Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,107)

Search Parameters:
Keywords = HSC-3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13067 KiB  
Article
Engineering Marrow-Mimetic Hydrogel Platforms Enhance Erythropoiesis: A Mechanobiology-Driven Approach for Transfusion Red Blood Cell Production
by Qinqin Yang, Runjin Liu and Xiang Wang
Gels 2025, 11(8), 594; https://doi.org/10.3390/gels11080594 (registering DOI) - 31 Jul 2025
Viewed by 89
Abstract
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural [...] Read more.
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural bone marrow microenvironment, differences in mechanical microenvironments provide a reference for the regulation of HSC differentiation. This study seek to reveal the role of mechanobiology cues in erythropoiesis and provide a new perspective for the design of in vitro erythropoiesis platforms. The hydrogel platforms we designed simulate the stiffness gradient of the bone marrow niche to culture HSCs and induce their differentiation into the erythroid system. Cells on the low-stiffness scaffold have higher potential for erythrocyte differentiation and faster differentiation efficiency and promote erythrocyte differentiation after erythropoietin (EPO) restriction. In vivo transplantation experiments demonstrated that these cells have the ability for continuous proliferation and differentiation into mature erythrocytes. By combining mechanical cues with in vitro erythrocyte production, this method is expected to provide insights for in vitro hematopoietic design and offer a scalable cell manufacturing platform for transfusion medicine. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

20 pages, 5322 KiB  
Article
Regulation of Tetraspanin CD63 in Chronic Myeloid Leukemia (CML): Single-Cell Analysis of Asymmetric Hematopoietic Stem Cell Division Genes
by Christophe Desterke, Annelise Bennaceur-Griscelli and Ali G. Turhan
Bioengineering 2025, 12(8), 830; https://doi.org/10.3390/bioengineering12080830 (registering DOI) - 31 Jul 2025
Viewed by 170
Abstract
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity [...] Read more.
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity via asymmetric cell divisions, sustaining the stem cell pool. Quiescent LSCs are known to be resistant to tyrosine kinase inhibitors (TKIs), potentially through BCR::ABL-independent signaling pathways. We hypothesize that dysregulation of genes governing asymmetric division in LSCs contributes to disease progression, and that their expression pattern may serve as a prognostic marker during the chronic phase of CML. (2) Methods: Genes related to asymmetric cell division in the context of hematopoietic stem cells were extracted from the PubMed database with the keyword “asymmetric hematopoietic stem cell”. The collected relative gene set was tested on two independent bulk transcriptome cohorts and the results were confirmed by single-cell RNA sequencing. (3) Results: The expression of genes involved in asymmetric hematopoietic stem cell division was found to discriminate disease phases during CML progression in the two independent transcriptome cohorts. Concordance between cohorts was observed on asymmetric molecules downregulated during blast crisis (BC) as compared to the chronic phase (CP). This downregulation during the BC phase was confirmed at single-cell level for SELL, CD63, NUMB, HK2, and LAMP2 genes. Single-cell analysis during the CP found that CD63 is associated with a poor prognosis phenotype, with the opposite prediction revealed by HK2 and NUMB expression. The single-cell trajectory reconstitution analysis in CP samples showed CD63 regulation highlighting a trajectory cluster implicating HSPB1, PIM2, ANXA5, LAMTOR1, CFL1, CD52, RAD52, MEIS1, and PDIA3, known to be implicated in hematopoietic malignancies. (4) Conclusion: Regulation of CD63, a tetraspanin involved in the asymmetric division of hematopoietic stem cells, was found to be associated with poor prognosis during CML progression and could be a potential new therapeutic target. Full article
(This article belongs to the Special Issue Micro- and Nano-Technologies for Cell Analysis)
Show Figures

