Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = HDAC6 and Hsp90

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 907 KB  
Review
Oral–Gut Microbiota Crosstalk and Epigenetic Targets in Metabolic and Neuropsychiatric Diseases
by Sahar Mostafavi, Shabnam Nohesara, Ahmad Pirani, Hamid Mostafavi Abdolmaleky and Sam Thiagalingam
Nutrients 2025, 17(21), 3367; https://doi.org/10.3390/nu17213367 - 27 Oct 2025
Viewed by 1382
Abstract
The oral cavity contains a diverse group of bacteria in the saliva, as well as structured aggregates of bacterial cells on the mucosal surfaces. Oral microbiota (OM) dysbiosis not only induces local inflammation, it can also trigger systemic inflammation leading to metabolic diseases [...] Read more.
The oral cavity contains a diverse group of bacteria in the saliva, as well as structured aggregates of bacterial cells on the mucosal surfaces. Oral microbiota (OM) dysbiosis not only induces local inflammation, it can also trigger systemic inflammation leading to metabolic diseases and neuropsychiatric diseases (NPDs). While primary evidence indicates that oral microbiota dysbiosis induces gut microbiota aberrations, which exacerbate inflammation associated with metabolic diseases (obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease (NAFLD), and insulin resistance), other studies revealed the contribution of the oral microbiota–brain axis in the pathogenesis of NPDs. GM dysbiosis and inflammation also induce epigenetic alterations in cytokine genes, such as IL-1β, IL-6, TNF-α, NF-kB, BTLA, IL-18R1, TGF-β, P13k/Akt1, Ctnnb1, and Hsp90aa1, as well as DNMTs, HDACs, and DAT1 associated with the development and progression of metabolic disorders and/or NPDs. Therefore, the epigenome could serve as a target for preventive or therapeutic interventions. Here, we (i) review emerging evidence of the potential impact of OM dysbiosis in the pathogenesis of metabolic diseases and NPDs, (ii) highlight the relationship between OM-induced inflammation and epigenetic alterations driving NPDs pathogenesis and interlinked metabolic aberrations, (iii) discuss therapeutic approaches capable of treating metabolic diseases and NPDs through reshaping the microbiota and its epigenetic metabolites, and hence mitigating epigenetic aberrations linked to metabolic diseases and NPDs. Finally, we outline challenges and current research gaps related to investigating the relationship between microbiota, epigenetic aberrations, and metabolic abnormalities associated with NPDs. Full article
Show Figures

Graphical abstract

26 pages, 3517 KB  
Article
HDAC6 as a Prognostic Factor and Druggable Target in HER2-Positive Breast Cancer
by Michela Cortesi, Sara Bravaccini, Sara Ravaioli, Elisabetta Petracci, Davide Angeli, Maria Maddalena Tumedei, William Balzi, Francesca Pirini, Michele Zanoni, Paola Possanzini, Andrea Rocca, Michela Palleschi, Paola Ulivi, Giovanni Martinelli and Roberta Maltoni
Cancers 2024, 16(22), 3752; https://doi.org/10.3390/cancers16223752 - 6 Nov 2024
Viewed by 2276
Abstract
Background: Adjuvant trastuzumab is the standard of care for HER2+ breast cancer (BC) patients. However, >50% of patients become resistant. This study aimed at the identification of the molecular factors associated with disease relapse and their further investigation as therapeutically exploitable targets. Methods: [...] Read more.
Background: Adjuvant trastuzumab is the standard of care for HER2+ breast cancer (BC) patients. However, >50% of patients become resistant. This study aimed at the identification of the molecular factors associated with disease relapse and their further investigation as therapeutically exploitable targets. Methods: Analyses were conducted on formalin-fixed paraffin-embedded tissues of the primary tumors of relapsed (cases) and not relapsed (controls) HER2+ BC patients treated with adjuvant trastuzumab. The nCounter Human Breast Cancer Panel 360 was used. Logistic regression and partitioning around medoids were employed to identify the genes associated with disease recurrence. Cytotoxicity experiments using trastuzumab-resistant cell lines and a network pharmacology approach were carried out to investigate drug efficacy. Results: A total of 52 patients (26 relapsed and 26 not relapsed) were analyzed. We found that a higher expression of HDAC6 was significantly associated with an increased risk of recurrence, with an adjusted OR of 3.20 (95% CI 1.38–9.91, p = 0.016). Then, we investigated the cytotoxic activity of the selective HDAC6 inhibitor Nexturastat A (NextA) on HER2+ cell lines, which were both sensitive and trastuzumab-resistant. A sub-cytotoxic concentration of NextA, combined with trastuzumab, showed a synergistic effect on BC cell lines. Finally, using a network pharmacology approach, we identified HSP90AA1 as the putative molecular candidate responsible for the synergism observed in vitro. Conclusions: Our findings encourage the exploration of the role of HDAC6 as a prognostic factor and the combinatorial use of HDAC6 selective inhibitors combined with trastuzumab in HER2+ BC, in particular for those patients experiencing drug resistance. Full article
(This article belongs to the Special Issue Overcoming Drug Resistance to Systemic Therapy in Breast Cancer)
Show Figures

