Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (629)

Search Parameters:
Keywords = HSI classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 920 KiB  
Article
Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning
by Tsung-Jung Tsai, Kun-Hua Lee, Chu-Kuang Chou, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Devansh Gupta, Gargi Ghosh, Tao-Yuan Liu and Hsiang-Chen Wang
Bioengineering 2025, 12(8), 828; https://doi.org/10.3390/bioengineering12080828 - 30 Jul 2025
Viewed by 218
Abstract
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision [...] Read more.
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision Enhancer (SAVE), an innovative, software-driven framework that transforms standard WLI into high-fidelity hyperspectral imaging (HSI) and simulated narrow-band imaging (NBI) without any hardware modification. SAVE leverages advanced spectral reconstruction techniques, including Macbeth Color Checker-based calibration, principal component analysis (PCA), and multivariate polynomial regression, achieving a root mean square error (RMSE) of 0.056 and structural similarity index (SSIM) exceeding 90%. Trained and validated on the Kvasir v2 dataset (n = 6490) using deep learning models like ResNet-50, ResNet-101, EfficientNet-B2, both EfficientNet-B5 and EfficientNetV2-B0 were used to assess diagnostic performance across six key GI conditions. Results demonstrated that SAVE enhanced imagery and consistently outperformed raw WLI across precision, recall, and F1-score metrics, with EfficientNet-B2 and EfficientNetV2-B0 achieving the highest classification accuracy. Notably, this performance gain was achieved without the need for specialized imaging hardware. These findings highlight SAVE as a transformative solution for augmenting GI diagnostics, with the potential to significantly improve early detection, streamline clinical workflows, and broaden access to advanced imaging especially in resource constrained settings. Full article
Show Figures

Figure 1

23 pages, 10648 KiB  
Article
Meta-Learning-Integrated Neural Architecture Search for Few-Shot Hyperspectral Image Classification
by Aili Wang, Kang Zhang, Haibin Wu, Haisong Chen and Minhui Wang
Electronics 2025, 14(15), 2952; https://doi.org/10.3390/electronics14152952 - 24 Jul 2025
Viewed by 194
Abstract
In order to address the limitations of the number of label samples in practical accurate classification scenarios and the problems of overfitting and an insufficient generalization ability caused by Few-Shot Learning (FSL) in hyperspectral image classification (HSIC), this paper designs and implements a [...] Read more.
In order to address the limitations of the number of label samples in practical accurate classification scenarios and the problems of overfitting and an insufficient generalization ability caused by Few-Shot Learning (FSL) in hyperspectral image classification (HSIC), this paper designs and implements a neural architecture search (NAS) for a few-shot HSI classification method that combines meta learning. Firstly, a multi-source domain learning framework was constructed to integrate heterogeneous natural images and homogeneous remote sensing images to improve the information breadth of few-sample learning, enabling the final network to enhance its generalization ability under limited labeled samples by learning the similarity between different data sources. Secondly, by constructing precise and robust search spaces and deploying different units at different locations, the classification accuracy and model transfer robustness of the final network can be improved. This method fully utilizes spatial texture information and rich category information of multi-source data and transfers the learned meta knowledge to the optimal architecture for HSIC execution through precise and robust search space design, achieving HSIC tasks with limited samples. Experimental results have shown that our proposed method achieved an overall accuracy (OA) of 98.57%, 78.39%, and 98.74% for classification on the Pavia Center, Indian Pine, and WHU-Hi-LongKou datasets, respectively. It is fully demonstrated that utilizing spatial texture information and rich category information of multi-source data, and through precise and robust search space design, the learned meta knowledge is fully transmitted to the optimal architecture for HSIC, perfectly achieving classification tasks with few-shot samples. Full article
Show Figures