Figure 1

24 pages, 8938 KiB  
Article
Neuro-Cells Mitigate Amyloid Plaque Formation and Behavioral Deficits in the APPswe/PS1dE9 Model of Alzheimer Disease While Also Reducing IL-6 Production in Human Monocytes
by Johannes de Munter, Kirill Chaprov, Ekkehard Lang, Kseniia Sitdikova, Erik Ch. Wolters, Evgeniy Svirin, Aliya Kassenova, Andrey Tsoy, Boris W. Kramer, Sholpan Askarova, Careen A. Schroeter, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(15), 1168; https://doi.org/10.3390/cells14151168 - 29 Jul 2025
Viewed by 125
Abstract
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in [...] Read more.
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in models of central nervous system (CNS) injury and neurodegeneration. Here, we studied the effects of NC in APPswe/PS1dE9 mice, an AD mouse model. Twelve-month-old APPswe/PS1dE9 mice or their wild-type littermates were injected with NC or vehicle into the cisterna magna. Five to six weeks post-injection, cognitive, locomotor, and emotional behaviors were assessed. The brain was stained for amyloid plaque density using Congo red, and for astrogliosis using DAPI and GFAP staining. Gene expression of immune activation markers (Il-1β, Il-6, Cd45, Tnf) and plasticity markers (Tubβ3, Bace1, Trem2, Stat3) was examined in the prefrontal cortex. IL-6 secretion was measured in cultured human monocytes following endotoxin challenge and NC treatment. Untreated APPswe/PS1dE9 mice displayed impaired learning in the conditioned taste aversion test, reduced object exploration, and anxiety-like behavior, which were improved in the NC-treated mutants. NC treatment normalized the expression of several immune and plasticity markers and reduced the density of GFAP-positive cells in the hippocampus and thalamus. NC treatment decreased amyloid plaque density in the hippocampus and thalamus, targeting plaques of <100 μm2. Additionally, NC treatment suppressed IL-6 secretion by human monocytes. Thus, NC treatment alleviated behavioral deficits and reduced amyloid plaque formation in APPswe/PS1dE9 mice, likely via anti-inflammatory mechanisms. The reduction in IL-6 production in human monocytes further supports the potential of NC therapy for the treatment of AD. Full article
Show Figures

Figure 1

16 pages, 4308 KiB  
Article
Single-Cell Transcriptomic Analysis of Different Liver Fibrosis Models: Elucidating Molecular Distinctions and Commonalities
by Guofei Deng, Xiaomei Liang, Yuxi Pan, Yusheng Luo, Zizhen Luo, Shaoxuan He, Shuai Huang, Zhaopeng Chen, Jiancheng Wang and Shuo Fang
Biomedicines 2025, 13(8), 1788; https://doi.org/10.3390/biomedicines13081788 - 22 Jul 2025
Viewed by 308
Abstract
Background: Liver fibrosis, a consequence of various chronic liver diseases, is characterized by excessive accumulation of extracellular matrix (ECM), leading to impaired liver function and potentially progressing to cirrhosis or hepatocellular carcinoma. The molecular mechanisms underlying liver fibrosis are complex and not [...] Read more.
Background: Liver fibrosis, a consequence of various chronic liver diseases, is characterized by excessive accumulation of extracellular matrix (ECM), leading to impaired liver function and potentially progressing to cirrhosis or hepatocellular carcinoma. The molecular mechanisms underlying liver fibrosis are complex and not fully understood. In vivo experiments are essential for studying the molecular mechanisms of the disease. However, the diverse principles behind mouse modeling techniques for liver fibrosis can complicate the elucidation of specific fibrotic mechanisms. Methods: Five distinct liver fibrosis models were utilized: CONTROL, NASH (non-alcoholic steatohepatitis), BDL (bile duct ligation), TAA (thioacetamide), and CCl4 (carbon tetrachloride). Patents for these drugs were reviewed using Patentscope® and Worldwide Espacenet®. ScRNA-seq was performed to analyze and compare the cellular and molecular differences in these models. Results: The analysis revealed that, particularly in the drug-induced fibrosis models, hepatic stellate cells (HSCs), Kupffer cells, and T-cell subsets exhibit distinct regulatory patterns and dynamic remodeling processes across different liver fibrosis models. These findings highlight the heterogeneity of immune responses and extracellular matrix (ECM) remodeling in various models, providing important insights into the complex mechanisms underlying liver fibrosis. Conclusions: The study enhances our understanding of liver fibrosis development and provides valuable insights for selecting the most representative animal models in future research. This comprehensive analysis underscores the importance of model-specific immune responses and ECM remodeling in liver fibrosis. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

