Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = HIPK2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1688 KB  
Review
Circular RNAs in Cardiovascular Disease: Mechanisms, Biomarkers, and Therapeutic Frontiers
by Rudaynah Alali, Mohammed Almansori, Chittibabu Vatte, Mohammed S. Akhtar, Seba S. Abduljabbar, Hassan Al-Matroud, Mohammed J. Alnuwaysir, Hasan A. Radhi, Brendan Keating, Alawi Habara and Amein K. Al-Ali
Biomolecules 2025, 15(10), 1455; https://doi.org/10.3390/biom15101455 - 15 Oct 2025
Viewed by 1556
Abstract
Circular RNAs (circRNAs) have emerged as crucial cardiovascular regulators through gene expression modulation, microRNA sponging, and protein interactions. Their covalently closed structure confers exceptional stability, making them detectable in blood and tissues as potential biomarkers. This review explores current research examining circRNAs across [...] Read more.
Circular RNAs (circRNAs) have emerged as crucial cardiovascular regulators through gene expression modulation, microRNA sponging, and protein interactions. Their covalently closed structure confers exceptional stability, making them detectable in blood and tissues as potential biomarkers. This review explores current research examining circRNAs across cardiovascular diseases, including atherosclerosis, myocardial infarction, and heart failure. We highlight the control that circRNA exerts over endothelial function, smooth muscle switching, inflammatory recruitment, and cardiomyocyte survival. Key findings distinguish frequently disease-promoting circRNAs (circANRIL, circHIPK3) from context-dependent regulators (circFOXO3). Compartment-specific controllers include endothelial stabilizers (circGNAQ), smooth muscle modulators (circLRP6, circROBO2), and macrophage regulators (circZNF609), functioning as tunable rheostats across vascular compartments. Overall, the literature suggests that circRNAs represent promising tools in two translational avenues: (i) blood-based multimarker panels for precision diagnosis and (ii) targeted modulation of pathogenic circuits. Clinical translation will require precise cell-type targeting, efficient delivery to cardiovascular tissues, and rigorous mitigation of off-target effects. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cardiology 2026)
Show Figures

Figure 1

17 pages, 1639 KB  
Article
Tricyclic Isatin Derivatives as Anti-Inflammatory Compounds with High Kinase Binding Affinity
by Alexander V. Uvarov, Igor A. Schepetkin, Mark T. Quinn and Andrei I. Khlebnikov
Molecules 2025, 30(14), 2914; https://doi.org/10.3390/molecules30142914 - 10 Jul 2025
Viewed by 1233
Abstract
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and [...] Read more.
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and evaluated for inhibition of cellular inflammatory responses and binding affinity to several kinases. Compounds 5a and 5d (a.k.a. NS-102), which have an unsubstituted oxime group, inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in human THP-1Blue monocytic cells and interleukin-6 (IL-6) production in human MonoMac-6 monocytic cells, with IC50 values in the micromolar range. These compounds also inhibited LPS-induced production of several other proinflammatory cytokines, including IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF) in MonoMac-6 cells. Compounds 5a and 5d exhibited nanomolar/submicromolar binding affinity toward several kinase targets. The most potent inhibitor, 5d (3-(hydroxyimino)-5-nitro-1,3,6,7,8,9-hexahydro-2H-benzo[g]indol-2-one), demonstrated high binding affinity for 12 kinases, including DYRK1A, DYRK1B, PIM1, Haspin, HIPK1-3, IRAK1, NEK10, and DAPK1-3. Molecular modeling suggested modes of binding interaction of selected compounds in the DYRK1A and PIM1 catalytic sites that agreed with the experimental binding data. Our results demonstrate that tricyclic isatin oximes could be potential candidates for developing anti-inflammatory drugs with neuroprotective effects for treating neurodegenerative diseases. Full article
Show Figures

