Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = Harding grass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1754 KB  
Article
Qualitative Characteristics of Semolina–Pulse Flour Mixes and Related Breads
by Michele Canale, Rosalia Sanfilippo, Salvatore Moscaritolo, Maria Carola Fiore, Maria Concetta Strano, Maria Allegra, Giancarlo Fascella, Giovanni Gugliuzza and Alfio Spina
Foods 2025, 14(21), 3720; https://doi.org/10.3390/foods14213720 - 30 Oct 2025
Viewed by 396
Abstract
In recent years, pulse flours have gained attention in baked goods for their nutritional value. This study evaluated the effects of incorporating common bean, yellow pea, and grass pea flours (20%, 30%, 40%) into durum wheat semolina on the technological, physical, and rheological [...] Read more.
In recent years, pulse flours have gained attention in baked goods for their nutritional value. This study evaluated the effects of incorporating common bean, yellow pea, and grass pea flours (20%, 30%, 40%) into durum wheat semolina on the technological, physical, and rheological properties of flours, doughs, and breads. Combining pulse flours with durum wheat semolina allows for improved dough handling and processing performance, leveraging the functional properties of both ingredients. Water absorption increased with pulse flour addition (average 1.90 g H2O/g dry matter), though higher levels of yellow pea and grass pea reduced it. Color changes were most evident with common bean flour. Leavening rates varied, reaching 144% after 60 min with 30% yellow pea and 68.75% after 40 min with 30% common bean. Rheological results indicated longer dough development and stability times but reduced strength and extensibility, with higher tenacity. Bread volume decreased from 276.25 cm3 (control) to 208.75 cm3 (40% common bean). Crumb porosity declined, particularly with common bean flour, producing smaller pores. Grass pea flour promoted browning, enhancing color contrast. Texture analysis showed harder, more gum-like breads with higher chew resistance: hardness ranged from 15.85 N (20% common bean) to 30.45 N (40% yellow pea). Gumminess and chewiness increased, while cohesiveness decreased. Overall, pulse flour integration alters bread quality, yet represents a promising approach to creating healthier, functional, baked products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

12 pages, 1163 KB  
Article
Sensor Input Type and Location Influence Outdoor Running Terrain Classification via Deep Learning Approaches
by Gabrielle Thibault, Philippe C. Dixon and David J. Pearsall
Sensors 2025, 25(19), 6203; https://doi.org/10.3390/s25196203 - 7 Oct 2025
Viewed by 517
Abstract
Background/Objective: Understanding the training effect in high-level running is important for performance optimization and injury prevention. This includes awareness of how different running surface types (e.g., hard versus soft) may modify biomechanics. Recent studies have demonstrated that deep learning algorithms, such as convolutional [...] Read more.
Background/Objective: Understanding the training effect in high-level running is important for performance optimization and injury prevention. This includes awareness of how different running surface types (e.g., hard versus soft) may modify biomechanics. Recent studies have demonstrated that deep learning algorithms, such as convolutional neural networks (CNNs), can accurately classify human activity collected via body-worn sensors. To date, no study has assessed optimal signal type, sensor location, and model architecture to classify running surfaces. This study aimed to determine which combination of signal type, sensor location, and CNN architecture would yield the highest accuracy in classifying grass and asphalt surfaces using inertial measurement unit (IMU) sensors. Methods: Running data were collected from forty participants (27.4 years + 7.8 SD, 10.5 ± 7.3 SD years of running) with a full-body IMU system (head, sternum, pelvis, upper legs, lower legs, feet, and arms) on grass and asphalt outdoor surfaces. Performance (accuracy) for signal type (acceleration and angular velocity), sensor configuration (full body, lower body, pelvis, and feet), and CNN model architecture was tested for this specific task. Moreover, the effect of preprocessing steps (separating into running cycles and amplitude normalization) and two different data splitting protocols (leave-n-subject-out and subject-dependent split) was evaluated. Results: In general, acceleration signals improved classification results compared to angular velocity (3.8%). Moreover, the foot sensor configuration had the best performance-to-number of sensor ratio (95.5% accuracy). Finally, separating trials into gait cycles and not normalizing the raw signals improved accuracy by approximately 28%. Conclusion: This analysis sheds light on the important parameters to consider when developing machine learning classifiers in the human activity recognition field. A surface classification tool could provide useful quantitative feedback to athletes and coaches in terms of running technique effort on varied terrain surfaces, improve training personalization, prevent injuries, and improve performance. Full article
Show Figures