31 pages, 3781 KiB  
Article
Enhancing Sustainable Mobility Through Gamified Challenges: Evidence from a School-Based Intervention
by Martina Vacondio, Federica Gini, Simone Bassanelli and Annapaola Marconi
Sustainability 2025, 17(14), 6586; https://doi.org/10.3390/su17146586 - 18 Jul 2025
Viewed by 280
Abstract
Promoting behavioral change in mobility is essential for sustainable urban development. This study evaluates the effectiveness of gamified challenges in fostering sustainable travel behaviors among high school students and teachers within the High School Challenge (HSC) 2024 campaign in Lecco, Italy. Over a [...] Read more.
Promoting behavioral change in mobility is essential for sustainable urban development. This study evaluates the effectiveness of gamified challenges in fostering sustainable travel behaviors among high school students and teachers within the High School Challenge (HSC) 2024 campaign in Lecco, Italy. Over a 13-week period, participants tracked their commuting habits via gamified mobile application, Play&Go, that awarded points for sustainable mobility choices and introduced weekly challenges. Using behavioral (GPS-based tracking) and self-report data, we assessed the influence of challenge types, player characteristics (HEXAD Player Types, Big Five traits), and user experience evaluations on participation, retention, and behavior change. The results show that challenges, particularly those based on walking distances and framed as intra-team goals, significantly enhanced user engagement and contributed to improved mobility behaviors during participants’ free time. Compared to the 2023 edition without challenges, the 2024 campaign achieved better retention. HEXAD Player Types were more predictive of user appreciation than Personality Traits, though these effects were more evident in subjective evaluations than actual behavior. Overall, findings highlight the importance of tailoring gamified interventions to users’ motivational profiles and structuring challenges around SMART principles. This study contributes to the design of behaviorally informed, scalable solutions for sustainable mobility transitions. Full article
Show Figures

Graphical abstract

29 pages, 7767 KiB  
Article
Therapeutic Efficacy of CD34-Derived Allogeneic Dendritic Cells Engineered to Express CD93, CD40L, and CXCL13 in Humanized Mouse Models of Pancreatic Cancer
by Sara Huerta-Yepez, Jose D. Gonzalez, Neha Sheik, Senay Beraki, Elango Kathirvel, Ariel Rodriguez-Frandsen, Po-Chun Chen, Tiran Sargsyan, Saleemulla Mahammad, Mark R. Dybul, Lu Chen, Francois Binette and Anahid Jewett
Vaccines 2025, 13(7), 749; https://doi.org/10.3390/vaccines13070749 - 12 Jul 2025
Viewed by 850
Abstract
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of [...] Read more.
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of DC-based immunotherapy by developing an allogeneic DC platform derived from CD34+ hematopoietic stem cells (HSCs), genetically engineered to overexpress CD93, CD40L, and CXCL13, followed by maturation and tumor antigen pulsing. Methods: Engineered DCs were generated from CD34+ HSCs and matured in vitro after lentiviral transduction of CD93, CD40L, and CXCL13. Tumor lysates were used for antigen pulsing. A scrambled-sequence control DC was used for comparison. In vitro assays were performed to assess T cell activation and tumor cell killing. In vivo efficacy was evaluated using orthotopic pancreatic tumors in BLT and PBMC-humanized NSG mice established with the MiaPaca-2 (MP2) cell line. Results: Engineered DCs significantly enhanced T cell activation and tumor-specific cytotoxicity in vitro compared to control DCs. Antigen pulsing further amplified immune activation. In vivo, treated humanized mice showed increased CD4+, CD8+, and NK cell frequencies in peripheral blood and within tumors, correlating with reduced tumor burden. Conclusions: Our data shows that the antigen-pulsed, engineered DCs have the potency to activate immune cells, which leads to a significant reduction in pancreatic tumors and therefore could potentially provide an effective therapeutic opportunity for the treatment of pancreatic cancer and other solid tumors. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Graphical abstract