Figure 1

19 pages, 1854 KiB  
Article
Non-Destructive Discrimination and Traceability of Exocarpium Citrus grandis Aging Years via Feature-Optimized Hyperspectral Imaging and Broad Learning System
by Wenqi Liu and Shihua Zhong
Photonics 2025, 12(7), 737; https://doi.org/10.3390/photonics12070737 - 19 Jul 2025
Viewed by 295
Abstract
Exocarpium Citrus grandis is a traditional Chinese medicinal and edible herb whose pharmacological efficacy is closely tied to its aging duration. The accurate discrimination of aging years is essential for quality control but remains challenging due to limitations in current analytical techniques. This [...] Read more.
Exocarpium Citrus grandis is a traditional Chinese medicinal and edible herb whose pharmacological efficacy is closely tied to its aging duration. The accurate discrimination of aging years is essential for quality control but remains challenging due to limitations in current analytical techniques. This study proposes a novel feature-optimized classification framework that integrates hyperspectral imaging (HSI) with a Broad Learning System (BLS). Bilateral spectral data (side A and side B) were collected to capture more comprehensive sample information. A combination of normalization (NOR) preprocessing and the Iterative Variable Importance for Spectral Subset Selection Algorithm (iVISSA) was found to be optimal. The NOR–iVISSA–BLS model achieved classification accuracies of 94.09 ± 1.01% (side A) and 95.10 ± 0.82% (side B). Furthermore, cross-validation between the two sides (A→B: 94.92%, B→A: 94.11%) confirmed the model’s robustness and generalizability. This dual-side spectral validation strategy offers a rapid, nondestructive, and reliable solution for the vintage authentication of Exocarpium Citrus grandis, contributing to the modernization of quality control in medicinal foodstuffs. Full article
Show Figures

Figure 1

35 pages, 7685 KiB  
Article
Spatial and Spectral Structure-Aware Mamba Network for Hyperspectral Image Classification
by Jie Zhang, Ming Sun and Sheng Chang
Remote Sens. 2025, 17(14), 2489; https://doi.org/10.3390/rs17142489 - 17 Jul 2025
Viewed by 261
Abstract
Recently, a network based on selective state space models (SSMs), Mamba, has emerged as a research focus in hyperspectral image (HSI) classification due to its linear computational complexity and strong long-range dependency modeling capability. Originally designed for 1D causal sequence modeling, Mamba is [...] Read more.
Recently, a network based on selective state space models (SSMs), Mamba, has emerged as a research focus in hyperspectral image (HSI) classification due to its linear computational complexity and strong long-range dependency modeling capability. Originally designed for 1D causal sequence modeling, Mamba is challenging for HSI tasks that require simultaneous awareness of spatial and spectral structures. Current Mamba-based HSI classification methods typically convert spatial structures into 1D sequences and employ various scanning patterns to capture spatial dependencies. However, these approaches inevitably disrupt spatial structures, leading to ineffective modeling of complex spatial relationships and increased computational costs due to elongated scanning paths. Moreover, the lack of neighborhood spectral information utilization fails to mitigate the impact of spatial variability on classification performance. To address these limitations, we propose a novel model, Dual-Aware Discriminative Fusion Mamba (DADFMamba), which is simultaneously aware of spatial-spectral structures and adaptively integrates discriminative features. Specifically, we design a Spatial-Structure-Aware Fusion Module (SSAFM) to directly establish spatial neighborhood connectivity in the state space, preserving structural integrity. Then, we introduce a Spectral-Neighbor-Group Fusion Module (SNGFM). It enhances target spectral features by leveraging neighborhood spectral information before partitioning them into multiple spectral groups to explore relations across these groups. Finally, we introduce a Feature Fusion Discriminator (FFD) to discriminate the importance of spatial and spectral features, enabling adaptive feature fusion. Extensive experiments on four benchmark HSI datasets demonstrate that DADFMamba outperforms state-of-the-art deep learning models in classification accuracy while maintaining low computational costs and parameter efficiency. Notably, it achieves superior performance with only 30 training samples per class, highlighting its data efficiency. Our study reveals the great potential of Mamba in HSI classification and provides valuable insights for future research. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

