A Comparison of White Muscle Quality in Grass Carp Ctenopharyngodon idellus Fed with Commercial Feeds and Barley Malt
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Fish and Diets
2.2. Feeding Trial
2.3. Sample Collection
2.4. Proximate Composition Analysis
2.5. Determination of Water-Holding Capacity
2.6. Textural Profile Analysis
2.7. Histological Analysis
2.8. Amino Acid and Fatty Acid Composition Analysis
2.9. Evaluation of the Nutritional Value of Muscle Amino Acids
2.10. Statistical Analysis
3. Results
3.1. Growth and Biometric Parameters
3.2. Proximate Composition and Water-Holding Capacity
3.3. Textural Properties of Grass Carp Muscle
3.4. Histological Characteristics of Myofibers
3.5. Amino Acid Composition of Grass Carp Muscle
3.6. Nutritional Value of Amino Acids in Grass Carp Muscle
3.7. Fatty Acid Profiles in Grass Carp Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Agriculture and Rural Affairs. China Fishery Statistics Yearbook; China Agriculture Press: Beijing, China, 2023; pp. 24–25.
- Fauconneau, B.; Alami-Durante, H.; Laroche, M.; Marcel, J.; Vallot, D. Growth and meat quality relations in carp. Aquaculture 1995, 129, 265–297. [Google Scholar] [CrossRef]
- Johnston, I.A. Muscle development and growth: Potential implications for flesh quality in fish. Aquaculture 1999, 177, 99–115. [Google Scholar] [CrossRef]
- Grigorakis, K. Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture 2007, 272, 55–75. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- Asghari, M.; Shabanpour, B.; Pakravan, S. Evaluation of some qualitative variations in frozen fillets of beluga (Huso huso) fed by different carbohydrate to lipid ratios. J. Food Sci. Technol. 2014, 51, 430–439. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Han, Z.; Zeng, X.A. Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 52–61. [Google Scholar] [CrossRef]
- Zhao, H.; Chong, J.; Li, D.; Xia, J. Integrated multiple-omics reveals the regulatory mechanism underlying the effects of artificial feed and grass feeding on growth and muscle quality of grass carp (Ctenopharyngodon idellus). Aquaculture 2023, 562, 738808. [Google Scholar] [CrossRef]
- Chen, C.; Lu, S.H.; Gao, Y.Y. Problems and key technologies of marketable fish slimming processing and breeding. South China Agric. 2021, 15, 31–35. (In Chinese) [Google Scholar]
- Liu, W.W.; Kong, N.; Liu, S.; Wang, X.; Dong, H.J.; Geng, W. Review on chemical constituents and functional activities of hordei fructus germinatus. Food Drug 2023, 25, 384–390. (In Chinese) [Google Scholar]
- Dong, H. Discussion on milk returning of raw stir-fried malt. Clin. J. Tradit. Chin. Med. 1999, 4, 297. (In Chinese) [Google Scholar]
- Ling, J.H. Studies on the Chemical Constituents and the Processing Procedures of Malt. Master’s Thesis, Shenyang Pharmaceutical University, Shenyang, China, 2007. (In Chinese). [Google Scholar]
- Yun, J.M.; Han, P.; Wu, H.B. Dynamic analysis of enzymatic activity in barley malt during drying process. Food Sci. 2009, 30, 166–169. (In Chinese) [Google Scholar]
- An, J.; Chen, Y.G. Determination of the total alkaloids in malt by acid dye colorimetry method. J. Guangdong Pharm. Univ. 2014, 30, 590–594. (In Chinese) [Google Scholar]