Figure 1

18 pages, 4356 KB  
Article
The Intrabody Against Murine Double Minute 2 via a p53-Dependent Pathway Induces Apoptosis of Cancer Cell
by Changli Wang, Wanting Liu, Haotian Guo, Tian Lan, Tianyi Wang and Bing Wang
Int. J. Mol. Sci. 2025, 26(11), 5286; https://doi.org/10.3390/ijms26115286 - 30 May 2025
Viewed by 1193
Abstract
Murine double minute 2 (MDM2) is involved in various cancers and is an attractive target. The RING domain of MDM2 has been discussed as an alternative target to stabilize p53. Designing drugs to target the RING domain of MDM2 is an alternative approach [...] Read more.
Murine double minute 2 (MDM2) is involved in various cancers and is an attractive target. The RING domain of MDM2 has been discussed as an alternative target to stabilize p53. Designing drugs to target the RING domain of MDM2 is an alternative approach to preventing MDM2-mediated deactivation of p53. In this study, we obtained a human VH single-domain antibody and revealed its regulatory effects and mechanisms. The RING domain of MDM2 was synthesized using a chemical synthesis method, and antibodies against the MDM2 RING domain were screened from a human VH single-domain antibody library and expressed intracellularly. A nuclear localization sequence was designed to ensure intrabody efficiency. The binding activity of the individually cloned antibodies was detected using ELISA. MTT and flow cytometry assays were used to detect the reactions related to intrabody in vitro. The combination and its influence on MDM2 were detected using immunoprecipitation assays, confocal microscopy, and Western blotting. The effects on apoptosis-related mitochondrial pathways downstream of p53 were examined using Western blotting. The influence on cell cycle distribution and cyclin-related proteins was detected using flow cytometry and Western blotting. A549 cell xenografts were constructed to assess the effect of intrabodies on growth in vivo. The molecular mechanisms of MDM2 and p53 were studied using Western blotting. Eight individual cloned antibodies were positive compared to the signals on the BSA-coated plates, especially intrabodies VH-HT3. In A549 and MCF-7 cell lines, VH-HT3 exhibited significant inhibitory effects on cell proliferation and apoptosis. VH-HT3 co-localized with MDM2 in the nucleus and cytoplasm. The specific combination of VH-HT3 triggered no significant effect on MDM2 activity for p53 degradation but upregulated the levels of factors downstream of p53, especially those in the mitochondrial apoptosis pathway. Moreover, VH-HT3 induced cell cycle arrest, and the expression of cyclin-related proteins was consistent with this observation. VH-HT3 also retarded the growth of A549 xenografts in vivo. Further tests suggested that VH-HT3 inhibited MDM2 function by increasing HIPK2 levels and activating p53 at the Ser46 site. VH-HT3, prepared from a human VH single-domain antibody library, inhibited p53 activity and produced a tumor-suppressive effect. The intrabody VH-HT3 is a candidate for the development of novel MDM2 inhibitors. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 3292 KB  
Article
Exploring the Impact of Microgravity on Gene Expression: Dysregulated Pathways and Candidate Repurposed Drugs
by Karina Galčenko, Marilena M. Bourdakou and George M. Spyrou
Int. J. Mol. Sci. 2025, 26(3), 1287; https://doi.org/10.3390/ijms26031287 - 2 Feb 2025
Cited by 5 | Viewed by 4168
Abstract
Space exploration has progressed from contemporary discoveries to current endeavors, such as space tourism and Mars missions. As human activity in space accelerates, understanding the physiological effects of microgravity on the human body is becoming increasingly critical. This study analyzes transcriptomic data from [...] Read more.
Space exploration has progressed from contemporary discoveries to current endeavors, such as space tourism and Mars missions. As human activity in space accelerates, understanding the physiological effects of microgravity on the human body is becoming increasingly critical. This study analyzes transcriptomic data from human cell lines exposed to microgravity, investigates its effects on gene expression, and identifies potential therapeutic interventions for health challenges posed by spaceflight. Our analysis identified five under-expressed genes (DNPH1, EXOSC5, L3MBTL2, LGALS3BP, SPRYD4) and six over-expressed genes (CSGALNACT2, CSNK2A2, HIPK1, MBNL2, PHF21A, RAP1A), all of which exhibited distinct expression patterns in response to microgravity. Enrichment analysis highlighted significant biological functions influenced by these conditions, while in silico drug repurposing identified potential modulators that could counteract these changes. This study introduces a novel approach to addressing health challenges during space missions by repurposing existing drugs and identifies specific genes and pathways as potential biomarkers for microgravity effects on human health. Our findings represent the first systematic effort to repurpose drugs for spaceflight, establishing a foundation for the development of targeted therapies for astronauts. Future research should aim to validate these findings in authentic space environments and explore broader biological impacts. Full article
Show Figures