28 pages, 5450 KiB  
Article
DFAST: A Differential-Frequency Attention-Based Band Selection Transformer for Hyperspectral Image Classification
by Deren Fu, Yiliang Zeng and Jiahong Zhao
Remote Sens. 2025, 17(14), 2488; https://doi.org/10.3390/rs17142488 - 17 Jul 2025
Viewed by 195
Abstract
Hyperspectral image (HSI) classification faces challenges such as high dimensionality, spectral redundancy, and difficulty in modeling the coupling between spectral and spatial features. Existing methods fail to fully exploit first-order derivatives and frequency domain information, which limits classification performance. To address these issues, [...] Read more.
Hyperspectral image (HSI) classification faces challenges such as high dimensionality, spectral redundancy, and difficulty in modeling the coupling between spectral and spatial features. Existing methods fail to fully exploit first-order derivatives and frequency domain information, which limits classification performance. To address these issues, this paper proposes a Differential-Frequency Attention-based Band Selection Transformer (DFAST) for HSI classification. Specifically, a Differential-Frequency Attention-based Band Selection Embedding Module (DFASEmbeddings) is designed to extract original spectral, first-order derivative, and frequency domain features via a multi-branch structure. Learnable band selection attention weights are introduced to adaptively select important bands, capture critical spectral information, and significantly reduce redundancy. A 3D convolution and a spectral–spatial attention mechanism are applied to perform fine-grained modeling of spectral and spatial features, further enhancing the global dependency capture of spectral–spatial features. The embedded features are then input into a cascaded Transformer encoder (SCEncoder) for deep modeling of spectral–spatial coupling characteristics to achieve classification. Additionally, learnable attention weights for band selection are outputted for dimensionality reduction. Experiments on several public hyperspectral datasets demonstrate that the proposed method outperforms existing CNN and Transformer-based approaches in classification performance. Full article
Show Figures

Figure 1

19 pages, 1442 KiB  
Article
Hyperspectral Imaging for Enhanced Skin Cancer Classification Using Machine Learning
by Teng-Li Lin, Arvind Mukundan, Riya Karmakar, Praveen Avala, Wen-Yen Chang and Hsiang-Chen Wang
Bioengineering 2025, 12(7), 755; https://doi.org/10.3390/bioengineering12070755 - 11 Jul 2025
Viewed by 435
Abstract
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents [...] Read more.
Objective: The classification of skin cancer is very helpful in its early diagnosis and treatment, considering the complexity involved in differentiating AK from BCC and SK. These conditions are generally not easily detectable due to their comparable clinical presentations. Method: This paper presents a new approach to hyperspectral imaging for enhancing the visualization of skin lesions called the Spectrum-Aided Vision Enhancer (SAVE), which has the ability to convert any RGB image into a narrow-band image (NBI) by combining hyperspectral imaging (HSI) to increase the contrast of the area of the cancerous lesions when compared with the normal tissue, thereby increasing the accuracy of classification. The current study investigates the use of ten different machine learning algorithms for the purpose of classification of AK, BCC, and SK, including convolutional neural network (CNN), random forest (RF), you only look once (YOLO) version 8, support vector machine (SVM), ResNet50, MobileNetV2, Logistic Regression, SVM with stochastic gradient descent (SGD) Classifier, SVM with logarithmic (LOG) Classifier and SVM- Polynomial Classifier, in assessing the capability of the system to differentiate AK from BCC and SK with heightened accuracy. Results: The results demonstrated that SAVE enhanced classification performance and increased its accuracy, sensitivity, and specificity compared to a traditional RGB imaging approach. Conclusions: This advanced method offers dermatologists a tool for early and accurate diagnosis, reducing the likelihood of misclassification and improving patient outcomes. Full article
Show Figures