Figure 1

18 pages, 1829 KB  
Article
Consumer Characterization of Commercial Gluten-Free Crackers Through Rapid Methods and Its Comparison to Descriptive Panel Data
by Japneet Brar, Rajesh Kumar and Martin J. Talavera
Foods 2025, 14(17), 2972; https://doi.org/10.3390/foods14172972 - 26 Aug 2025
Viewed by 842
Abstract
Despite the continued growth of the gluten-free food market, there is a dearth of sensory and consumer knowledge on commercial products. The existing research is mostly limited to hedonic measurements and ingredient effects instead of analytical methods for a better understanding of product [...] Read more.
Despite the continued growth of the gluten-free food market, there is a dearth of sensory and consumer knowledge on commercial products. The existing research is mostly limited to hedonic measurements and ingredient effects instead of analytical methods for a better understanding of product characteristics of gluten-free crackers specifically. In this work, a semi-trained consumer panel used projective mapping to choose objectively different plain/original crackers from a pool of sixteen commercial gluten-free cracker varieties. The cracker samples represented a widespread sensory space originating from different key ingredients such as brown rice, white rice, flaxseed, cassava flour, nut flour blend, millet blend, and tapioca/potato starch blend. Based on projective mapping results, the crackers that mostly represented the sensory space were selected for characterization by a modified flash profiling method. The consumer panel developed 74 descriptors: 30 aromas, 28 flavors, 15 texture terms, and a mouthfeel attribute. The samples were monadically rated for intensity on a 4-point scale (0 = none, 1 = low, 2 = medium, and 3 = high). Rice, toasted, salt, grain, burnt, flaxseed, bitter, earthy, nutty, seeds, and grass were the prevalent aromas and flavors. Others were specific to cracker type. Some of these attributes can be traced back to the ingredients list. Results suggest that ingredients used in small portions are defining the flavor properties over the major grains/flour blends. All samples had some degree of crunchiness, crispness, and pasty mouthfeel; rice crackers were particularly firm, hard, and chewy; brown rice crackers were gritty; crackers with tuber starches/flours were more airy, soft, smooth, and flaky. Overall, the samples shared more aroma and flavor notes than texture attributes. In comparison to trained panel results, consumers generated a greater number of terms and were successful in finding subtle differences primarily in texture but had many overlapped flavors. The developed consumer terminology will facilitate the gluten-free industry to tailor communication that better resonates with consumer experiences, needs, and product values. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

13 pages, 667 KB  
Article
A Comparison of White Muscle Quality in Grass Carp Ctenopharyngodon idellus Fed with Commercial Feeds and Barley Malt
by Chongjiang Hu, Zheng Huang, Hongkang Liu, Dingrui Mo, Peng Fu, Haiyan Guo, Wei Jiang, Yong Xie and Yongjun Chen
Fishes 2025, 10(4), 185; https://doi.org/10.3390/fishes10040185 - 18 Apr 2025
Cited by 1 | Viewed by 1059
Abstract
This study was the first report regarding the application of barley malt (BM) for diets of aquaculture species. Triplicate groups of grass carp Ctenopharyngodon idellus with an initial size of about 1.2 kg were selected and fed with either BM or commercial feed [...] Read more.
This study was the first report regarding the application of barley malt (BM) for diets of aquaculture species. Triplicate groups of grass carp Ctenopharyngodon idellus with an initial size of about 1.2 kg were selected and fed with either BM or commercial feed (CF) to apparent satiation for 8 weeks in outdoor ponds connected with a flow-through aquaculture system. The results showed that the final body weight (1651 g) was lower in the BM fish than in the CF fish (1791 g). The edible part was lower in the BM fish than in the CF fish as indicated by the viscerosomatic index. Except for ash levels, which were lower in the fillet of the BM fish than for that of the CF fish, moisture, protein, and lipid levels were not impacted by the application of BM. Water-holding capacity indicators (drop loss, frozen exudation rate, and cooking loss) of grass carp muscle were not relevant to dietary modifications. Hematoxylin-eosin (HE) staining showed that the diameter of the myofibers was decreased while density was increased in response to the application of BM, which contributed to the improvement in textural properties (hardness, gumminess, and chewiness) in the muscle of the BM fish as compared to the CF fish. Glutamic acid level was highest, followed by aspartic acid, lysine, leucine, alanine, and arginine in grass carp muscle. Except three amino acids (proline, phenylalanine, and histidine), the amounts of the other 15 amino acids, essential amino acids, semi-essential amino acids, nonessential amino acids, and delicious amino acids were not impacted by different treatments, suggesting that the application of BM had a minor effect on the amino acid composition of grass carp muscle. Oleic acid (C18:1n-9), linoleic acid (C18:2n-6), and palmitic acid (C16:0) were the most abundant fatty acids in grass carp muscle. The amounts of poly-unsaturated fatty acid (PUFA) in the muscle decreased in response to the application of BM as the diet of grass carp, and n-6 PUFAs (C18:2n-6 and C20:2n-6) rather than n-3 PUFAs accounted for this change, which is beneficial for human health. In conclusion, the application of BM had minor impacts on the proximate composition and amino acid composition but improved textural properties and decreased n-6 PUFAs in the fillet of grass carp. Full article
(This article belongs to the Special Issue Growth, Metabolism, and Flesh Quality in Aquaculture Nutrition)
Show Figures