- Tao, J.H.; Gong, X.Y.; Zou, J.L.; Chen, Y.G. Simultaneous determination of alkaloids and tricin in malt extract by HPLC. Tradit. Chin. Drug Res. Clin. Pharmacol. 2020, 31, 102–104. (In Chinese) [Google Scholar]
- Maillard, M.N.; Soum, M.H.; Boivin, P.; Berset, C. Antioxidant activity of barley and malt: Relationship with phenolic content. LWT-Food Sci. Technol. 1996, 29, 238–244. [Google Scholar] [CrossRef]
- Sharma, P.; Kotari, S.L. Barley: Impact of processing on physicochemical and thermal properties—A review. Food Rev. Int. 2017, 33, 359–381. [Google Scholar] [CrossRef]
- Nie, C.; Wang, C.L.; Wang, Y.R.; Zhou, G.T. Influence of malting conditions on the amino acid compositions of malt. China Brew. 2010, 29, 89–92. (In Chinese) [Google Scholar]
- Yang, X.Y. Research on the Components and Hypoglycemic Activity of Soluble Carbohydrate from Barley Malt with Different Germination Days. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2018. (In Chinese). [Google Scholar]
- Ikram, S.; Zhang, H.; Ming, H.; Wang, J. Recovery of major phenolic acids and antioxidant activity of highland barley brewer’s spent grains extracts. J. Food Process. Preserv. 2020, 44, e14308. [Google Scholar] [CrossRef]
- Kanauchi, O.; Oshima, T.; Andoh, A.; Shioya, M.; Mitsuyama, K. Germinated barley foodstuff ameliorates inflammation in mice with colitis through modulation of mucosal immune system. Scand. J. Gastroenterol. 2008, 43, 1346–1352. [Google Scholar] [CrossRef]
- Kanauchi, O.; Serizawa, I.; Araki, Y.; Suzuki, A.; Andoh, A.; Fujiyama, Y.; Mitsuyama, K.; Takaki, K.; Toyonaga, A.; Sata, M.; et al. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. J. Gastroenterol. 2003, 38, 134–141. [Google Scholar] [CrossRef]
- Rao, S.; Chinkwo, K.; Santhakumar, A.; Johnston, S.; Blanchard, C. Apoptosis induction pathway in human colorectal cancer cell line SW480 exposed to cereal phenolic extracts. Molecules 2019, 24, 2465. [Google Scholar] [CrossRef]
- Quan, M.; Li, Q.; Zhao, P.; Tian, C. Chemical composition and hepatoprotective effect of free phenolic extract from barley during malting process. Sci. Rep. 2018, 8, 4460. [Google Scholar] [CrossRef]
- Yang, Y.C.; Xu, D.P. Hypoglycemic effect and structural determination of polysaccharides from barley malt. J. Food Sci. Biotechnol. 2012, 31, 1087–1092. (In Chinese) [Google Scholar]
- AOAC. Official Methods of Analysis of Official Analytical Chemists International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Cheng, H.H. Muscular Nutritional Components and Meat Quality of Grass Carp (Ctenopharyngodon idellus) Cultured Under the Model of Cultivating Fish with Grass. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2018. (In Chinese). [Google Scholar]
- Zheng, J.M. Effects of Water Flow and Starvation on the Muscle Quality of Triploid Crucian Carp. Master’s Thesis, Southwest University, Chongqing, China, 2023. (In Chinese). [Google Scholar]
- GB 5009.124-2016; Determination of Amino Acids in Food Safety National Standards. National Standardization Management Committee: Beijing, China, 2016.
- GB 5009.168–2016; Determination of Fatty Acids in Food Safety National Standards. National Standardization Management Committee: Beijing, China, 2016.