Figure 1

19 pages, 3564 KiB  
Article
Surface Ice Detection Using Hyperspectral Imaging and Machine Learning
by Steve Vanlanduit, Arnaud De Vooght and Thomas De Kerf
Sensors 2025, 25(14), 4322; https://doi.org/10.3390/s25144322 - 10 Jul 2025
Viewed by 301
Abstract
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. [...] Read more.
Ice formation on critical infrastructure such as wind turbine blades can lead to severe performance degradation and safety hazards. This study investigates the use of hyperspectral imaging (HSI) combined with machine learning to detect and classify ice on various coated and uncoated surfaces. Hyperspectral reflectance data were acquired using a push-broom HSI system under controlled laboratory conditions, with ice and rime ice generated using a thermoelectric cooling setup. Support Vector Machine (SVM) and Random Forest (RF) classifiers were trained on uncoated aluminum samples and evaluated on surfaces with different coatings to assess model generalization. Both models achieved high classification accuracy, though performance declined on black-coated surfaces due to increased absorbance by the coating. The study further examined the impact of spectral band reduction to simulate different sensor types (e.g., NIR vs. SWIR), revealing that model performance is sensitive to wavelength range, with SVM performing optimally in a reduced band set and RF benefiting from the full spectral range. A multiclass classification approach using RF successfully distinguished between glaze and rime ice, offering insights into more targeted mitigation strategies. The results confirm the potential of HSI and machine learning as robust tools for surface ice monitoring in safety-critical environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 3937 KiB  
Article
HyperTransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Hyperspectral Image Classification
by Xin Dai, Zexi Li, Lin Li, Shuihua Xue, Xiaohui Huang and Xiaofei Yang
Remote Sens. 2025, 17(14), 2361; https://doi.org/10.3390/rs17142361 - 9 Jul 2025
Viewed by 352
Abstract
Recent advances in hyperspectral image (HSI) classification have demonstrated the effectiveness of hybrid architectures that integrate convolutional neural networks (CNNs) and Transformers, leveraging CNNs for local feature extraction and Transformers for global dependency modeling. However, existing fusion approaches face three critical challenges: (1) [...] Read more.
Recent advances in hyperspectral image (HSI) classification have demonstrated the effectiveness of hybrid architectures that integrate convolutional neural networks (CNNs) and Transformers, leveraging CNNs for local feature extraction and Transformers for global dependency modeling. However, existing fusion approaches face three critical challenges: (1) insufficient synergy between spectral and spatial feature learning due to rigid coupling mechanisms; (2) high computational complexity resulting from redundant attention calculations; and (3) limited adaptability to spectral redundancy and noise in small-sample scenarios. To address these limitations, we propose HyperTransXNet, a novel CNN-Transformer hybrid architecture that incorporates adaptive spectral-spatial fusion. Specifically, the proposed HyperTransXNet comprises three key modules: (1) a Hybrid Spatial-Spectral Module (HSSM) that captures the refined local spectral-spatial features and models global spectral correlations by combining depth-wise dynamic convolution with frequency-domain attention; (2) a Mixture-of-Experts Routing (MoE-R) module that adaptively fuses multi-scale features by dynamically selecting optimal experts via Top-K sparse weights; and (3) a Spatial-Spectral Tokens Enhancer (SSTE) module that ensures causality-preserving interactions between spectral bands and spatial contexts. Extensive experiments on the Indian Pines, Houston 2013, and WHU-Hi-LongKou datasets demonstrate the superiority of HyperTransXNet. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Figure 1

32 pages, 5287 KiB  
Article
UniHSFormer X for Hyperspectral Crop Classification with Prototype-Routed Semantic Structuring
by Zhen Du, Senhao Liu, Yao Liao, Yuanyuan Tang, Yanwen Liu, Huimin Xing, Zhijie Zhang and Donghui Zhang
Agriculture 2025, 15(13), 1427; https://doi.org/10.3390/agriculture15131427 - 2 Jul 2025
Viewed by 347
Abstract
Hyperspectral imaging (HSI) plays a pivotal role in modern agriculture by capturing fine-grained spectral signatures that support crop classification, health assessment, and land-use monitoring. However, the transition from raw spectral data to reliable semantic understanding remains challenging—particularly under fragmented planting patterns, spectral ambiguity, [...] Read more.
Hyperspectral imaging (HSI) plays a pivotal role in modern agriculture by capturing fine-grained spectral signatures that support crop classification, health assessment, and land-use monitoring. However, the transition from raw spectral data to reliable semantic understanding remains challenging—particularly under fragmented planting patterns, spectral ambiguity, and spatial heterogeneity. To address these limitations, we propose UniHSFormer-X, a unified transformer-based framework that reconstructs agricultural semantics through prototype-guided token routing and hierarchical context modeling. Unlike conventional models that treat spectral–spatial features uniformly, UniHSFormer-X dynamically modulates information flow based on class-aware affinities, enabling precise delineation of field boundaries and robust recognition of spectrally entangled crop types. Evaluated on three UAV-based benchmarks—WHU-Hi-LongKou, HanChuan, and HongHu—the model achieves up to 99.80% overall accuracy and 99.28% average accuracy, outperforming state-of-the-art CNN, ViT, and hybrid architectures across both structured and heterogeneous agricultural scenarios. Ablation studies further reveal the critical role of semantic routing and prototype projection in stabilizing model behavior, while parameter surface analysis demonstrates consistent generalization across diverse configurations. Beyond high performance, UniHSFormer-X offers a semantically interpretable architecture that adapts to the spatial logic and compositional nuance of agricultural imagery, representing a forward step toward robust and scalable crop classification. Full article
Show Figures