Graphical abstract

16 pages, 3918 KB  
Article
The Mechanism of Quality Changes in Grass Carp (Ctenopharyngodon idella) During Vacuum-Assisted Salting Brining with Physicochemical and Microstructural View
by Jianrong Ma, Jian Shi, Ruiying Lv, Xin Jiang, Qingqing Jiang, Dajun Wang, Shumin Zhang and Wenzheng Shi
Foods 2025, 14(4), 657; https://doi.org/10.3390/foods14040657 - 15 Feb 2025
Cited by 1 | Viewed by 914
Abstract
This study investigated the effects of vacuum impregnation (V) and atmospheric pressure impregnation (C) on the quality and microstructure of grass carp (Ctenopharyngodon idella) fillets during a 120 min brining period under 5.8% NaCl (w/v) and 4 [...] Read more.
This study investigated the effects of vacuum impregnation (V) and atmospheric pressure impregnation (C) on the quality and microstructure of grass carp (Ctenopharyngodon idella) fillets during a 120 min brining period under 5.8% NaCl (w/v) and 4 °C. Vacuum impregnation significantly enhanced brining efficiency, achieving higher salt content (2.01%) and accelerated mass transfer kinetics, as evidenced by Peleg model parameters. Both treatments improved the water-holding capacity (WHC), increasing from 80.16% to 91.47% (C) and 89.92% (V), while reducing free water proportion. A microstructural analysis revealed a reduction in extracellular space in fillets, which further affected the fillet WHC and texture. Vacuum brining also mitigated lipid oxidation, yielding lower thiobarbituric acid-reactive substances (TBARSs: 0.237 mg MDA/kg). Texture analysis indicated reduced hardness and increased springiness/cohesiveness in fillets. Despite a slight decrease in lightness, vacuum-assisted brining preserved sensory quality and aligned with low-salt dietary trends. These findings underscore vacuum technology’s potential to optimize brining efficiency and product quality in industrial applications. Full article
Show Figures

Figure 1

21 pages, 2005 KB  
Article
Manufacturing Process Development for Bison bison Organ-Specific Lyophilized Extracts: Formulation and Benchmarking of Antioxidant Activities for Nutraceutical Preparations
by Alexandre Porcello, Kim Girardet, Basste Hadjab, Kelly Lourenço, Corinne Scaletta, Philippe Abdel-Sayed, Nathalie Hirt-Burri, Lee Ann Applegate and Alexis E. Laurent
Nutraceuticals 2025, 5(1), 6; https://doi.org/10.3390/nutraceuticals5010006 - 8 Feb 2025
Viewed by 1442
Abstract
Lyophilized organ extracts from livestock such as beef or elk are widely commercially proposed as animal-sourced nutraceuticals. Such preparations contain blends of vitamins and nutrients that may be employed for general or specific dietary supplementation. The first objective of this study was to [...] Read more.
Lyophilized organ extracts from livestock such as beef or elk are widely commercially proposed as animal-sourced nutraceuticals. Such preparations contain blends of vitamins and nutrients that may be employed for general or specific dietary supplementation. The first objective of this study was to develop an optimized and function-oriented manufacturing process for stabilized organ-specific extracts of American buffalo (Bison bison). The second objective of the study was to perform functional benchmarking of the obtained stabilized extracts by focusing on antioxidant attributes, which are key properties of nutraceuticals. Methodologically, a two-step lyophilization process, hard-shell capsule formulation, and process quality control elements were adapted from pharmaceutical technology practices. Stabilized extracts (300 mg capsules) were derived from the spleen, heart, liver, kidneys, lungs, and thymus of grass-fed and grass-finished American bison (born and raised in a tempered climate in Geneva, Switzerland). Functional benchmarking of the obtained extracts was performed using orthogonal methods of antioxidant activity determination (TEAC, FRAP, and H2O2 challenge assays). Firstly, the developed biomass transformation process enabled the considered organs to be effectively stabilized while reaching the desired quality attributes. Secondly, functional characterization of the formulated extracts revealed significant and organ-specific antioxidant attributes, wherein liver-derived materials were found to be the most potent. Thirdly, key quality and functional parameters (residual moisture levels and TEAC) were found to be stable over 12 months of storage following extract preparation. Overall, the present study provides an evidence-based technical/functional rationale for the preparation and control of American bison organ-specific lyophilized extracts to be included in nutraceutical preparations. Full article
Show Figures