23 pages, 5105 KiB  
Article
Behavioral, Hematological, Histological, Physiological Regulation and Gene Expression in Response to Heat Stress in Amur Minnow (Phoxinus lagowskii)
by Weijie Mu, Jing Wang, Yanyan Zhou, Shibo Feng, Ye Huang and Qianyu Li
Fishes 2025, 10(7), 335; https://doi.org/10.3390/fishes10070335 - 8 Jul 2025
Viewed by 396
Abstract
Rising water temperatures due to climate change pose a significant threat to Phoxinus lagowskii, a cold-water fish that is ecologically vital to the high-latitude regions of China. This study assessed heat stress effects on behavioral, hematological, histological, physiological, and molecular responses in [...] Read more.
Rising water temperatures due to climate change pose a significant threat to Phoxinus lagowskii, a cold-water fish that is ecologically vital to the high-latitude regions of China. This study assessed heat stress effects on behavioral, hematological, histological, physiological, and molecular responses in P. lagowskii. The critical maximum temperature (CTmax) was determined using the loss of equilibrium (LOE) method, with the CTmax reaching 29 °C. Elevated temperatures lead to an increase in the OBR. Fish were subjected to acute heat stress at 28 °C (below CTmax) for 48 h, with samples collected during the 48 h period. RBC, WBC, HGB, and HCT significantly increased during heat stress but decreased 12 h after heat stress. The levels of serum cortisol and blood glucose after heat stress were significantly higher than those in the control group. After heat stress, the height of the ILCM in the gills increased significantly, and the liver exhibited vacuolar degeneration and hypopigmentation. The activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in the gills initially increased and then decreased over the duration of heat stress. Most enzyme activities (PK, LDH, PFK, and HK) decreased during heat stress, while LPL and HL levels increased, indicating that lipid metabolism was the primary utilization process under heat stress. There was an increase in SOD activity at 12 h, followed by a decrease at 24 h, and an increase in CAT activity under heat stress. Integrated biomarker response (IBR) and principal component analysis (PCA) were employed to synthesize multi-level responses. The IBR values reached their peak at 3 h and 48 h of heat stress. We observed an upregulation of heat shock proteins (Hsp70, Hsp90, and Hsc70) as well as interleukin-10 (IL-10) in response to heat stress. Our findings offer novel insights into the mechanisms underlying the heat stress response in P. lagowskii, thereby enhancing our understanding of the effects of heat stress on cold-water fish. Full article
(This article belongs to the Special Issue Environmental Physiology of Aquatic Animals)
Show Figures

Graphical abstract

19 pages, 868 KiB  
Article
Quantitative Changes in Selected Soil Health Indices as a Result of Long-Term (23-Year) Cultivation of Winter Wheat in Various Crop Rotations: Case Study for Sandy Soil
by Monika Jakubus and Katarzyna Panasiewicz
Agriculture 2025, 15(13), 1456; https://doi.org/10.3390/agriculture15131456 - 6 Jul 2025
Viewed by 350
Abstract
Perennial monoculture crops are perceived as detrimental to soil health. This study examines this assumption with regard to winter wheat cultivated in crop rotations with varying cereal shares (50%, 75%, and 100%) and under different irrigation regimes. The experiments were established in light, [...] Read more.
Perennial monoculture crops are perceived as detrimental to soil health. This study examines this assumption with regard to winter wheat cultivated in crop rotations with varying cereal shares (50%, 75%, and 100%) and under different irrigation regimes. The experiments were established in light, sandy soil and conducted as static trials over 23 years (1997–2020). This study aims to assess the quantitative changes in parameters indicative of soil fertility and health. The amounts of total organic carbon (TOC), humic substance carbon (HSC), total nitrogen (TN), and available forms of N, P, K, and Mg (AN, AP, AK, AMg) were measured. It was found that, regardless of the research year, higher levels of TOC, TN, AP, AK, and AMg were recorded in the soil following winter wheat cultivated in a rotation with a 100% share of cereals. The amounts of the above-mentioned parameters were higher by 10–30%. The effect of crop rotation on the quantitative changes in HSC and AN was not statistically significant, although a decrease in their amounts was noted (by 10%). The reduction in HSC content was accompanied by a decline in the quality of these compounds, as indicated by Q4/6 values, which were significantly higher in plots with sprinkling irrigation and under winter wheat cultivated in rotations with a 100% cereal share; this was evident in both 1997 and 2020. Sprinkling irrigation resulted in lower amounts of TOC, TN, HSC, AN, and AK, but higher levels of AP and AMg. The results directly indicate that the long-term cultivation of winter wheat in rotations with a 100% cereal share in light soils leads to quantitative changes in soil health indices. These changes are generally positive, favorably affecting the health of light soils, in contrast to the effects observed with irrigation. Full article
Show Figures