Figure 1

19 pages, 620 KiB  
Article
Software-Based Transformation of White Light Endoscopy Images to Hyperspectral Images for Improved Gastrointestinal Disease Detection
by Chien-Wei Huang, Chang-Chao Su, Chu-Kuang Chou, Arvind Mukundan, Riya Karmakar, Tsung-Hsien Chen, Pranav Shukla, Devansh Gupta and Hsiang-Chen Wang
Diagnostics 2025, 15(13), 1664; https://doi.org/10.3390/diagnostics15131664 - 30 Jun 2025
Viewed by 461
Abstract
Background/Objectives: Gastrointestinal diseases (GID), such as oesophagitis, polyps, and ulcerative colitis, contribute significantly to global morbidity and mortality. Conventional diagnostic methods employing white light imaging (WLI) in wireless capsule endoscopy (WCE) provide limited spectrum information, therefore influencing classification performance. Methods: A new technique [...] Read more.
Background/Objectives: Gastrointestinal diseases (GID), such as oesophagitis, polyps, and ulcerative colitis, contribute significantly to global morbidity and mortality. Conventional diagnostic methods employing white light imaging (WLI) in wireless capsule endoscopy (WCE) provide limited spectrum information, therefore influencing classification performance. Methods: A new technique called Spectrum Aided Vision Enhancer (SAVE), which converts traditional WLI images into hyperspectral imaging (HSI)-like representations, hence improving diagnostic accuracy. HSI involves the acquisition of image data across numerous wavelengths of light, extending beyond the visible spectrum, to deliver comprehensive information regarding the material composition and attributes of the imaged objects. This technique facilitates improved tissue characterisation, rendering it especially effective for identifying abnormalities in medical imaging. Using a carefully selected dataset consisting of 6000 annotated photos taken from the KVASIR and ETIS-Larib Polyp Database, this work classifies normal, ulcers, polyps, and oesophagitis. The performance of both the original WLI and SAVE transformed images was assessed using advanced deep learning architectures. The principal outcome was the overall classification accuracy for normal, ulcer, polyp, and oesophagitis categories, contrasting SAVE-enhanced images with standard WLI across five deep learning models. Results: The principal outcome of this study was the enhancement of diagnostic accuracy for gastrointestinal disease classification, assessed through classification accuracy, precision, recall, and F1 score. The findings illustrate the efficacy of the SAVE method in improving diagnostic performance without requiring specialised equipment. With the best accuracy of 98% attained using EfficientNetB7, compared to 97% with WLI, experimental data show that SAVE greatly increases classification metrics across all models. With relative improvement from 85% (WLI) to 92% (SAVE), VGG16 showed the highest accuracy. Conclusions: These results confirm that the SAVE algorithm significantly improves the early identification and classification of GID, therefore providing a potential development towards more accurate, non-invasive GID diagnostics with WCE. Full article
Show Figures

Figure 1

23 pages, 3677 KiB  
Article
HG-Mamba: A Hybrid Geometry-Aware Bidirectional Mamba Network for Hyperspectral Image Classification
by Xiaofei Yang, Jiafeng Yang, Lin Li, Suihua Xue, Haotian Shi, Haojin Tang and Xiaohui Huang
Remote Sens. 2025, 17(13), 2234; https://doi.org/10.3390/rs17132234 - 29 Jun 2025
Viewed by 459
Abstract
Deep learning has demonstrated significant success in hyperspectral image (HSI) classification by effectively leveraging spatial–spectral feature learning. However, current approaches encounter three challenges: (1) high spectral redundancy and the presence of noisy bands, which impair the extraction of discriminative features; (2) limited spatial [...] Read more.
Deep learning has demonstrated significant success in hyperspectral image (HSI) classification by effectively leveraging spatial–spectral feature learning. However, current approaches encounter three challenges: (1) high spectral redundancy and the presence of noisy bands, which impair the extraction of discriminative features; (2) limited spatial receptive fields inherent in convolutional operations; and (3) unidirectional context modeling that inadequately captures bidirectional dependencies in non-causal HSI data. To address these challenges, this paper proposes HG-Mamba, a novel hybrid geometry-aware bidirectional Mamba network for HSI classification. The proposed HG-Mamba synergistically integrates convolutional operations, geometry-aware filtering, and bidirectional state-space models (SSMs) to achieve robust spectral–spatial representation learning. The proposed framework comprises two stages. The first stage, termed spectral compression and discrimination enhancement, employs multi-scale spectral convolutions alongside a spectral bidirectional Mamba (SeBM) module to suppress redundant bands while modeling long-range spectral dependencies. The second stage, designated spatial structure perception and context modeling, incorporates a Gaussian Distance Decay (GDD) mechanism to adaptively reweight spatial neighbors based on geometric distances, coupled with a spatial bidirectional Mamba (SaBM) module for comprehensive global context modeling. The GDD mechanism facilitates boundary-aware feature extraction by prioritizing spatially proximate pixels, while the bidirectional SSMs mitigate unidirectional bias through parallel forward–backward state transitions. Extensiveexperiments on the Indian Pines, Houston2013, and WHU-Hi-LongKou datasets demonstrate the superior performance of HG-Mamba, achieving overall accuracies of 94.91%, 98.41%, and 98.67%, respectively. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Graphical abstract