Figure 1

21 pages, 532 KB  
Review
Early Intervention for Hearing-Impaired Children—From Policy to Practice: An Integrative Review
by Luisa Petrocchi-Bartal, Katijah Khoza-Shangase and Amisha Kanji
Audiol. Res. 2025, 15(1), 10; https://doi.org/10.3390/audiolres15010010 - 24 Jan 2025
Cited by 7 | Viewed by 3784
Abstract
Background/Objectives: Globally, many countries have endorsed the World Health Organisation’s (WHO) early intervention (EI) guidelines through their legislation with contextual variations. Sensitive evaluation of gaps within EI-recommended systems is essential, especially in the translation of policy into practice across high-income and low- to [...] Read more.
Background/Objectives: Globally, many countries have endorsed the World Health Organisation’s (WHO) early intervention (EI) guidelines through their legislation with contextual variations. Sensitive evaluation of gaps within EI-recommended systems is essential, especially in the translation of policy into practice across high-income and low- to middle-income country (LMIC) contexts, including South Africa. The main objective was to explore and identify the current evidence reflecting the application of hearing-specific government policy regarding EI and early education (EE) for hearing-impaired/d/Deaf/hard-of-hearing (HI/D/HH) children aged six and below. Method: An integrative review was conducted on peer-reviewed articles that examined policy in practice regarding EI for HI/D/HH children aged six and below. Studies were accessed via four databases (Ebscohost, Sabinet, Scopus, and ScienceDirect) and one search engine (Google Scholar) between 2014 and 2024. Qualitative evaluation ensued of themes identified deductively. Results: Twenty-six peer-reviewed studies were included. Deductive thematic analysis revealed six derived themes: EI timing, early hearing detection and intervention (EHDI)/EI mechanisms; EI services, EE, family considerations, and policy. Five of the 26 directly scrutinised government policy in its EI/EE practical application. Articles reflected the need for consideration of the complex processes that allow for policy actualisation, such as adequate infrastructure and family considerations. Conclusions: A bottom-up approach to policy actualisation, with grass-roots contextual considerations such as EI access and caregiver concerns, may improve policy application. Current findings have implications, particularly for LMIC contexts including South Africa, where EI and EE policy scrutiny regarding hearing impairment/deafness specificity is imperative for understanding its application alignment. Full article
Show Figures