Figure 1

27 pages, 1502 KiB  
Article
A Strategic Hydrogen Supplier Assessment Using a Hybrid MCDA Framework with a Game Theory-Driven Criteria Analysis
by Jettarat Janmontree, Aditya Shinde, Hartmut Zadek, Sebastian Trojahn and Kasin Ransikarbum
Energies 2025, 18(13), 3508; https://doi.org/10.3390/en18133508 - 3 Jul 2025
Viewed by 241
Abstract
Effective management of the hydrogen supply chain (HSC), starting with supplier selection, is crucial for advancing the hydrogen industry and economy. Supplier selection, a complex Multi-Criteria Decision Analysis (MCDA) problem in an inherently uncertain environment, requires careful consideration. This study proposes a novel [...] Read more.
Effective management of the hydrogen supply chain (HSC), starting with supplier selection, is crucial for advancing the hydrogen industry and economy. Supplier selection, a complex Multi-Criteria Decision Analysis (MCDA) problem in an inherently uncertain environment, requires careful consideration. This study proposes a novel hybrid MCDA framework that integrates the Bayesian Best–Worst Method (BWM), Fuzzy Analytic Hierarchy Process (AHP), and Entropy Weight Method (EWM) for robust criteria weighting, which is aggregated using a game theory-based model to resolve inconsistencies and capture the complementary strengths of each technique. Next, the globally weighted criteria, emphasizing sustainability performance and techno-risk considerations, are used in the TODIM method grounded in prospect theory to rank hydrogen suppliers. Numerical experiments demonstrate the approach’s ability to enhance decision robustness compared to standalone MCDA methods. The comparative evaluation and sensitivity analysis confirm the stability and reliability of the proposed method, offering valuable insights for strategic supplier selection in the evolving hydrogen landscape in the HSC. Full article
(This article belongs to the Special Issue Renewable Energy and Hydrogen Energy Technologies)
Show Figures

Figure 1

23 pages, 8906 KiB  
Article
9-cis-Retinoic Acid Improves Disease Modelling in iPSC-Derived Liver Organoids
by Mina Kazemzadeh Dastjerd, Vincent Merens, Ayla Smout, Rebeca De Wolf, Christophe Chesné, Catherine Verfaillie, Stefaan Verhulst and Leo A. van Grunsven
Cells 2025, 14(13), 983; https://doi.org/10.3390/cells14130983 - 26 Jun 2025
Viewed by 765
Abstract
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. [...] Read more.
Liver fibrosis majorly impacts global health, necessitating the development of in vitro models to study disease mechanisms and develop drug therapies. Relevant models should at least include hepatocytes and hepatic stellate cells (HSCs) and ideally use three-dimensional cultures to mimic in vivo conditions. Induced pluripotent stem cells (iPSCs) allow for patient-specific liver modelling, but current models based on iPSC-derived hepatocytes (iHepatocytes) and HSCs (iHSCs) still lack key functions. We developed organoids of iHepatocytes and iHSCs and compared them to HepaRG and primary HSC organoids. RNA sequencing analysis comparison of these cultures identified a potential role for the transcription factor RXRA in hepatocyte differentiation and HSC quiescence. Treating cells with the RXRA ligand 9-cis-retinoic acid (9CRA) promoted iHepatocyte metabolism and iHSC quiescence. In organoids, 9CRA enhanced fibrotic response to TGF-β and acetaminophen, highlighting its potential for refining iPSC-based liver fibrosis models to more faithfully replicate human drug-induced liver injury and fibrotic conditions. Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
Show Figures