- Pellett, P.L.; Young, V.R.; UN University. Nutritional Evaluation of Protein Foods; The United National University Publishing Company: Tokyo, Japan, 1980; pp. 26–29. [Google Scholar]
- Institute of Nutrition and Hygiene; National Academy of Preventive Sciences. List of Food Ingredients; People’s Medical Publishing House: Beijing, China, 1991. [Google Scholar]
- Wang, S.E. Study of Nutritional Composition, Volatile Compound and Texture Property of Tilapia. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2011. (In Chinese). [Google Scholar]
- Chen, Y.J.; Tian, L.X.; Yang, H.J.; Chen, P.F.; Yuan, Y.; Liu, Y.J.; Liang, G.Y. Effect of protein and starch level in practical extruded diets on growth, feed utilization, body composition, and hepatic transaminases of juvenile grass carp, Ctenopharyngodon idella. J. World Aquac. Soc. 2012, 43, 187–197. [Google Scholar] [CrossRef]
- Bi, X.M.; Yu, E.M.; Wang, G.J.; Yu, D.G.; Gong, W.B.; Xie, J. Comparison and analysis of nutrition composition of grass carp raised with grass and artificial feed. Guangdong Agric. Sci. 2011, 38, 132–134. (In Chinese) [Google Scholar]
- Li, L.; Zhou, J.S.; He, Y.L.; Yang, Y.H.; Wang, L.Z.; Yang, J.N.; Lu, L. Comparative Study of Muscle Physicochemical Characteristics in Common Cyprinus carpio, Silurus asotus and Ctenopharyngodon idellus. J. Hydroecol. 2013, 34, 82–86. (In Chinese) [Google Scholar]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wen, H.; Tian, J.; Jiang, M.; Liu, W.; Yang, C.; Yu, L.; Lu, X. Effect of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farm tilapia, Oreochromis niloticus. Aquac. Int. 2018, 26, 1247–1259. [Google Scholar] [CrossRef]
- Li, B.S.; Leng, X.J.; Li, X.Q.; Li, J.L. Effects of feeding broad bean on growth and flesh quality of grass carp Ctenopharyngodon idellus. J. Fish. Sci. China 2008, 15, 1042–1049. (In Chinese) [Google Scholar]
- Guan, L.; Zhu, J.R.; Li, X.Q.; Leng, X.J. Muscle characteristics comparison between grass carp and crisped grass carp. J. Shanghai Ocean. Univ. 2011, 20, 748–753. (In Chinese) [Google Scholar]
- Zhao, H.H.; Xia, J.G.; Zhang, X.; He, X.G.; Li, L.; Tang, R.; Chi, W.; Li, D.P. Diet affects muscle quality and growth traits of grass carp (Ctenopharyngodon idellus): A comparison between grass and artificial feed. Front. Physiol. 2018, 9, 283. [Google Scholar] [CrossRef]
- Shao, T. Quality Changes and Mechanism of Crisp Grass Carp (Ctenopharyngodon idellus C.et V) During Crispness Formation Process. Master’s Thesis, Southwest University, Chongqing, China, 2023. (In Chinese). [Google Scholar]
- Johnston, I.A.; Alderson, R.; Sandham, C.; Dingwall, A.; Mitchell, D.; Selkirk, C.; Nickell, D.; Baker, R.; Robertson, B.; Whyte, D.; et al. Muscle fibre density in relation to the colour and texture of smoked Atlantic salmon (Salmo salar L.). Aquaculture 2000, 189, 335–349. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y. Comparison of the proximate composition, amino acid composition and growth-related muscle gene expression in diploid and triploid rainbow trout (Oncorhynchus mykiss) muscles. J. Elem. 2017, 22, 1179–1191. [Google Scholar] [CrossRef]