Figure 1

23 pages, 9129 KB  
Article
Virtual Screening, Molecular Dynamics, and Mechanism Study of Homeodomain-Interacting Protein Kinase 2 Inhibitor in Renal Fibroblasts
by Xinlan Hu, Yan Wu, Hanyi Ouyang, Jiayan Wu, Mengmeng Yao, Zhuo Chen and Qianbin Li
Pharmaceuticals 2024, 17(11), 1420; https://doi.org/10.3390/ph17111420 - 23 Oct 2024
Cited by 5 | Viewed by 2391
Abstract
Background/Objectives: Homeodomain-interacting protein kinase 2 (HIPK2) is critically involved in the progression of renal fibrosis. This study aims to identify and characterize a novel HIPK2 inhibitor, CHR-6494, and investigate its therapeutic potential. Methods: Using structure-based virtual screening and molecular dynamics simulations, we identified [...] Read more.
Background/Objectives: Homeodomain-interacting protein kinase 2 (HIPK2) is critically involved in the progression of renal fibrosis. This study aims to identify and characterize a novel HIPK2 inhibitor, CHR-6494, and investigate its therapeutic potential. Methods: Using structure-based virtual screening and molecular dynamics simulations, we identified CHR-6494 as a potent HIPK2 inhibitor with an IC50 of 0.97 μM. The effects of CHR-6494 on the phosphorylation of p53 in Normal Rattus norvegicus kidney cells (NRK-49F) induced by transforming growth factor-β (TGF-β) were assessed, along with its impact on TGF-β signaling and downstream profibrotic markers. Results: CHR-6494 significantly reduces p53 phosphorylation induced by TGF-β and enhances the interaction between HIPK2 and seven in absentia 2 (SIAH2), facilitating HIPK2 degradation via proteasomal pathways. Both CHR-6494 and Abemaciclib inhibit NRK-49F cell proliferation and migration induced by TGF-β, suppressing TGF-β/Smad3 signaling and decreasing profibrotic markers such as Fibronectin I (FN-I) Collagen I and α-smooth muscle actin (α-SMA). Additionally, these compounds inhibit nuclear factor kappa-B (NF-κB) signaling and reduce inflammatory cytokine expression. Conclusions: The study highlights the dual functionality of HIPK2 kinase inhibitors like CHR-6494 and Abemaciclib as promising therapeutic candidates for renal fibrosis and inflammation. The findings provide new insights into HIPK2 inhibition mechanisms and suggest pathways for the design of novel HIPK2 inhibitors in the future. Full article
(This article belongs to the Special Issue Small-Molecule Inhibitors for Novel Therapeutics)
Show Figures

