no longer strictly
increasing as the following lemma shows. Again, you can find the proof in Appendix B.

Lemma 2. Let n > 2 and φ(p) = −p ln p, 0 < p < 1.
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The function (32) is given by

g(p) =
1

n− 1
ln(1− p) + ln p− 1

n− 1
ln

1
n− 1

+
n

n− 1
, 0 < p < 1.

g is strictly increasing on the interval (0, (n− 1)/n) and strictly decreasing on ((n− 1)/n, 1).
Let pi, pj ∈ (0, 1) with g(pi) = g(pj), then pi = pj for i, j = 1, 2, . . . , n.

With this result, we can conclude that Shannon entropy satisfies the property of
monotonicity (25).

Theorem 7. Let HS denote Shannon entropy. Then, it holds that

HS(NY(p))− HS(p) ≥ 0, p = (p1, . . . , pn) ∈ In. (37)

Proof. Again, we learn from Theorem 5 that the uniform distribution is the point where
the difference HP(NY(p))− HP(p) has a local minimum. From Lemma 2 we conclude
that g(pi) = g(pj) can only be if pi = pj = 1/n, i, j = 1, 2, . . . , n. This means that there
are no other local minima, and the difference (37) has a global minimum for the uniform
distribution.

The Lagrangian approach has already been proposed by Gao and Deng [4,5] to show
that the condition of monotonicity holds for the Shannon entropy. But their proof does not
seem to be quite complete. The sufficient condition of local minimum was not considered.
The discussion of the global minimum is also missing. This research gap is now filled by
the Theorem 7.

5.3. Havrda–Charvát Entropy and Yager Negation

Havrda–Charvát (or Tsallis) entropy [18,20] is given by

HHC;q(p) =
1

q− 1
pi

(
1− pq−1

i

)
, p = (p1, . . . , pn) ∈ In (38)

for q > 0 and q 6= 1. The generating function is

φ(u) =
1

q− 1
u
(

1− uq−1
)

(39)

with
φ′(u) =

1
q− 1

(
1− quq−1

)
and φ′′(u) = −quq−2

for 0 < u < 1 and q 6= 1. φ′′(u) is negative on (0, 1) for q > 0. We again consider the
function (32). The function (32) is not strictly increasing. One can apply a similar reasoning
as in Lemma 2 by distinguishing three different ranges for the parameter q. For the proof,
see Appendix B.

Lemma 3. Let n > 2 and q > 0, q 6= 1. The function (32) is

g(p) =
q

q− 1

(
1

(n− 1)q (1− p)q−1 + pq−1
)

, 0 < p < 1.

and, if g(pi) = g(pj), then pi = pj for i, j = 1, 2, . . . , n.

For Havrda–Charvát entropy and Yager negation the property of monotonicity (25) is
satisfied.
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Theorem 8. Let HHC;q be Havrda–Charvát entropy with q 6= 1. Then, it holds

HHC:q(NY(p))− HHC;q(p) ≥ 0, p = (p1, . . . , pn) ∈ In. (40)

Proof. We can use the same arguments as in the proof of Theorem 7.

There again are some results proven by Gao and Deng [4,5] concerning Havrda–
Charvát entropy. With Theorem 8, we fill a gap in their reasoning.

5.4. Gini Entropy and Independent Negations

Yager [1] showed that Gini entropy HG of p cannot be larger than Gini entropy of
NY(p). Therefore, the property of monotonicity has already been proven for Gini entropy.
We want to show that Gini entropy plays a special role because it is the only entropy such
that the negation’s information loss can be calculated explicitly. To see this, we show that
Gini entropy of NY is a convex combination of Gini entropy of the uniform distribution
and Gini entropy of p. This means that in every repetition Gini entropy will be updated by
Gini entropy of the uniform distribution. To get the information loss (26) not only for Yager
negation, we consider a general independent (= affine-linear) negation N.

Theorem 9. Let N be an independent (= affine-linear) negation with negator N, B = N(1)−N(0)
and p = (p1, . . . , pn) ∈ In. For Gini entropy HG of N(k+1)(p) = (N(k+1)(p1), . . . , N(k+1)(pn))
applies

HG(N(k+1)(p)) = (1− B2)HG

(
1
n

,
1
n

, . . . ,
1
n

)
+ B2HG(N(k)(p)). (41)

for k = 0, 1, 2, . . ..