- Aronal, A.P.; Huda, N.; Ahmad, R. Amino acid and fatty acid profiles of Peking and Muscovy duck meat. Int. J. Poult. Sci. 2012, 11, 229–236. [Google Scholar] [CrossRef]
- Pyz-Łukasik, R.; Paszkiewicz, W. Species variations in the proximate composition, amino acid profile, and protein quality of the muscle tissue of grass carp, bighead carp, siberian sturgeon, and wels catfish. J. Food Qual. 2018, 2018, 2625401. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ding, H.X.; Zhang, L.; Tu, Z.C. Comparative analysis on the nutritional quality of grass carp muscle from different habitats. Food Ferment. Ind. 2021, 47, 133–139. (In Chinese) [Google Scholar]
- Yao, K. Effects of vitamin E on growth performance and flesh quality of sub-adult grass carp and its mechanism. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2023. (In Chinese). [Google Scholar]
- Tong, E.J.; Zhang, C.Q.; Du, Y.J.; Liu, L.; Lu, J.H.; Chen, X. Analysis on the nutrients of malted barley and discussion on its application in food industry. Food Ind. 2023, 44, 323–327. (In Chinese) [Google Scholar]
- Ding, Y.Q.; Liu, Y.M.; Xiong, S.B. The comparative study on nutritional components between the muscle of Elopichthys bambusa and Ctenopharyngodon idellus. Acta Nutr. Sin. 2011, 33, 196–198. (In Chinese) [Google Scholar]
- Cheng, H.L.; Jiang, F.; Peng, Y.X.; Xu, X.H.; Dong, Z.G.; Xu, X.; Guo, Z.Q.; Sun, J.B.; Wang, J.Z.; Wu, G.S. Comparison of nutrient composition of muscles of wild and farmed grass carp, Ctenopharyngodon idellus. Food Sci. 2013, 34, 266–270. (In Chinese) [Google Scholar]
- Koch, J.F.; Rawles, S.D.; Webster, C.D.; Cummins, V.; Kobayashi, Y.; Thompson, K.R.; Gannam, A.L.; Twibell, R.G.; Hyde, N.M. Optimizing fish meal-free commercial diets for Nile tilapia, Oreochromis niloticus. Aquaculture 2016, 452, 357–366. [Google Scholar] [CrossRef]
- Lenas, D.; Chatziantoniou, S.; Nathanailides, C.; Triantafillou, D. Comparison of wild and farmed sea bass (Dicentrarchus labrax L) lipid quality. Procedia Food Sci. 2011, 1, 1139–1145. [Google Scholar] [CrossRef]
- Xu, H.; Turchini, G.M.; Francis, D.S.; Liang, M.; Mock, T.S.; Rombenso, A.; Ai, Q. Are fish what they eat? A fatty acid’s perspective. Prog. Lipid Res. 2020, 80, 101064. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Feng, L.; Wu, P.; Liu, Y.; Ren, H.M.; Jin, X.W.; Jiang, J.; Kuang, S.Y.; Li, S.W.; Tang, L.; et al. Modification of beneficial fatty acid composition and physicochemical qualities in the muscle of sub-adult grass carp (Ctenopharyngodon idella): The role of lipids. Aquaculture 2022, 561, 738656. [Google Scholar] [CrossRef]