Figure 1

17 pages, 3431 KB  
Article
Interchangeability of Cross-Platform Orthophotographic and LiDAR Data in DeepLabV3+-Based Land Cover Classification Method
by Shijun Pan, Keisuke Yoshida, Satoshi Nishiyama, Takashi Kojima and Yutaro Hashimoto
Land 2025, 14(2), 217; https://doi.org/10.3390/land14020217 - 21 Jan 2025
Viewed by 1083
Abstract
Riverine environmental information includes important data to collect, and the data collection still requires personnel’s field surveys. These on-site tasks still face significant limitations (i.e., hard or danger to entry). In recent years, as one of the efficient approaches for data collection, air-vehicle-based [...] Read more.
Riverine environmental information includes important data to collect, and the data collection still requires personnel’s field surveys. These on-site tasks still face significant limitations (i.e., hard or danger to entry). In recent years, as one of the efficient approaches for data collection, air-vehicle-based Light Detection and Ranging technologies have already been applied in global environmental research, i.e., land cover classification (LCC) or environmental monitoring. For this study, the authors specifically focused on seven types of LCC (i.e., bamboo, tree, grass, bare ground, water, road, and clutter) that can be parameterized for flood simulation. A validated airborne LiDAR bathymetry system (ALB) and a UAV-borne green LiDAR System (GLS) were applied in this study for cross-platform analysis of LCC. Furthermore, LiDAR data were visualized using high-contrast color scales to improve the accuracy of land cover classification methods through image fusion techniques. If high-resolution aerial imagery is available, then it must be downscaled to match the resolution of low-resolution point clouds. Cross-platform data interchangeability was assessed by comparing the interchangeability, which measures the absolute difference in overall accuracy (OA) or macro-F1 by comparing the cross-platform interchangeability. It is noteworthy that relying solely on aerial photographs is inadequate for achieving precise labeling, particularly under limited sunlight conditions that can lead to misclassification. In such cases, LiDAR plays a crucial role in facilitating target recognition. All the approaches (i.e., low-resolution digital imagery, LiDAR-derived imagery and image fusion) present results of over 0.65 OA and of around 0.6 macro-F1. The authors found that the vegetation (bamboo, tree, grass) and road species have comparatively better performance compared with clutter and bare ground species. Given the stated conditions, differences in the species derived from different years (ALB from year 2017 and GLS from year 2020) are the main reason. Because the identification of clutter species includes all the items except for the relative species in this research, RGB-based features of the clutter species cannot be substituted easily because of the 3-year gap compared with other species. Derived from on-site reconstruction, the bare ground species also has a further color change between ALB and GLS that leads to decreased interchangeability. In the case of individual species, without considering seasons and platforms, image fusion can classify bamboo and trees with higher F1 scores compared to low-resolution digital imagery and LiDAR-derived imagery, which has especially proved the cross-platform interchangeability in the high vegetation types. In recent years, high-resolution photography (UAV), high-precision LiDAR measurement (ALB, GLS), and satellite imagery have been used. LiDAR measurement equipment is expensive, and measurement opportunities are limited. Based on this, it would be desirable if ALB and GLS could be continuously classified by Artificial Intelligence, and in this study, the authors investigated such data interchangeability. A unique and crucial aspect of this study is exploring the interchangeability of land cover classification models across different LiDAR platforms. Full article
Show Figures

Figure 1

13 pages, 1591 KB  
Article
Root Penetration Is Associated with Root Diameter and Root Growth Rate in Tropical Forage Grasses
by Chanthy Huot, Joshua N. M. Philp, Yi Zhou and Matthew D. Denton
Grasses 2025, 4(1), 4; https://doi.org/10.3390/grasses4010004 - 16 Jan 2025
Cited by 1 | Viewed by 2118
Abstract
Soil compaction impedes root exploration by plants, which limits access to nutrients and water, ultimately compromising survival. The capability of roots to penetrate hard soils is therefore advantageous. While root penetration has been studied in various annual crops, the relationships between root growth [...] Read more.
Soil compaction impedes root exploration by plants, which limits access to nutrients and water, ultimately compromising survival. The capability of roots to penetrate hard soils is therefore advantageous. While root penetration has been studied in various annual crops, the relationships between root growth and root penetration are poorly understood in tropical perennial grasses. This study aimed to compare root penetration capability in 10 tropical perennial forage grasses and identify relationships between root penetration, root diameter and vertical root growth. Root penetration of each species, namely Urochloa (syn. Brachiaria) brizantha cv. Mekong Briz, U. decumbens cv. Basilisk, U. humidicola cv. Tully, U. hybrid cv. Mulato II, U. mosambicensis cv. Nixon, U. ruziziensis cv Kennedy, Panicum coloratum cv. Makarikariense, Megathyrsus maximus (syn. Panicum maximum) cv. Tanzânia, Paspalum scrobiculatum (syn. Paspalum coloratum) cv. BA96 10 and Setaria sphacelata cv Solendar, was evaluated using wax layers of varying resistances, created from a mixture of 40% (1.39 MPa) and 60% (2.12 MPa) paraffin wax, combined with petroleum jelly. Reference root sizes were determined for the grass species by measuring root diameter and root lengths of seedlings grown in growth pouches. Vertical root growth rate for each species was measured in grasses grown in 120 cm deep rhizotrons. Species with greater root penetration at both resistances had significantly higher shoot growth rates (r = 0.65 at 40% wax and 0.66 at 60% wax) and greater root diameters (r = 0.67 at 40% wax and 0.68 at 60% wax). Root penetration was significantly higher in species with greater vertical root growth rate only in the 60% wax treatment (r = 0.82). Root penetration at higher resistance was correlated with the root diameter and rapid vertical root growth of the species. This may indicate a contribution of these traits to root penetration ability. The combination of greater root diameter and root vertical growth rate, as observed in M. maximus, may assist in the identification of perennial forage grasses suitable for agroecosystems challenged by soil compaction and rapidly drying soil surface. Full article
Show Figures