Graphical abstract

15 pages, 958 KB  
Review
The Role of circHIPK3 in Tumorigenesis and Its Potential as a Biomarker in Lung Cancer
by Eryk Siedlecki, Piotr Remiszewski and Rafał Stec
Cells 2024, 13(17), 1483; https://doi.org/10.3390/cells13171483 - 4 Sep 2024
Cited by 10 | Viewed by 2702
Abstract
Lung cancer treatment and detection can be improved by the identification of new biomarkers. Novel approaches in investigating circular RNAs (circRNAs) as biomarkers have yielded promising results. A circRNA molecule circHIPK3 was found to be widely expressed in non-small-cell lung cancer (NSCLC) cells, [...] Read more.
Lung cancer treatment and detection can be improved by the identification of new biomarkers. Novel approaches in investigating circular RNAs (circRNAs) as biomarkers have yielded promising results. A circRNA molecule circHIPK3 was found to be widely expressed in non-small-cell lung cancer (NSCLC) cells, where it plays a crucial role in lung cancer tumorigenesis. CircHIPK3 promotes lung cancer progression by sponging oncosuppressive miRNAs such as miR-124, miR-381-3p, miR-149, and miR-107, which results in increased cell proliferation, migration, and resistance to therapies. Inhibiting circHIPK3 has been demonstrated to suppress tumour growth and induce apoptosis, which suggests its potential use in the development of new lung cancer treatment strategies targeting circHIPK3-related pathways. As a biomarker, circHIPK3 shows promise for early detection and monitoring of lung cancer. CircHIPK3 increased expression levels in lung cancer cells, and its potential link to metastasis risk highlights its clinical relevance. Given the promising preliminary findings, more clinical trials are needed to validate circHIPK3 efficacy as a biomarker. Moreover, future research should determine if the mechanisms discovered in NSCLC apply to small cell lung cancer (SCLC) to investigate circHIPK3-targeted therapies for SCLC. Full article
Show Figures

Figure 1

18 pages, 855 KB  
Review
HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies
by Alessandra Verdina, Alessia Garufi, Valerio D’Orazi and Gabriella D’Orazi
Int. J. Mol. Sci. 2024, 25(14), 7678; https://doi.org/10.3390/ijms25147678 - 12 Jul 2024
Cited by 1 | Viewed by 2945
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and [...] Read more.
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a “bona fide” oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor–host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies. Full article
Show Figures

Figure 1

26 pages, 2337 KB  
Article
Transcriptome Profiling of Oncorhynchus mykiss Infected with Low or Highly Pathogenic Viral Hemorrhagic Septicemia Virus (VHSV)
by Lorena Biasini, Gianpiero Zamperin, Francesco Pascoli, Miriam Abbadi, Alessandra Buratin, Andrea Marsella, Valentina Panzarin and Anna Toffan
Microorganisms 2024, 12(1), 57; https://doi.org/10.3390/microorganisms12010057 - 28 Dec 2023
Cited by 1 | Viewed by 2269
Abstract
The rainbow trout (Oncorhynchus mykiss) is the most important produced species in freshwater within the European Union, usually reared in intensive farming systems. This species is highly susceptible to viral hemorrhagic septicemia (VHS), a severe systemic disease widespread globally throughout the [...] Read more.
The rainbow trout (Oncorhynchus mykiss) is the most important produced species in freshwater within the European Union, usually reared in intensive farming systems. This species is highly susceptible to viral hemorrhagic septicemia (VHS), a severe systemic disease widespread globally throughout the world. Viral hemorrhagic septicemia virus (VHSV) is the etiological agent and, recently, three classes of VHSV virulence (high, moderate, and low) have been proposed based on the mortality rates, which are strictly dependent on the viral strain. The molecular mechanisms that regulate VHSV virulence and the stimulated gene responses in the host during infection are not completely unveiled. While some preliminary transcriptomic studies have been reported in other fish species, to date there are no publications on rainbow trout. Herein, we report the first time-course RNA sequencing analysis on rainbow trout juveniles experimentally infected with high and low VHSV pathogenic Italian strains. Transcriptome analysis was performed on head kidney samples collected at different time points (1, 2, and 5 days post infection). A large set of notable genes were found to be differentially expressed (DEGs) in all the challenged groups (e.s. trim63a, acod1, cox-2, skia, hipk1, cx35.4, ins, mtnr1a, tlr3, tlr7, mda5, lgp2). Moreover, the number of DEGs progressively increased especially during time with a greater amount found in the group infected with the high VHSV virulent strain. The gene ontology (GO) enrichment analysis highlighted that functions related to inflammation were modulated in rainbow trout during the first days of VHSV infection, regardless of the pathogenicity of the strain. While some functions showed slight differences in enrichments between the two infected groups, others appeared more exclusively modulated in the group challenged with the highly pathogenic strain. Full article
(This article belongs to the Special Issue Microbial Ecology and Sustainable Aquaculture)
Show Figures