- Montenegro, L.F.; Descalzo, A.M.; Cunzolo, S.A.; Pérez, C.D. Modification of the content of n-3 highly unsaturated fatty acid, chemical composition, and lipid nutritional indices in the meat of grass carp (Ctenopharyngodon idella) fed alfalfa (Medicago sativa) pellets. J. Anim. Sci. 2020, 98, skaa084. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, Y.; Han, Z.; Zheng, Y.; Wang, X.; Zhang, M.; Li, H.; Xu, J.; Chen, X.; Ding, Z.; et al. Comparative effects of dietary soybean oil and fish oil on the growth performance, fatty acid composition and lipid metabolic signaling of grass carp, Ctenopharyngodon idella. Aquac. Rep. 2022, 22, 101002. [Google Scholar] [CrossRef]
- Wei, N.; Mi, M.T. Roles of different n-6/n-3 polyunsaturated fatty acid ratio in gap junctional intercellular communication in breast cancer cell lines. J. Army Med. Univ. 2006, 28, 338–341. (In Chinese) [Google Scholar]
Treatments | CF | BM |
---|---|---|
Initial body weight (g) | 1263 ± 20 | 1206 ± 19 |
Final body weight (g) | 1791 ± 44 b | 1651 ± 13 a |
Survival rate (%) | 98.5 ± 1.3 | 97.9 ± 2.5 |
Condition factor | 1.80 ± 0.00 a | 1.90 ± 0.02 b |
Viscerosomatic index (%) | 8.28 ± 0.12 a | 11.71 ± 0.36 b |
Treatments | CF | BM |
---|---|---|
Moisture (%) | 77.4 ± 1.5 | 78.8 ± 2.9 |
Crude protein (%) | 18.6 ± 1.4 | 17.8 ± 0.7 |
Crude lipid (%) | 3.01 ± 0.29 | 2.75 ± 0.36 |
Crude ash (%) | 1.43 ± 0.09 b | 1.09 ± 0.08 a |
Drop loss (%) | 7.60 ± 0.39 | 8.18 ± 0.64 |
Frozen exudation rate (%) | 1.26 ± 0.16 | 1.09 ± 0.09 |
Cooking loss (%) | 20.7 ± 3.0 | 22.5 ± 1.1 |
Treatments | CF | BM |
---|---|---|
Hardness (g) | 749 ± 29 a | 957 ± 50 b |
Springiness (%) | 0.77 ± 0.05 | 0.80 ± 0.02 |
Cohesiveness (%) | 0.67 ± 0.01 | 0.70 ± 0.01 |
Gumminess (g·s) | 606 ± 76 a | 935 ± 60 b |
Chewiness (g) | 416 ± 16 a | 563 ± 38 b |
Treatments | Commercial Diet | CF | BM |
---|---|---|---|
Taurine | 0.06 | 0.51 ± 0.04 | 0.48 ± 0.05 |
Aspartic acid § | 3.00 | 9.11 ± 0.15 | 8.76 ± 0.08 |
Threonine * | 1.29 | 3.82 ± 0.05 | 3.72 ± 0.04 |
Serine | 1.44 | 3.61 ± 0.05 | 3.50 ± 0.03 |
Glutamic acid § | 6.01 | 13.2 ± 0.2 | 12.8 ± 0.1 |
Glycine § | 1.47 | 4.48 ± 0.10 | 4.21 ± 0.15 |
Alanine § | 1.71 | 5.11 ± 0.08 | 4.97 ± 0.06 |
Cystine * | 0.56 | 0.94 ± 0.02 | 0.93 ± 0.01 |
Valine * | 1.60 | 4.26 ± 0.04 | 4.13 ± 0.02 |
Methionine * | 0.57 | 2.54 ± 0.04 | 2.47 ± 0.03 |
Isoleucine * | 1.31 | 3.88 ± 0.05 | 3.77 ± 0.03 |
Leucine * | 2.66 | 6.82 ± 0.09 | 6.59 ± 0.05 |
Tyrosine *§ | 1.00 | 3.02 ± 0.04 | 2.94 ± 0.03 |
Phenylalanine *§ | 1.61 | 3.64 ± 0.05 b | 3.49 ± 0.02 a |
Histidine # | 0.80 | 3.06 ± 0.00 b | 2.79 ± 0.03 a |
Lysine * | 2.14 | 8.58 ± 0.13 | 8.24 ± 0.07 |
Arginine # | 1.95 | 5.11 ± 0.06 | 4.95 ± 0.05 |
Proline | 2.03 | 3.02 ± 0.02 a | 3.11 ± 0.01 b |
TAA | 31.2 | 84.7 ± 1.1 | 81.8 ± 0.7 |
EAA | 36.6 ± 0.5 | 35.6 ± 0.3 | |
SEAA | 8.17 ± 0.04 | 7.73 ± 0.08 | |
NEAA | 40.0 ± 0.6 | 38.7 ± 0.4 | |
DAA | 38.6 ± 0.6 | 37.2 ± 0.4 |
Essential Amino Acids | FAO/WHO Standard (mg/g N) | Whole Egg Protein Pattern (mg/g N) | CF (mg/g N) | BM (mg/g N) | AAS | CS | ||