Proof. From (20) we get

N(k+1)(p) = (1− B)
1
n
+ BN(k)(p), 0 ≤ p ≤ 1

and
1− N(k+1)(p) = (1− B)

n− 1
n

+ B(1− N(k)(p)), 0 ≤ p ≤ 1

such that for the Gini entropy of N(k+1)(p) holds

HG(N(k+1)(p)) =
n

∑
i=1

N(k+1)(pi)(1− N(k+1)(pi))

=
n− 1

n
(1− B)2 +

1
n
(1− B)(n− 1)B

+
n− 1

n
(1− B)B + B2

n

∑
i=1

N(k)(pi)(1− N(k)(pi))

=
n

∑
i=1

1
n

(
1− 1

n

)
(1− 2B + B2 + B− B2 + B− B2)

+B2
n

∑
i=1

n

∑
i=1

N(k)(pi)(1− N(k)(pi))

= (1− B2)HG

(
1
n

,
1
n

, . . . ,
1
n

)
+ B2HG(N(k)(p)).
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A simple consequence of this theorem is that the Gini entropy cannot increase from
one repetition to the next. The information loss is given by

HG(N(k+1)(p))− HG(N(k)(p)) = (1− B2)

(
HG

(
1
n

, . . . ,
1
n

)
− HG(N(k)(p))

)
(42)

for p ∈ In. It is really a loss because the uniform distribution maximizes Gini entropy such
that the difference of Gini entropies is non-negative. This proves the following theorem
without the help of the Lagrangian approach.

Theorem 10. Consider an independent (= affine-linear) negation N. Then, for Gini entropy HG of
N applies

HG(N(p)) ≥ HG(N(p)). (43)

This means that Gini entropy also satisfies the property of monotonicity (25).

5.5. Information Loss If φ Is Not Strictly Concave

The discussion so far seems to give the impression that negation leads to an infor-
mation loss for all φ-entropies. To show that this impression is misleading, let us again
consider Leik entropy (23) and the entropy (24).

Example 6. The information loss of Yager negation measured by Leik entropy is given by

n

∑
i=1

min
{

1− pi
n− 1

, 1− 1− pi
n− 1

}
−

n

∑
i=1

min{pi, 1− pi}, (p1, . . . , pn) ∈ In. (44)

The information loss is

1−
n

∑
i=1

min{pi, 1− pi} ≥ 0, (p1, . . . , pn) ∈ In.

This means that the property of monotonicity (25) is indeed satisfied. However, applying Yager
negation twice or more often cannot increase the information loss. This property is not desirable.

Example 7. Remember the entropy (24). By counterexamples we are able show to that the difference

−
n

∑
i=1

(
1− pi
n− 1

)α

ln
1− pi
n− 1

+
n

∑
i=1

pα
i ln pi (45)

can be negative for suitable choices of α and p1, . . . , pn. For example, consider α = 2.1, n = 3 and
the probability vector (0.001, 0.510, 0.489). Then the difference (45) is −0.01035. To see that this
can also happen for larger n, we choose n = 5 and p = (0.1169, 0.0638, 0.3386, 0.0034, 04773).
The corresponding difference (45) is −0.02348.

Example 7 shows that negations do not automatically lead to a loss of information for
every entropy. It is the rule, but there are exceptions.

6. Strictly Increasing Relationship between Entropies
6.1. (h, φ)-Entropies

In the following lemma, we state the fact that the property of monotonicity (25) can
be transferred from a entropy H1 to an entropy H2, if H1 and H2 are related by an strictly
increasing transformation h.
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Lemma 4. Let N be a negation and H1, H2 two entropies such that H2(p) = h(H1(p)) for p ∈ In
with h : R→ R strictly increasing. Then, it holds

H1(N(p)) ≥ H1(p) =⇒ H2(N(p)) ≥ H2(p), p ∈ In.

Proof. The statement immediately follows from the fact that h is strictly increasing.

In addition to φ-entropies, there are many other entropies. We have already mentioned
the overview given by Ilić et al. [10]. By Lemma 4, the property of monotonicity (25)
can be transferred from φ-entropies to entropies which are strictly increasing functions of
φ-entropies. This leads us to (h, φ)-entropies.

Salicrú et al. [12] generalized φ-entropies to (h, φ)-entropies

Hh;φ(p) = h

(
n

∑
i=1

φ(pi)

)
, p = (p1, . . . , pn) ∈ In, (46)

where either φ is strictly concave and h is strictly increasing or φ is strictly convex and h is
strictly decreasing. For h(x) = x, x ≥ 0 we get the class of φ-entropies.