Graphical abstract

13 pages, 471 KiB  
Article
The Clinical Significance and Potential of Complex Diagnosis for a Large Scar Area Following Myocardial Infarction
by Valentin Oleynikov, Lyudmila Salyamova, Nikolay Alimov, Natalia Donetskaya, Irina Avdeeva and Elena Averyanova
Diagnostics 2025, 15(13), 1611; https://doi.org/10.3390/diagnostics15131611 - 25 Jun 2025
Viewed by 421
Abstract
Background/Objectives: The aim of this study is to identify markers and develop a multifactorial model for characterizing extensive scar tissue after revascularization in patients with myocardial infarction (MI). Methods: A total of 123 patients with MI were examined. The patients underwent [...] Read more.
Background/Objectives: The aim of this study is to identify markers and develop a multifactorial model for characterizing extensive scar tissue after revascularization in patients with myocardial infarction (MI). Methods: A total of 123 patients with MI were examined. The patients underwent contrast-enhanced cardiac magnetic resonance imaging (MRI) with a 1.5 Tesla GE SIGNA Voyager (GE HealthCare, Chicago, IL, USA) on the 7th–10th days from the onset of the disease. At the first stage, we performed a comparative analysis and built a multifactorial model based on the examination results of 92 (75%) patients enrolled from April 2021 to October 2023. These patients formed the group used for model development, or the “modeling group”. The mass of the scar was calculated, including relative to the left ventricular (LV) myocardium mass (Mscar/LVMM, in %). Results: The first subgroup consisted of 36 (39%) patients with a large scar, denoted as “LS” (Mscar/LVMM > 20%). The second subgroup included 56 (61%) patients with a smaller scar, referred to as “SS” (Mscar/LVMM ≤ 20%). Logistic regression was used to identify independent factors affecting scar tissue size. A multifactorial model was created. This model predicts Mscar/LVMM > 20% on MRI. It uses readily available clinical parameters: high-sensitivity troponin I (HscTn I) and N-terminal pro B-type natriuretic peptide (NT-proBNP) levels, and LV relative wall thickness (RWT). We tested the multifactorial model on the “modeling group” (n = 31). The sensitivity was 63.6% and the specificity was 85.7%. Conclusions: These indicates the feasibility of its application in clinical practice. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Graphical abstract