---|---|---|---|---|---|---|---|---|
CF | BM | CF | BM | |||||
Isoleucine | 250 | 331 | 294 | 287 | 1.17 | 1.15 | 0.89 | 0.87 |
Leucine | 440 | 534 | 516 | 503 | 1.17 | 1.14 | 0.97 | 0.94 |
Lysine | 340 | 441 | 649 | 629 | 1.91 | 1.85 | 1.47 | 1.43 |
Methionine + Cysteine | 220 | 386 | 264 | 259 | 1.20 | 1.18 | 0.68 | 0.67 |
Phenylalanine + Tyrosine | 380 | 565 | 504 | 491 | 1.33 | 1.29 | 0.89 | 0.87 |
Threonine | 250 | 292 | 289 | 284 | 1.16 | 1.14 | 0.99 | 0.97 |
Valine | 310 | 411 | 322 | 315 | 1.04 | 1.01 | 0.78 | 0.77 |
EAAI | 92.9 | 90.8 |
Treatments | Commercial Diet | CF | BM |
---|---|---|---|
C12:0 | 0.05 | 0.58 ± 0.04 | 0.55 ± 0.04 |
C14:0 | 0.24 | 1.25 ± 0.05 a | 1.63 ± 0.09 b |
C16:0 | 11.5 | 18.3 ± 0.12 a | 19.4 ± 0.37 b |
C17:0 | 0.12 | 0.18 ± 0.01 | 0.13 ± 0.00 |
C18:0 | 3.85 | 4.36 ± 0.41 | 3.92 ± 0.06 |
C20:0 | 0.37 | 0.16 ± 0.00 | 0.15 ± 0.00 |
C22:0 | 0.41 | 0.57 ± 0.02 | 0.69 ± 0.05 |
C23:0 | / | 5.73 ± 1.1 | 5.26 ± 0.78 |
C24:0 | 0.15 | 0.08 ± 0.01 | 0.08 ± 0.01 |
C16:1n-7 | 0.46 | 4.07 ± 0.57 a | 7.44 ± 0.33 b |
C18:1n-9 | 24.7 | 31.9 ± 1.6 | 31.6 ± 1.3 |
C20:1n-9 | 0.29 | 1.16 ± 0.07 | 1.12 ± 0.05 |
C22:1n-9 | 0.061 | 0.21 ± 0.01 | 0.17 ± 0.06 |
C18:2n-6 | 48.8 | 22.8 ± 0.5 b | 20.1 ± 0.3 a |
C18:3n-3 | 6.05 | 1.97 ± 0.13 | 1.70 ± 0.02 |
C20:2n-6 | 0.05 | 1.13 ± 0.05 b | 0.91 ± 0.03 a |
C20:3n-6 | / | 1.57 ± 0.10 | 1.44 ± 0.12 |
C20:5n-3 | 0.33 | 0.37 ± 0.08 | 0.31 ± 0.04 |
C22:6n-3 | 0.29 | 2.49 ± 0.53 | 2.18 ± 0.30 |
∑SFA | 16.7 | 31.2 ± 1.4 | 31.8 ± 0.50 |
∑MUFA | 25.5 | 37.3 ± 2.2 | 40.3 ± 1.3 |
∑PUFA | 55.5 | 30.28 ± 0.9 b | 26.6 ± 0.8 a |
∑n-3 PUFA | 6.67 | 4.82 ± 0.52 | 4.19 ± 0.33 |
∑n-6 PUFA | 48.8 | 25.5 ± 0.6 b | 22.4 ± 0.5 a |
n-3/n-6 PUFA | 0.14 | 0.19 ± 0.02 | 0.19 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Huang, Z.; Liu, H.; Mo, D.; Fu, P.; Guo, H.; Jiang, W.; Xie, Y.; Chen, Y. A Comparison of White Muscle Quality in Grass Carp Ctenopharyngodon idellus Fed with Commercial Feeds and Barley Malt. Fishes 2025, 10, 185. https://doi.org/10.3390/fishes10040185
Hu C, Huang Z, Liu H, Mo D, Fu P, Guo H, Jiang W, Xie Y, Chen Y. A Comparison of White Muscle Quality in Grass Carp Ctenopharyngodon idellus Fed with Commercial Feeds and Barley Malt. Fishes. 2025; 10(4):185. https://doi.org/10.3390/fishes10040185
Chicago/Turabian StyleHu, Chongjiang, Zheng Huang, Hongkang Liu, Dingrui Mo, Peng Fu, Haiyan Guo, Wei Jiang, Yong Xie, and Yongjun Chen. 2025. "A Comparison of White Muscle Quality in Grass Carp Ctenopharyngodon idellus Fed with Commercial Feeds and Barley Malt" Fishes 10, no. 4: 185. https://doi.org/10.3390/fishes10040185
APA StyleHu, C., Huang, Z., Liu, H., Mo, D., Fu, P., Guo, H., Jiang, W., Xie, Y., & Chen, Y. (2025). A Comparison of White Muscle Quality in Grass Carp Ctenopharyngodon idellus Fed with Commercial Feeds and Barley Malt. Fishes, 10(4), 185. https://doi.org/10.3390/fishes10040185