In [10,12], it was shown that the famous Rényi entropy and the Sharma–Mittal entropy
are (h, φ)-entropies with suitable chosen h and φ. Both do not belong to the class of
φ-entropies, but are closely related to Havrda–Charvát entropy by a strictly increasing
function h.

6.2. Rényi Entropy, Havrda–Charvát Entropy and Yager Negation

Rényi [25] introduced the entropy

HR;α(p) =
1

1− α
ln

n

∑
i=1

pα
i , p = (p1, . . . , pn) ∈ In (47)

with parameter α > 0. For α → 1 we get Shannon entropy. Rényi entropy (47) does not
belong to the class of φ-entropies. Nevertheless, Rényi entropy satisfies the property of
monotonicity (25) for Yager negation.

Theorem 11. Let HR;α denote Rényi entropy. Then, it holds

HR;α(NY(p)) ≥ HR;α(p), p ∈ In

for α > 0.

Proof. There is a functional relationship h between Rényi and Havrda–Charvát entropy
given by

HHC;α(p) = h(HR;α(p)), p ∈ In

with
h(x) =

1
1− q

(
e(1−α)x − 1

)
, x ≥ 0

where α > 0. According to

h′(x) = e(1−α)x > 0, ; x > 0

for α > 0, h is strictly increasing. In Theorem 8 we proved that Havrda–Charvát entropy
has the property of monotonicity (25). By using Lemma 4 we see that Rényi entropy also
satisfies the property of monotonicity (25).
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6.3. Sharma–Mittal Entropy, Harvda–Charvát Entropy and Yager Negation

We can go a step further and consider Sharma–Mittal entropy [10,26] with two param-
eters α and β:

HSM;α,β(p) =
1

1− β

( n

∑
i=1

pα
i

) 1−β
1−α

− 1

, p = (p1, . . . , pn) ∈ In. (48)

Special cases are Shannon (α = β = 1), Rényi (β = 1) and Havrda–Charvát (α = β)
entropy. Again, we can find a strictly increasing functional relation h between Sharma–
Mittal entropy and Havrda–Charvát entropy to prove the following theorem.

Theorem 12. Let HSM;α,β be Sharma–Mittal entropy. Then, it follows that

HSM;α,β(N(p)) ≥ HSM;α,β(p), p ∈ In

for α > 0 with α 6= 1 and β 6= 1.

Proof. It is
n

∑
i=1

pα
i = (1− α)HHC;α(p) + 1 > 0, p ∈ In. (49)

Substituting ∑n
i=1 pα

i in (48) gives

HSM;α,β(p) =
1

1− β

(
((1− α)HHC;α(p) + 1)

1−β
1−α − 1

)
, p ∈ In.

Differentiating Sharma–Mittal entropy with regard to Havrda–Charvát entropy and
using (49) leads to

∂HSM;α,β(p)
∂HHC;α(p)

= ((1− α)HHC;α(p) + 1)α−β =

(
n

∑
i=1

pα
i

)α−β

> 0, p ∈ In.

Therefore, h is strictly increasing and the property of monotonicity (25) is valid for
Sharma–Mittal entropy and Yager negation.

Remark 2. This results can be generalized to entropies of the form

f

( n

∑
i=1

pα
i

)1/(1−α)
, (p1, . . . , pn) ∈ In (50)

with f strictly increasing on [0, ∞) and α > 0. This class (50) was considered by Uffink [27]
and intensively discussed in a recent paper of Jizba and Korbel [28]. Similar to Theorem 11 and
Theorem 12, ∑n

i=1 pα
i can be substituted by Havrda–Charvát entropy such that (50) is a strictly

increasing function of Havrda–Charvát entropy. This means that (50) also satisfies the property of
monotonicity (25).

7. φ-Entropy in the Dependent Case

Wu et al. [7] used the rudimentary arguments of Gao and Deng [4,5] to show that Gini
entropy of the exponential negation cannot be smaller than Gini entropy of the original
probability vector. For dependent negators, the bordered Hessian matrix is still more
complex such that it is doubtful whether a proof that (30) is non-negative will be possible.