Figure 1

21 pages, 5938 KB  
Article
On the Prevalence and Roles of Proteins Undergoing Liquid–Liquid Phase Separation in the Biogenesis of PML-Bodies
by Sergey A. Silonov, Yakov I. Mokin, Eugene M. Nedelyaev, Eugene Y. Smirnov, Irina M. Kuznetsova, Konstantin K. Turoverov, Vladimir N. Uversky and Alexander V. Fonin
Biomolecules 2023, 13(12), 1805; https://doi.org/10.3390/biom13121805 - 18 Dec 2023
Cited by 3 | Viewed by 3753
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. [...] Read more.
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid–liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected. Full article
Show Figures

Figure 1

12 pages, 2465 KB  
Article
New Copper-Based Metallodrugs with Anti-Invasive Capacity
by Alessia Garufi, Francesca Scarpelli, Loredana Ricciardi, Iolinda Aiello, Gabriella D’Orazi and Alessandra Crispini
Biomolecules 2023, 13(10), 1489; https://doi.org/10.3390/biom13101489 - 7 Oct 2023
Cited by 4 | Viewed by 2681
Abstract
While metal-based complexes are deeply investigated as anticancer chemotherapeutic drugs, fewer studies are devoted to their anti-invasive activity. Herein, two copper (Cu)(II) tropolone derivatives, [Cu(Trop)Cl] and [Cu(Trop)Sac], both containing the N,N-chelated 4,4′-bishydroxymethyl-2,2′-bipyridne ligand, were evaluated for their anticancer and anti-invasive properties. RKO (RKO-ctr) [...] Read more.
While metal-based complexes are deeply investigated as anticancer chemotherapeutic drugs, fewer studies are devoted to their anti-invasive activity. Herein, two copper (Cu)(II) tropolone derivatives, [Cu(Trop)Cl] and [Cu(Trop)Sac], both containing the N,N-chelated 4,4′-bishydroxymethyl-2,2′-bipyridne ligand, were evaluated for their anticancer and anti-invasive properties. RKO (RKO-ctr) colon cancer cells and their derivatives undergoing stable small interference (si) RNA for HIPK2 protein (RKO-siHIPK2) with acquisition of pro-invasive capacity were used. The results demonstrate that while [Cu(Trop)Sac] did not show cytotoxic activity, [Cu(Trop)Cl] induced cell death in both RKO-ctr and RKO-siHIPK2 cells, indicating that structural changes on substituting the coordinated chloride ligand with saccharine (Sac) could be a key factor in suppressing mechanisms of cellular death. On the other hand, both [Cu(Trop)Sac] and [Cu(Trop)Cl] complexes counteracted RKO-siHIPK2 cell migration in the wound healing assay. The synergic effect exerted by the concomitant presence of both tropolone and saccharin ligands in [Cu(Trop)Sac] was also supported by its significant inhibition of RKO-siHIPK2 cell migration compared to the free Sac ligand. These data suggest that the two Cu(II) tropolone derivatives are also interesting candidates to be further tested in in vivo models as an anti-invasive tumor strategy. Full article
Show Figures