Figure 1

14 pages, 3837 KB  
Article
Evaluation of Mechanical Properties of Sabai Grass (Eulaliopsis binata) Fibers and Epoxy Resin Composite Laminates Using Fly Ash as Filler Material
by Shambhu Kumar, Ratnakar Das and Sambit Kumar Parida
J. Compos. Sci. 2025, 9(1), 38; https://doi.org/10.3390/jcs9010038 - 14 Jan 2025
Cited by 2 | Viewed by 1410
Abstract
The integration of sabai grass fibers and fly ash in epoxy resin combines the strengths of both materials for developing a tailor-made composite laminate that balances performance, sustainability, and cost-efficiency. This innovative blend of natural fibers and industrial waste promotes environmental conservation. The [...] Read more.
The integration of sabai grass fibers and fly ash in epoxy resin combines the strengths of both materials for developing a tailor-made composite laminate that balances performance, sustainability, and cost-efficiency. This innovative blend of natural fibers and industrial waste promotes environmental conservation. The laminates produced could also be used in diverse industrial and structural applications. This study investigated the mechanical properties of composite laminates reinforced with sabai grass fibers, fly ash filler, and epoxy resin as the matrix. In this work, the hand lay-up method was used to fabricate composites with two stacking configurations ((0°/0°/0°/0°) and (0°/90°/90°/0°)) and filler contents of 1.5 wt.%, 3 wt.%, and 5 wt.%. Various weight fractions of fly ash filler and sabai grass fiber were integrated into the epoxy resin to evaluate their impact on tensile strength, flexural strength, and hardness. The experimental results indicate that adding fly ash significantly improves the composite’s hardness to 27 HV in the composites containing 5 wt.% filler, while sabai grass fibers contribute to enhanced tensile strength and flexural strength. The composites with (0°/0°/0°/0°) fibers and 5 wt.% filler showed a higher tensile strength of 63.5 MPa and flexural strength of 118.5 MPa. The fractured sample was analyzed with the help of FESEM images. The XRD analysis confirmed the presence of fly ash components suitable for forming a bond with epoxy. EDX was conducted to determine the elemental composition of the fly ash. FTIR analysis verified the removal of impurities such as dust, dirt, and lignin from the fiber surface following NaOH treatment. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

17 pages, 4481 KB  
Article
Exploring the Complex Association Between Urban Built Environment, Sociodemographic Characteristics and Crime: Evidence from Washington, D.C.
by Kaixin Liu, Longhao Zhang, Shangen Tsou, Lei Wang, Yike Hu and Ke Yang
Land 2024, 13(11), 1886; https://doi.org/10.3390/land13111886 - 11 Nov 2024
Cited by 3 | Viewed by 2135
Abstract
The urban built environment and sociodemographic characteristics have complex relationships with urban crime. However, previous studies have had limitations such as generalizing urban green space types, urban functionality, and sociodemographic characteristics. Given these, this study aimed to explore the relationship between them using [...] Read more.
The urban built environment and sociodemographic characteristics have complex relationships with urban crime. However, previous studies have had limitations such as generalizing urban green space types, urban functionality, and sociodemographic characteristics. Given these, this study aimed to explore the relationship between them using more detailed indicators. The study utilized Google Street View and points of interest to depict the built environment. Building on previous work that segmented natural and artificial elements in streetscape images, this study further distinguished trees, bush, and grass. Additionally, it incorporated data from the Data Analysis and Visualization Unit of the DC Office of Planning to reflect a broader range of individual characteristics. Weighted least squares regression and Pearson correlation analysis were used to test the relationship between the built environment, sociodemographic, and crime, respectively. Some of the key findings are as follows. (1) Trees, bushes, and grass all reduce crime. (2) Urban functionality is hard to curb crime by enhancing informal public surveillance. (3) Among the sociodemographic variables, the walking commute rate is the variable most strongly positively correlated with crime. (4) Family relationships play an important role in suppressing crime. This study examined a more comprehensive range of indicators affecting urban crime in favor of safer cities. Full article
Show Figures