We consider negators of the form (9) with generating function f decreasing on [0, 1].
Some examples are given in the introduction and will be repeated here.
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1. Yager negator [1] N1 with

f1(p) = 1− p, 0 ≤ p ≤ 1,

2. exponential negator [7] N2 with

f2(p) = e−p, 0 ≤ p ≤ 1,

3. cosinus negator N3 with

f3(p) = 0.5(cos(πp)), 0 ≤ p ≤ 1,

4. and square root negator N4 (special case of the Tsallis negator discussed by Zhang
et al. [6]):

f4(p) = 1−√p, 0 ≤ p ≤ 1.

f2, f3 and f4 are generating functions for dependent negations. For dependent negations, it
is not easy to prove properties of their entropies. Wu et al. [7] discussed the exponential
negation. They considered the Shannon entropy for this negator. In their numerical
examples, they compared Yager und exponential negators for different concrete probability
vectors and a different number of categories n. Their general result is that exponential
negator converges faster to the uniform distribution than Yager negator.

We choose another approach to get an idea how Gini and Shannon entropies behave
for dependent negators and how fast the convergence is. We obtain 1,000,000 different
probability vectors p1, . . . , pn by drawing random samples from a Dirichlet distribution.
For each probability vector, the entropy (Gini or Shannon) is calculated. From the resulting
1,000,000 entropy values we estimate the entropy density. The same procedure is applied
for the probability vectors transformed by the negators Ni, i = 1, 2, 3, 4. We use the random
generator rdirichlet from the R-package ”MCMCpack” of [29] and density estimation by the
standard R routine ”density”. Walley [30] discussed the Dirichlet distribution as a model
for probabilities. The Dirichlet distribution has a vector of hyperparameters (α1, . . . , αn)
that has to be chosen before starting the simulation. Following [30], the decision falls on a
noninformative prior setting with α = i = 1, i = 1, 2, . . . , n. Note that other choices affect
the graphical representation, but not the general results.

Figures 1 and 2 show the results for the Gini resp. the Shannon entropy. The number
of categories is in both cases n = 5. For a higher number of categories, the results are even
more pronounced. The top left panel presents the generating functions of the four negators.
The top right panel shows the density estimation for the entropy of the original (non-
transformed) probability vector. The bottom left panel compares the estimated entropy
densities for the Yager negation applied once (k = 1) and twice (k = 2). The bottom right
panel presents a comparison of the estimated entropy densities when the four negators are
applied exactly once.

We can see that there is not much difference between the results for the Gini and the
Shannon entropy. For n = 5, the Gini entropy has the maximum value 0.8 and the Shannon
entropy the maximum value ln 5 = 1.609. This explains the range of the abscissae.

The main results are:

1. A single application of the negation already results in a very concentrated and strongly
peaked entropy distribution. This confirms the fact stated in Remark 1 that the range
of negations is very narrow.

2. The double or multiple use of a negation leads to a distribution that resembles a
singular distribution concentrated at the entropy’s maximum value. Therefore, the
convergence rate to the uniform distribution is very high.

3. The convergence rate is even higher when we consider negations with generating
function f with f (p) ≥ f1(p) for 0 ≤ p ≤ 1. The reverse is also true. Negations with
generating function f (p) ≤ f1(p), 0 ≤ p ≤ 1 give lower convergence rates.
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4. In the interval [0, 1/2], the generating function of the cosinus negation is greater and
in [1/2, 1] smaller than the generating function of the Yager negation. Nevertheless,
the cosinus negation produces entropy distributions looking similar to the entropy
distribution of the Yager negation. The entropy formula seems to eliminate the
difference between the cosinus and the Yager negator.
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Figure 1. Gini entropy for different negations and n = 5. (a) Generating functions of negators. (b)
Density of Gini entropy. (c) Density of Gini entropy for Yager negation applied once (k = 1) and twice
(k = 2). (d) Density of Gini entropy for four negators.
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Figure 2. Shannon entropy for different negations and n = 5. (a) Generating functions of negators.
(b) Density of Shannon entropy. (c) Density of Shannon entropy for Yager negation applied once
(k = 1) and twice (k = 2). (d) Density of Shannon entropy for four negators.
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8. Conclusions