Figure 1

16 pages, 1235 KB  
Review
Progress in circRNA-Targeted Therapy in Experimental Parkinson’s Disease
by Simoneide Souza Titze-de-Almeida and Ricardo Titze-de-Almeida
Pharmaceutics 2023, 15(8), 2035; https://doi.org/10.3390/pharmaceutics15082035 - 28 Jul 2023
Cited by 18 | Viewed by 2977
Abstract
Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer’s and Parkinson’s disease (PD)—the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and [...] Read more.
Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer’s and Parkinson’s disease (PD)—the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and circSLC8A1 are circRNAs that have been related to the neurodegenerative process of PD. Gain-of-function and loss-of-function studies on circRNAs have shed light on their roles in the pathobiology of various diseases. Gain-of-function approaches typically employ viral or non-viral vectors that hyperexpress RNA sequences capable of circularizing to form the specific circRNA under investigation. In contrast, loss-of-function studies utilize CRISPR/Cas systems, antisense oligonucleotides (ASOs), or RNAi techniques to knock down the target circRNA. The role of aberrantly expressed circRNAs in brain pathology has raised a critical question: could circRNAs serve as viable targets for neuroprotective treatments? Translating any oligonucleotide-based therapy, including those targeting circRNAs, involves developing adequate brain delivery systems, minimizing off-target effects, and addressing the high costs of treatment. Nonetheless, RNAi-based FDA-approved drugs have entered the market, and circRNAs have attracted significant attention and investment from major pharmaceutical companies. Spanning from bench to bedside, circRNAs present a vast opportunity in biotechnology for oligonucleotide-based therapies designed to slow or even halt the progression of neurodegenerative diseases. Full article
(This article belongs to the Special Issue Recent Trends in Oligonucleotide Based Therapies)
Show Figures

Figure 1

14 pages, 3059 KB  
Article
Evaluation of the Genetic Diversity, Population Structure and Selection Signatures of Three Native Chinese Pig Populations
by Ziqi Zhong, Ziyi Wang, Xinfeng Xie, Shuaishuai Tian, Feifan Wang, Qishan Wang, Shiheng Ni, Yuchun Pan and Qian Xiao
Animals 2023, 13(12), 2010; https://doi.org/10.3390/ani13122010 - 16 Jun 2023
Cited by 18 | Viewed by 3481
Abstract
Indigenous pig populations in Hainan Province live in tropical climate conditions and a relatively closed geographical environment, which has contributed to the formation of some excellent characteristics, such as heat tolerance, strong disease resistance and excellent meat quality. Over the past few decades, [...] Read more.
Indigenous pig populations in Hainan Province live in tropical climate conditions and a relatively closed geographical environment, which has contributed to the formation of some excellent characteristics, such as heat tolerance, strong disease resistance and excellent meat quality. Over the past few decades, the number of these pig populations has decreased sharply, largely due to a decrease in growth rate and poor lean meat percentage. For effective conservation of these genetic resources (such as heat tolerance, meat quality and disease resistance), the whole-genome sequencing data of 78 individuals from 3 native Chinese pig populations, including Wuzhishan (WZS), Tunchang (TC) and Dingan (DA), were obtained using a 150 bp paired-end platform, and 25 individuals from two foreign breeds, including Landrace (LR) and Large White (LW), were downloaded from a public database. A total of 28,384,282 SNPs were identified, of which 27,134,233 SNPs were identified in native Chinese pig populations. Both genetic diversity statistics and linkage disequilibrium (LD) analysis indicated that indigenous pig populations displayed high genetic diversity. The result of population structure implied the uniqueness of each native Chinese pig population. The selection signatures were detected between indigenous pig populations and foreign breeds by using the population differentiation index (FST) method. A total of 359 candidate genes were identified, and some genes may affect characteristics such as immunity (IL-2, IL-21 and ZFYVE16), adaptability (APBA1), reproduction (FGF2, RNF17, ADAD1 and HIPK4), meat quality (ABCA1, ADIG, TLE4 and IRX5), and heat tolerance (VPS13A, HSPA4). Overall, the findings of this study will provide some valuable insights for the future breeding, conservation and utilization of these three Chinese indigenous pig populations. Full article
(This article belongs to the Collection Genetic Diversity in Livestock and Companion Animals)
Show Figures