13 pages, 1109 KiB  
Technical Note
Detection of Bacterial Leaf Spot Disease in Sesame (Sesamum indicum L.) Using a U-Net Autoencoder
by Minju Lee, Jeseok Lee, Amit Ghimire, Yegyeong Bae, Tae-An Kang, Youngnam Yoon, In-Jung Lee, Choon-Wook Park, Byungwon Kim and Yoonha Kim
Remote Sens. 2025, 17(13), 2230; https://doi.org/10.3390/rs17132230 - 29 Jun 2025
Viewed by 306
Abstract
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. [...] Read more.
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. In this study, we extend this framework to a binary classification by employing a U-Net based deterministic autoencoder augmented with attention blocks to analyze HSI data of sesame plants inoculated with Pseudomonas syringae pv. sesami. Single-band grayscale images across the full spectral range were used to train the model on healthy samples, while the presence of disease was classified by assessing the reconstruction error, which we refer to as the anomaly score. The average classification accuracy in the visible region spectrum (430–689 nm) exceeded 0.8, with peaks at 641 nm and 689 nm. In comparison, the near-infrared region (>700 nm) attained an accuracy of approximately 0.6. Several visible bands demonstrated potential for early disease detection. Some lesion samples showed a gradual increase in anomaly scores over time, and notably, Band 23 (689 nm) exhibited exceeded anomaly scores even at early stages before visible symptoms appeared. This supports the potential of this wavelength for the early-stage detection of bacterial leaf spots in sesame. Full article
Show Figures

Graphical abstract

24 pages, 4434 KiB  
Article
MRFP-Mamba: Multi-Receptive Field Parallel Mamba for Hyperspectral Image Classification
by Xiaofei Yang, Lin Li, Suihua Xue, Sihuan Li, Wanjun Yang, Haojin Tang and Xiaohui Huang
Remote Sens. 2025, 17(13), 2208; https://doi.org/10.3390/rs17132208 - 26 Jun 2025
Viewed by 507
Abstract
Deep learning has achieved remarkable success in hyperspectral image (HSI) classification, attributed to its powerful feature extraction capabilities. However, existing methods face several challenges: Convolutional Neural Networks (CNNs) are limited in modeling long-range spectral dependencies because of their limited receptive fields; Transformers are [...] Read more.
Deep learning has achieved remarkable success in hyperspectral image (HSI) classification, attributed to its powerful feature extraction capabilities. However, existing methods face several challenges: Convolutional Neural Networks (CNNs) are limited in modeling long-range spectral dependencies because of their limited receptive fields; Transformers are constrained by their quadratic computational complexity; and Mamba-based methods fail to fully exploit spatial–spectral interactions when handling high-dimensional HSI data. To address these limitations, we propose MRFP-Mamba, a novel Multi-Receptive-Field Parallel Mamba architecture that integrates hierarchical spatial feature extraction with efficient modeling of spatial–spectral dependencies. The proposed MRFP-Mamba introduces two key innovation modules: (1) A multi-receptive-field convolutional module employing parallel 1×1, 3×3, 5×5, and 7×7 kernels to capture fine-to-coarse spatial features, thereby improving discriminability for multi-scale objects; and (2) a parameter-optimized Vision Mamba branch that models global spatial–spectral relationships through structured state space mechanisms. Experimental results demonstrate that the proposed MRFP-Mamba consistently surpasses existing CNN-, Transformer-, and state space model (SSM)-based approaches across four widely used hyperspectral image (HSI) benchmark datasets: PaviaU, Indian Pines, Houston 2013, and WHU-Hi-LongKou. Compared with MambaHSI, our MRFP-Mamba achieves improvements in Overall Accuracy (OA) by 0.69%, 0.30%, 0.40%, and 0.97%, respectively, thereby validating its superior classification capability and robustness. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Figure 1