Figure 1

19 pages, 3615 KB  
Article
Analysis of Football Pitch Performances Based on Different Cutting Systems: From Visual Evaluation to YOLOv8
by Sofia Matilde Luglio, Christian Frasconi, Lorenzo Gagliardi, Michele Raffaelli, Andrea Peruzzi, Marco Volterrani, Simone Magni and Marco Fontanelli
Agronomy 2024, 14(11), 2645; https://doi.org/10.3390/agronomy14112645 - 10 Nov 2024
Cited by 2 | Viewed by 2356
Abstract
The quality of sports facilities, especially football pitches, has gained significant attention due to the growing importance of sports globally. This study examines the effect of two different cutting systems, a traditional ride-on mower and an autonomous mower, on the quality and functional [...] Read more.
The quality of sports facilities, especially football pitches, has gained significant attention due to the growing importance of sports globally. This study examines the effect of two different cutting systems, a traditional ride-on mower and an autonomous mower, on the quality and functional parameters of a municipal football field. The analysis includes visual assessments, measurements of grass height, and evaluations of surface hardness, comparing the performance of the two cutting systems. Additionally, studies of turfgrass composition and machine learning techniques, particularly with YOLOv8s and YOLOv8n, are conducted to test the capability of assessing weed and turfgrass species distribution. The results indicate significant differences in grass color based on the position (5.36 in the corners and 3.69 in the central area) and surface hardness between areas managed with a traditional ride-on mower (15.25 Gmax) and an autonomous mower (10.15 Gmax) in the central region. Higher height values are recorded in the area managed with the ride-on mower (2.94 cm) than with the autonomous mower (2.61 cm). Weed presence varies significantly between the two cutting systems, with the autonomous mower demonstrating higher weed coverage in the corners (17.5%). Higher overall performance metrics were obtained through YOLOv8s. This study underscores the importance of innovative management practices and monitoring techniques in optimizing the quality and playability of a football field while minimizing environmental impact and management efforts. Full article
(This article belongs to the Special Issue Robotics and Automation in Farming)
Show Figures

Figure 1

25 pages, 13404 KB  
Article
Drone SAR Imaging for Monitoring an Active Landslide Adjacent to the M25 at Flint Hall Farm
by Anthony Carpenter, James A. Lawrence, Philippa J. Mason, Richard Ghail and Stewart Agar
Remote Sens. 2024, 16(20), 3874; https://doi.org/10.3390/rs16203874 - 18 Oct 2024
Cited by 3 | Viewed by 4038
Abstract
Flint Hall Farm in Godstone, Surrey, UK, is situated adjacent to the London Orbital Motorway, or M25, and contains several landslide systems which pose a significant geohazard risk to this critical infrastructure. The site has been routinely monitored by geotechnical engineers following a [...] Read more.
Flint Hall Farm in Godstone, Surrey, UK, is situated adjacent to the London Orbital Motorway, or M25, and contains several landslide systems which pose a significant geohazard risk to this critical infrastructure. The site has been routinely monitored by geotechnical engineers following a landslide that encroached onto the hard shoulder in December 2000; current in situ instrumentation includes inclinometers and piezoelectric sensors. Interferometric Synthetic Aperture Radar (InSAR) is an active remote sensing technique that can quantify millimetric rates of Earth surface and structural deformation, typically utilising satellite data, and is ideal for monitoring landslide movements. We have developed the hardware and software for an Unmanned Aerial Vehicle (UAV), or drone radar system, for improved operational flexibility and spatial–temporal resolutions in the InSAR data. The hardware payload includes an industrial-grade DJI drone, a high-performance Ettus Software Defined Radar (SDR), and custom Copper Clad Laminate (CCL) radar horn antennas. The software utilises Frequency Modulated Continuous Wave (FMCW) radar at 5.4 GHz for raw data collection and a Range Migration Algorithm (RMA) for focusing the data into a Single Look Complex (SLC) Synthetic Aperture Radar (SAR) image. We present the first SAR image acquired using the drone radar system at Flint Hall Farm, which provides an improved spatial resolution compared to satellite SAR. Discrete targets on the landslide slope, such as corner reflectors and the in situ instrumentation, are visible as bright pixels, with their size and positioning as expected; the surrounding grass and vegetation appear as natural speckles. Drone SAR imaging is an emerging field of research, given the necessary and recent technological advancements in drones and SDR processing power; as such, this is a novel achievement, with few authors demonstrating similar systems. Ongoing and future work includes repeat-pass SAR data collection and developing the InSAR processing chain for drone SAR data to provide meaningful deformation outputs for the landslides and other geotechnical hazards and infrastructure. Full article
Show Figures