First, we can prove that independent negations must be affine-linear. Due to Batyr-
shin [2] this was an open problem. The property of monotonicity means that the entropy
cannot decrease by applying negation to a probability vector. This is equivalent to the fact
that negations imply an information loss. We show that the property of monotonicity is sat-
isfied for φ-entropies and Yager negation. It is sufficient to consider Yager negation because
we can prove that the monotonicity of entropies of Yager negation can be transferred to all
affine-linear (=independent) negations. We try to prove the monotonicity of φ-entropies
by means of strict concavitiy of the entropy generating function. This procedure is only
partially successful. The monotonicity holds for odd and even sequences for the number of
negation repetitions k separately. Alternatively, following some examples from the litera-
ture, we try to prove monotonicity by a Lagrangian approach based on the difference of the
φ-entropies for Yager negation and the original probability vector. For general φ-entropies,
this approach is also only partially successful. We can prove monotonicity in the neighbour-
hood of the uniform distribution as the point where the difference of the φ-entropies has
a local minimum. To show monotonicity for all probability vectors, we have to consider
concrete φ-entropies like the Gini, the Shannon or the Havrda–Charvát (Tsallis) entropy. For
the Gini entropy, it is not necessary to use the Lagrangian approach. The Gini entropy of an
affine-linear negation can be represented as a convex combination of maximal Gini entropy
and Gini entropy of the original probability vector. This updating formula can be applied
to arbitrary k-times the negation is repeated. This leads to a sequence of non-decreasing
values for Gini entropy converging towards the maximum value generated by the uniform
distribution. Such an argument does not seem to apply for Shannon entropy. For this
reason, we again take up the Lagrangian approach and show that the uniform distribution
is the unique point at which the Lagrange function of Shannon entropy difference has a
global minimum. The same can be shown for the difference of Havrda–Charvát (Tsallis)
entropies. This means that the property of monotonicity is valid for Gini, Shannon and
Havrda–Charvát (Tsallis) entropy. (h, φ)-entropies generalize φ-entropies. If h is a strictly
increasing function and the condition of monotonicity holds for a φ-entropy, we show that
the property of monotonicity is also satisfied for (h, φ)-entropy. With this argument, the
property of monotonicity can easily be checked for Rényi and Sharma–Mittal entropy. For
dependent negations, it is not easy to get analytical results. Therefore, we simulate the
entropy distribution and show how different repeated negations affect Gini and Shannon
entropy. The simulation approach has the advantage that the whole simplex of discrete
probability vectors can be considered at once and not just arbitrarily selected probability
vectors. When Yager negation is used as a point of reference, we see that negations with
generating functions larger (smaller) than the generating function of Yager negation pro-
duce larger (smaller) information loss and a (lower) higher speed of convergence to the
uniform distribution.
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Appendix A

The Lagangian approach is used to prove that the uniform distribution gives a global
maximum for φ-entropies and a local minimum for the difference of the phi-entropy of the
Yager negation and the φ-entropy of the original probability vector, in each case under the
restriction that the probabilities add up to 1. The corresponding bordered Hessian matrices
and their determinants are considered in Lemma A1.
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Lemma A1. Let (x1, . . . , xn) ∈ Rn be a vector with xi 6= 0 for i = 1, 2, . . . , n and

H =



0 1 1 1 . . . 1
1 x1 0 0 . . . 0
1 0 x2 0 . . . 0
1 0 0 x3 . . . 0
...

...
...

...
...

...
1 0 0 0 . . . xn


(A1)

a (n + 1) × (n + 1)-matrix. Λm denotes the determinant of the upper left m × m-matrix for
m = 3, 4, . . . , n + 1. Then,

Λm = − ∑
Im−2

m−2

∏
j=1

xij

with
Im−2 = {(i1, . . . , im−2) ∈ {1, 2, . . . , m− 1}m−2|i1 < i2 < . . . < im−2}

for m = 3, 4, . . . , n + 1.

Proof. The statement is true for m = 3: Laplace expansion [24] (p. 292) along the third row
gives

Λ3 = 1(−x1) + x2(−1) = −x1 − x2 = ∑
I1

1

∏
j=1

xij

with
I1 = {i1 ∈ {1, 2}1} = {1, 2}.