22 pages, 10608 KiB  
Article
Hyperspectral Image Assessment of Archaeo-Paleoanthropological Stratigraphic Deposits from Atapuerca (Burgos, Spain)
by Berta García-Fernández, Alfonso Benito-Calvo, Adrián Martínez-Fernández, Isidoro Campaña, Andreu Ollé, Palmira Saladié, María Martinón-Torres and Marina Mosquera
Heritage 2025, 8(6), 233; https://doi.org/10.3390/heritage8060233 - 18 Jun 2025
Viewed by 467
Abstract
This paper proposes an experimental procedure based on hyperspectral imaging (HSI) combined with statistical classification for assessing archaeo-paleoanthropological stratigraphic deposits at the Gran Dolina site (TD10 unit), located in the Sierra de Atapuerca (Burgos, Spain). Representative spectral reflectance signatures were determined and analyzed [...] Read more.
This paper proposes an experimental procedure based on hyperspectral imaging (HSI) combined with statistical classification for assessing archaeo-paleoanthropological stratigraphic deposits at the Gran Dolina site (TD10 unit), located in the Sierra de Atapuerca (Burgos, Spain). Representative spectral reflectance signatures were determined and analyzed using HSI measurements and statistical classification methods in natural light conditions across various capture distances. This study aims to characterize and quantify cave sediments by defining spectral models for feature classification and spectral similarity analysis, evaluating the strengths and limitations of spectral captures at this specific site. HSI technology enhances the analysis and identification of materials at an internationally recognized reference site for human evolution studies. Hyperspectral imaging assessment of archaeo-paleoanthropological stratigraphic deposits emerges as an innovative digital tool, revolutionizing the sustainable management of cultural heritage and environmental sciences by enabling advanced material identification and stratigraphic analysis. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

23 pages, 10182 KiB  
Article
HyperSMamba: A Lightweight Mamba for Efficient Hyperspectral Image Classification
by Mengyuan Sun, Liejun Wang, Shaochen Jiang, Shuli Cheng and Lihan Tang
Remote Sens. 2025, 17(12), 2008; https://doi.org/10.3390/rs17122008 - 11 Jun 2025
Viewed by 637
Abstract
Deep learning has recently achieved remarkable progress in hyperspectral image (HSI) classification. Among these advancements, the Transformer-based models have gained considerable attention due to their ability to establish long-range dependencies. However, the quadratic computational complexity of the self-attention mechanism limits its application in [...] Read more.
Deep learning has recently achieved remarkable progress in hyperspectral image (HSI) classification. Among these advancements, the Transformer-based models have gained considerable attention due to their ability to establish long-range dependencies. However, the quadratic computational complexity of the self-attention mechanism limits its application in hyperspectral image classification (HSIC). Recently, the Mamba architecture has shown outstanding performance in 1D sequence modeling tasks owing to its lightweight linear sequence operations and efficient parallel scanning capabilities. Nevertheless, its application in HSI classification still faces challenges. Most existing Mamba-based approaches adopt various selective scanning strategies for HSI serialization, ensuring the adjacency of scanning sequences to enhance spatial continuity. However, these methods lead to substantially increased computational overhead. To overcome these challenges, this study proposes the Hyperspectral Spatial Mamba (HyperSMamba) model for HSIC, aiming to reduce computational complexity while improving classification performance. The suggested framework consists of the following key components: (1) a Multi-Scale Spatial Mamba (MS-Mamba) encoder, which refines the state-space model (SSM) computation by incorporating a Multi-Scale State Fusion Module (MSFM) after the state transition equations of original SSMs. This module aggregates adjacent state representations to reinforce spatial dependencies among local features; (2) our proposed Adaptive Fusion Attention Module (AFAttention) to dynamically fuse bidirectional Mamba outputs for optimizing feature representation. Experiments were performed on three HSI datasets, and the findings demonstrate that HyperSMamba attains overall accuracy of 94.86%, 97.72%, and 97.38% on the Indian Pines, Pavia University, and Salinas datasets, while maintaining low computational complexity. These results confirm the model’s effectiveness and potential for practical application in HSIC tasks. Full article
Show Figures

Figure 1

Back to TopTop