Figure 1

16 pages, 1143 KB  
Article
Women’s Singles Tennis Match Analysis and Probability of Winning a Point
by Alfonso Gutiérrez-Santiago, Pablo Cidre-Fuentes, Eduardo Orío-García, Antonio José Silva-Pinto, Xoana Reguera-López-de-la-Osa and Iván Prieto-Lage
Appl. Sci. 2024, 14(15), 6761; https://doi.org/10.3390/app14156761 - 2 Aug 2024
Cited by 6 | Viewed by 4262
Abstract
(1) Background: The analysis of women’s tennis performance has not been extensively explored by the scientific community, necessitating further research to understand the tactical actions occurring in matches. This research aimed to examine the chance of winning a point in professional women’s tennis [...] Read more.
(1) Background: The analysis of women’s tennis performance has not been extensively explored by the scientific community, necessitating further research to understand the tactical actions occurring in matches. This research aimed to examine the chance of winning a point in professional women’s tennis based on the key variables that influence performance in the sport. (2) Methods: Data from 3239 points were examined across three distinct court surfaces, sourced from the final rounds (starting with the quarterfinals) of three Grand Slam tournaments in the 2021 season. An observational methodology was employed, using various analysis techniques: descriptive and chi-square analyses, with a significance level of p < 0.05. (3) Results: The probability of winning a point on the first serve was 61% on clay, 70% on grass, and 69% on hard courts. For second serves, the probability of winning the point varied between 55% and 57%, depending on the court surface. Additionally, the majority of points, ranging from 70% to 71%, concluded with short rallies, involving one to four shots. On clay courts, the server won up to 65% of points with a first serve and a short rally, while the success rate increased to 75% on both grass and hard courts. For medium-length rallies (5–8 shots), the probability of winning the point dropped to 55–57%. The point outcome (winner, forced error, and unforced error) varied according to court surface, serve type, and rally length. (4) Conclusions: Descriptive data from this research on the probability of winning a point could assist coaches and players in developing match strategies. Full article
(This article belongs to the Special Issue Biomechanics and Sport Engineering: Latest Advances and Prospects)
Show Figures

Figure 1

16 pages, 2164 KB  
Article
Effects of Rewilding Aquaculture Time on Nutritional Quality and Flavor Characteristics of Grass Carp (Ctenopharyngodon idellus)
by Qianyun Han, Jiajie Hu, Weicong Pan, Jin Yu, Xiaoguo Ying, Jinpeng Weng, Weiye Li and Xudong Weng
Fishes 2024, 9(7), 275; https://doi.org/10.3390/fishes9070275 - 11 Jul 2024
Cited by 2 | Viewed by 2316
Abstract
Wild fish are preferred by consumers primarily for their superior sensorial qualities, including taste and texture. However, their limited availability often results in higher prices. Considering this, we explored the possibility of enhancing the quality of earthen pond aquaculture fish by transferring them [...] Read more.
Wild fish are preferred by consumers primarily for their superior sensorial qualities, including taste and texture. However, their limited availability often results in higher prices. Considering this, we explored the possibility of enhancing the quality of earthen pond aquaculture fish by transferring them to a near wild environment. This study investigated how rewilding time affects the physical properties, nutritional composition, and volatile profile of grass carp muscle. The results showed that compared to the 0M group, the crude protein content in grass carp muscle did not change significantly (p > 0.05) as the rewilding time increased to 6 months. Meanwhile, the significant increase in hardness and springiness (p < 0.05) indicated that the textural characteristics of muscle, which were key sensory and physical indices of muscle quality, were improved. Although the 6M group showed a 58.93% reduction in crude fat content compared to the 0M group, it retained the highest docosahexaenoic acid (DHA) content. Sensory evaluation demonstrated that as the rewilding time increased, the fishy and grassy odors of the rewilding grass carp diminished. Furthermore, cluster heatmaps and partial least squares discriminant analysis (PLS-DA) revealed that cultured grass carp and rewilding grass carp at three time points exhibited differences in various indicators. The variable importance in projection (VIP) showed that volatile flavor compounds (acetone, propionaldehyde-D, 1-penten-3-ol) and hardness were key factors in distinguishing between them. Therefore, extending the rewilding time can potentially enhance the acceptability of cultured grass carp by improving the physical properties, nutritional quality, and volatile profile of the muscle. This approach may provide a new pathway for fish aquaculture. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Graphical abstract

Back to TopTop