Figure 1

16 pages, 4048 KB  
Article
Inverse Impact of Cancer Drugs on Circular and Linear RNAs in Breast Cancer Cell Lines
by Anna Terrazzan, Francesca Crudele, Fabio Corrà, Pietro Ancona, Jeffrey Palatini, Nicoletta Bianchi and Stefano Volinia
Non-Coding RNA 2023, 9(3), 32; https://doi.org/10.3390/ncrna9030032 - 19 May 2023
Cited by 1 | Viewed by 3596
Abstract
Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and [...] Read more.
Altered expression of circular RNAs (circRNAs) has previously been investigated in breast cancer. However, little is known about the effects of drugs on their regulation and relationship with the cognate linear transcript (linRNA). We analyzed the dysregulation of both 12 cancer-related circRNAs and their linRNAs in two breast cancer cell lines undergoing various treatments. We selected 14 well-known anticancer agents affecting different cellular pathways and examined their impact. Upon drug exposure circRNA/linRNA expression ratios increased, as a result of the downregulation of linRNA and upregulation of circRNA within the same gene. In this study, we highlighted the relevance of identifying the drug-regulated circ/linRNAs according to their oncogenic or anticancer role. Interestingly, VRK1 and MAN1A2 were increased by several drugs in both cell lines. However, they display opposite effects, circ/linVRK1 favors apoptosis whereas circ/linMAN1A2 stimulates cell migration, and only XL765 did not alter the ratio of other dangerous circ/linRNAs in MCF-7. In MDA-MB-231 cells, AMG511 and GSK1070916 decreased circGFRA1, as a good response to drugs. Furthermore, some circRNAs might be associated with specific mutated pathways, such as the PI3K/AKT in MCF-7 cells with circ/linHIPK3 correlating to cancer progression and drug-resistance, or NHEJ DNA repair pathway in TP-53 mutated MDA-MB-231 cells. Full article
(This article belongs to the Special Issue ncRNAs to Target Molecular Pathways)
Show Figures

Graphical abstract

15 pages, 1049 KB  
Review
The Sweet Side of HIPK2
by Alessia Garufi, Valerio D’Orazi, Giuseppa Pistritto, Mara Cirone and Gabriella D’Orazi
Cancers 2023, 15(10), 2678; https://doi.org/10.3390/cancers15102678 - 9 May 2023
Cited by 4 | Viewed by 3453
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation [...] Read more.
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions. Full article
(This article belongs to the Special Issue Apoptosis in Cancer 2.0)
Show Figures

Figure 1

25 pages, 6674 KB  
Article
Concurrent Activation of Both Survival-Promoting and Death-Inducing Signaling by Chloroquine in Glioblastoma Stem Cells: Implications for Potential Risks and Benefits of Using Chloroquine as Radiosensitizer
by Andreas Müller, Patrick Weyerhäuser, Nancy Berte, Fitriasari Jonin, Bogdan Lyubarskyy, Bettina Sprang, Sven Rainer Kantelhardt, Gabriela Salinas, Lennart Opitz, Walter Schulz-Schaeffer, Alf Giese and Ella L. Kim
Cells 2023, 12(9), 1290; https://doi.org/10.3390/cells12091290 - 30 Apr 2023
Cited by 6 | Viewed by 3286
Abstract
Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This [...] Read more.
Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This study undertakes a combinatorial approach encompassing in vitro, in vivo and in silico investigations to address the relationship between chloroquine-mediated radiosensitization and p53 status in glioblastoma stem cells. Our findings reveal that chloroquine elicits antagonistic impacts on signaling pathways involved in the regulation of cell fate via both transcription-dependent and transcription-independent mechanisms. Evidence is provided that transcriptional impacts of chloroquine are primarily determined by p53 with chloroquine-mediated activation of pro-survival mevalonate and p21-DREAM pathways being the dominant response in the background of wild type p53. Non-transcriptional effects of chloroquine are conserved and converge on key cell fate regulators ATM, HIPK2 and AKT in glioblastoma stem cells irrespective of their p53 status. Our findings indicate that pro-survival responses elicited by chloroquine predominate in the context of wild type p53 and are diminished in cells with transcriptionally impaired p53. We conclude that p53 is an important determinant of the balance between pro-survival and pro-death impacts of chloroquine and propose that p53 functional status should be taken into consideration when evaluating the efficacy of glioblastoma radiosensitization by chloroquine. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Figure 1

Back to TopTop