19 pages, 5016 KiB  
Article
CK2α Deletion in the Hematopoietic Compartment Shows a Mild Alteration in Terminally Differentiated Cells and the Expansion of Stem Cells
by Rajesh Rajaiah, Muhammad Daniyal, Marudhu Pandiyan Shanmugam, Hannah Valensi, Koby Duke, Katherine Mercer, Morgann Klink, Matthew Lanza, Yasin Uzun, Suming Huang, Sinisa Dovat and Chandrika Gowda Behura
Cells 2025, 14(13), 963; https://doi.org/10.3390/cells14130963 - 24 Jun 2025
Viewed by 602
Abstract
Casein Kinase II (CK2) is a ubiquitously present serine/threonine kinase essential for mammalian development. CK2 holoenzyme is a tetramer with two highly related catalytic subunits (α or α’) and two regulatory ß subunits. Global deletion of the α or β subunit in mice [...] Read more.
Casein Kinase II (CK2) is a ubiquitously present serine/threonine kinase essential for mammalian development. CK2 holoenzyme is a tetramer with two highly related catalytic subunits (α or α’) and two regulatory ß subunits. Global deletion of the α or β subunit in mice is embryonically lethal. We and others have shown that CK2 is overexpressed in leukemia cells and plays an important role in cell cycle, survival, and resistance to the apoptosis of leukemia stem cells (LSCs). To study the role of CK2α in adult mouse hematopoiesis, we generated hematopoietic cell-specific CK2α-conditional knockout mice (Vav-iCreCK2 f/f). Here we report the generation and validation of a novel mouse model that lacks CK2α in the hematopoietic compartment. Vav-iCreCK2α f/f mice were viable without dysmorphic features and showed a mild phenotype under baseline conditions. In Vav-iCreCK2α f/f mice, the blood count showed a significant decrease in total red blood cells and platelets. The spleen was enlarged in Vav-iCreCK2α f/f mice with evidence of extramedullary hematopoiesis. HSC and early progenitor cell compartments showed expansion in CK2α-null bone marrow, suggesting that the absence of CK2α impaired their proliferation and differentiation. Given the established roles of CK2 in cell cycle regulation and the findings reported here, further functional studies are warranted to investigate the role of CK2α in HSC self-renewal and differentiation. This mouse model serves as a valuable tool for understanding the role of CK2α in normal and malignant hematopoiesis. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
Humanized scFv Molecule Specific to an Extracellular Epitope of P2X4R as Therapy for Chronic Pain Management
by Adinarayana Kunamneni and Karin N. Westlund
Cells 2025, 14(13), 953; https://doi.org/10.3390/cells14130953 - 22 Jun 2025
Viewed by 516
Abstract
Chronic pain affects a significant portion of the population, with fewer than 30% achieving adequate relief from existing treatments. This study describes the humanization methodology and characterization of an effective non-opioid single-chain fragment variable (scFv) biologic that reverses pain-related behaviors, in this case [...] Read more.
Chronic pain affects a significant portion of the population, with fewer than 30% achieving adequate relief from existing treatments. This study describes the humanization methodology and characterization of an effective non-opioid single-chain fragment variable (scFv) biologic that reverses pain-related behaviors, in this case by targeting P2X4. After nerve injury, ATP release activates/upregulates P2X4 receptors (P2X4R) sequestered in late endosomes, triggering a cascade of chronic pain-related events. Nine humanized scFv (hscFv) variants targeting a specific extracellular 13-amino-acid peptide fragment of human P2X4R were generated via CDR grafting. ELISA analysis revealed nanomolar binding affinities, with most humanized molecules exhibiting comparable or superior affinity compared to the original murine antibody. Octet measurements confirmed that the lead, HC3-LC3, exhibited nanomolar binding kinetics (KD = 2.5 × 10−9 M). In vivo functional validation with P2X4R hscFv reversed nerve injury-induced chronic pain-related behaviors with a single dose (0.4 mg/kg, intraperitoneal) within two weeks. The return to naïve baseline remained durably reduced > 100 days. In independent confirmation, the spared nerve injury (SNI) model was similarly reduced. This constitutes an original method whereby durable reversals of chronic nerve injury pain, anxiety and depression measures are accomplished. Full article
(This article belongs to the Special Issue Mechanisms and Therapies in Chronic Pain)
Show Figures