Assume that the statement is true for m. Laplace expansion of the upper left m + 1×
m + 1-matrix along the m + 1-th row gives

Λm+1 = −1
m−1

∏
i=1

xi + xmΛm

Inserting

Λm = −x1x2 . . . xm−2 − x1x2 . . . xm−3xm−1 − . . .− x2x3 . . . xm−1

leads to

Λm+1 = −x1x2 . . . xm−1 − x1x2 . . . xm−3xm−1xm − . . .− x2x3 . . . xm−1xm

such that

Λm+1 = − ∑
Im−1

m−2

∏
j=1

xij

with
Im−1 = {(i1, . . . , im−1) ∈ {1, 2, . . . , m}m−1|i1 < i2 < . . . < im−1}.
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Appendix B

Proof of Lemma 1. It is

g(p) = − 1
n− 1

φ′
(

1− p
n− 1

)
− φ′(p)

=
1

n− 1

(
− ln

(
1− p
n− 1

))
+ ln

(
n− 2 + p

n− 1

)
+ ln p− ln(1− p)

= −n− 2
n− 1

ln(1− p)− 1
n− 1

ln(n− 2 + p) + ln p

for 0 < p < 1. After some simple calculations, the derivative of g is

g′(p) =
n− 2

p(1− p)(n− 2 + p)
> 0, 0 < p < 1

for n > 2. Therefore, g is strictly increasing on (0, 1).

Proof of Lemma 2. Consider the derivative

g′(p) =
1

n− 1
1

1− p
+

1
p
= n

(n− 1)/n− p
(n− 1)p(1− p)

for 0 < p < 1. Then it is g′(p) > 0 for p < (n− 1)/n and g′(p) < 0 for p > (n− 1)/n. Let
p > (n− 1)/n. It is 1− p < p and ln(1− p) < ln p such that

g(p)− g(1− p) =
n− 2
n− 1

(ln p− ln(1− p)) > 0

for n > 2. Let pi 6= pj and pi > (n− 1)/n with g(pi) = g(pj) then

g(pj) = g(pi) > g(1− pi).

g is strictly increasing on [0, (n− 1)/n). g(pj) > g(1− pi) means pj > 1− pi and pi + pj >
1. This contradicts the fact that pi and pj are probabilities. Therefore, it must be pi = pj, if
g(pi) = g(pj).

Proof of Lemma 3. g(p) follows immediately by inserting φ′. The derivative is

g′(p) = q
(
− 1
(n− 1)q (1− p)q−2 + pq−2

)
, 0 < p < 1, q 6= 2

with g′(p∗) = 0 for

p∗ =
1

1 + (n− 1)q/(q−2)
, 0 < p < 1, q 6= 2.

For q = 2, we get the Gini entropy already discussed by Yager [1].

• Case 1: 0 < q < 2. We have

g′(p) =


> 0 for p < p∗

= 0 for p = p∗

< 0 for p > p∗

It is

p∗ =
1

1 + (1/(n− 1))q/(2−q)
=

(n− 1)q/(2−q)

1 + (n− 1)q/(2−q)
> 1/2 for n > 2.
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– Subcase 1.1: 1 < q < 2. For p > 1− p it holds

g(p)− g(1− p) =
(

1−
(

1
n− 1

)q)(
pq−1 − (1− p)q−1

)
> 0.

Consider pi > p∗ > 1/2 such that pi > 1− pi and pj 6= pi with g(pi) = g(pj).
We have g(pj) = g(pi) > g(1− pi) such that pj > 1− pi and pi + pj > 1.

– Subcase 1.2: 0 < q < 1: First, reformulate g(p) as

g(p) = − q
1− q

(
1

(n− 1)q

)((
1

1− p

)1−q
+

(
1
p

)1−q
)

=
q/(1− q)

p1−q(1− p1−q)

(
− 1
(n− 1)q

)(
p1−q − (1− p)1−q

)
.

This gives for g(p)− g(1− p) and p > 1− p

g(p)− g(1− p) =
q/(1− q)

p1−q(1− p1−q)

(
1− 1

(n− 1)q

)(
p1−q − (1− p)1−q

)
> 0.

The rest follows the arguments from subcase 1.1.

• Case 2: q > 2 means that q/(q− 2) > 0 holds. Then, p∗ < 1/2 since (n− 1)q/(q−2) > 1
for n > 2. Now, we have

∂g(p)
∂p


< 0 for p < p∗

= 0 for p = p∗

> 0 for p > p∗

From this and p < 1− p it follows

g(p)− g(1− p) =
q

q− 1

(
1− 1

(n− 1)q

)(
p1−q − (1− p)1−q

)
< 0.

Consider pi < p∗ < 1/2 such that pi < 1 − pi and pj 6= pi with g(pi) = g(pj).
Because g is strictly decreasing in (0, p∗) we have g(pj) = g(pi) < g(1− pi) such that
pj > 1− pi and pi + pj > 1. This contradicts the fact that pi and pj are probabilities.
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