Figure 1

13 pages, 1240 KiB  
Article
Insulin Modulates NK Cell Activity in Liver Fibrosis MASH Patients via the STING Pathway
by Johnny Amer, Ahmad Salhab, Amiram Ariel and Rifaat Safadi
Cells 2025, 14(13), 941; https://doi.org/10.3390/cells14130941 - 20 Jun 2025
Viewed by 597
Abstract
Background: The STING (Stimulator of Interferon Genes) pathway plays a vital role in the body’s innate immune defense system, primarily involved in DNA sensing and type I interferon production. While STING is well-established in various immune cells, its role in natural killer (NK) [...] Read more.
Background: The STING (Stimulator of Interferon Genes) pathway plays a vital role in the body’s innate immune defense system, primarily involved in DNA sensing and type I interferon production. While STING is well-established in various immune cells, its role in natural killer (NK) cells, particularly within the context of liver fibrosis, remains inadequately explored. Aim: The current study investigates the relationship between STING expression, NK cell activity, and insulin receptor (IR) signaling in patients with metabolic dysfunction-associated steatohepatitis (MASH). Methods: Peripheral NK cells were isolated from healthy controls and MASH patients with varying stages of liver fibrosis (early: F1/F2; advanced: F3/F4). The expressions of STING, IR, NK cell activation markers (CD107a, NKp46), and NK cell inhibitory markers (LAIR-1, Siglec-7) were assessed using flow cytometry. NK cell cytotoxicity against primary hepatic stellate cells (pHSCs) was evaluated through apoptosis assays. STING agonists (2′3′-cGAMP and DMXAA) were used to stimulate NK cells, and their effects on STING expression, NK cell activation, and cytotoxicity were measured. Additionally, the impact of insulin signaling on STING expression and NK cell function was examined. Results: Our results demonstrate that STING expression in NK cells correlates with disease severity in liver fibrosis. NK cells from MASH patients with advanced fibrosis (F3/F4) showed inhibited STING protein levels that were statistically comparable to healthy NK cells and accompanied by impaired cytotoxicity and decreased IFN-γ production. In contrast, NK cells from early fibrosis (F1/F2) exhibited higher STING expression and better functional activity. STING agonist treatment (2′3′-cGAMP) restored STING expression and enhanced NK cell activity across all fibrosis stages. Furthermore, insulin treatment and combined insulin and 2′3′-cGAMP treatment synergistically upregulated both IR and STING expressions, leading to improved NK cell function and increased cytotoxicity, particularly in advanced fibrosis. Conclusion: Our results highlight the potential of targeting STING and insulin signaling pathways as a therapeutic approach in restoring NK cell function and enhance immune surveillance in liver fibrosis. Full article
(This article belongs to the Special Issue Inflammation in Target Organs)
Show Figures

Graphical abstract

17 pages, 1642 KiB  
Review
Defenestration of Liver Sinusoidal Endothelial Cells: The Trigger of Liver Fibrosis
by Juntao Zhou, Jianqiao Wang, Lijuan Zhang, Chengliang Zhang and Cheng Tian
Pharmaceuticals 2025, 18(6), 893; https://doi.org/10.3390/ph18060893 - 14 Jun 2025
Viewed by 782
Abstract
Liver fibrosis is a common pathological manifestation of various chronic liver diseases, distinguished by the excessive accumulation of the extracellular matrix. If unresolved, liver fibrosis can progress to cirrhosis or hepatocellular carcinoma. Fenestrae are important structures of liver sinusoidal endothelial cells (LSECs) regulating [...] Read more.
Liver fibrosis is a common pathological manifestation of various chronic liver diseases, distinguished by the excessive accumulation of the extracellular matrix. If unresolved, liver fibrosis can progress to cirrhosis or hepatocellular carcinoma. Fenestrae are important structures of liver sinusoidal endothelial cells (LSECs) regulating hepatic substance exchange, immune response and hemodynamics. The loss of this structure is usually accompanied by dysfunction of LSECs, which disrupts normal liver physiology by impairing hepatic substance exchange, compromising liver microcirculation, and activating hepatic stellate cells (HSCs). This cascade of events ultimately contributes to the onset and development of liver fibrosis. Oxidative stress, impairment of the NO signaling pathway, actin–myosin complex remodeling and pathological angiogenesis are considered to be the main mechanisms underlying LSEC defenestration. Recently, research on the treatment of LSEC defenestration has made notable progress, and findings suggest a potential value in the application of anti-fibrotic therapies. This article expounds the important correlation between defenestration of LSECs and liver fibrosis, while also reviews therapeutic agents and approaches targeting this pathological process. Full article
(This article belongs to the Special Issue Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances)
Show Figures

Graphical abstract

Back to TopTop