Figure 1

16 pages, 1729 KB  
Article
Searching for Novel HDAC6/Hsp90 Dual Inhibitors with Anti-Prostate Cancer Activity: In Silico Screening and In Vitro Evaluation
by Luca Pinzi, Silvia Belluti, Isabella Piccinini, Carol Imbriano and Giulio Rastelli
Pharmaceuticals 2024, 17(8), 1072; https://doi.org/10.3390/ph17081072 - 15 Aug 2024
Cited by 2 | Viewed by 2300
Abstract
Prostate cancer (PCA) is one of the most prevalent types of male cancers. While current treatments for early-stage PCA are available, their efficacy is limited in advanced PCA, mainly due to drug resistance or low efficacy. In this context, novel valuable therapeutic opportunities [...] Read more.
Prostate cancer (PCA) is one of the most prevalent types of male cancers. While current treatments for early-stage PCA are available, their efficacy is limited in advanced PCA, mainly due to drug resistance or low efficacy. In this context, novel valuable therapeutic opportunities may arise from the combined inhibition of histone deacetylase 6 (HDAC6) and heat shock protein 90 (Hsp90). These targets are mutually involved in the regulation of several processes in cancer cells, and their inhibition is demonstrated to provide synergistic effects against PCA. On these premises, we performed an extensive in silico virtual screening campaign on commercial compounds in search of dual inhibitors of HDAC6 and Hsp90. In vitro tests against recombinant enzymes and PCA cells with different levels of aggressiveness allowed the identification of a subset of compounds with inhibitory activity against HDAC6 and antiproliferative effects towards LNCaP and PC-3 cells. None of the candidates showed appreciable Hsp90 inhibition. However, the discovered compounds have low molecular weight and a chemical structure similar to that of potent Hsp90 blockers. This provides an opportunity for structural and medicinal chemistry optimization in order to obtain HDAC6/Hsp90 dual modulators with antiproliferative effects against prostate cancer. These findings were discussed in detail in the study. Full article
Show Figures

Figure 1

34 pages, 7306 KB  
Article
The Role of Hyperthermia in Potentiation of Anti-Angiogenic Effect of Cisplatin and Resveratrol in Mice Bearing Solid Form of Ehrlich Ascites Tumour
by Darko Kučan, Nada Oršolić, Dyana Odeh, Snježana Ramić, Boris Jakopović, Jelena Knežević and Maja Jazvinšćak Jembrek
Int. J. Mol. Sci. 2023, 24(13), 11073; https://doi.org/10.3390/ijms241311073 - 4 Jul 2023
Cited by 5 | Viewed by 2348
Abstract
The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to [...] Read more.
The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to whole-body hyperthermia treatment. In addition, we investigated whether a multimodal approach with hyperthermia and resveratrol could abolish cisplatin resistance in tumour cells through the modulation of histone deacetylase (HDAC) activity and levels of heat shock proteins (HSP70/HSP90) and contribute to the direct toxicity of cisplatin on tumour cells. The tumour was induced by injecting 1 × 106 EAT cells subcutaneously (sc) into the thighs of Balb/c mice. The mice were treated with resveratrol per os for five consecutive days beginning on day 2 after tumour injection and/or by injecting cisplatin intraperitoneally (ip) at a dose of 2.5 mg/kg on days 10 and 12 and at a dose of 5 mg/kg on day 15. Immediately thereafter, the mice were exposed to systemic hyperthermia for 15 min at a temperature of 41 °C. The obtained results showed that the administration of resveratrol did not significantly contribute to the antitumour effect of cisplatin and hyperthermia, but it partially contributed to the immunomodulatory effect and to the reduction of cisplatin toxicity and to a slight increase in animal survival. This treatment schedule did not affect microvessel density, but it inhibited tumour growth and modulated macrophage polarization to the M1 phenotype. Furthermore, it abolished the resistance of tumour cells to cisplatin by modulating HDAC activity and the concentration of HSP70 and HSP90 chaperones, contributing to the increased lifespan of mice. However, the precise mechanism of the interaction between resveratrol, cisplatin, and hyperthermia needs to be investigated further. Full article
(This article belongs to the Special Issue Angiogenesis and Lymphangiogenesis in Cancer)
Show Figures

Figure 1

15 pages, 729 KB  
Review
Prevention of Atrial Fibrillation: Putting Proteostasis Derailment Back on Track
by Preetam Kishore, Amelie C. T. Collinet and Bianca J. J. M. Brundel
J. Clin. Med. 2023, 12(13), 4352; https://doi.org/10.3390/jcm12134352 - 28 Jun 2023
Cited by 7 | Viewed by 2607
Abstract
Despite the many attempts to treat atrial fibrillation (AF), the most common cardiac tachyarrhythmia in the Western world, the treatment efficacy of AF is still suboptimal. A plausible reason for the suboptimal efficacy is that the current treatments are not directed at the [...] Read more.
Despite the many attempts to treat atrial fibrillation (AF), the most common cardiac tachyarrhythmia in the Western world, the treatment efficacy of AF is still suboptimal. A plausible reason for the suboptimal efficacy is that the current treatments are not directed at the underlying molecular mechanisms that drive AF. Recent discoveries revealed that the derailment of specific molecular proteostasis pathways drive electrical conduction disorders, contractile dysfunction and AF. The degree of this so-called ‘electropathology’ corresponds to the response to anti-AF treatment. Hence, to develop effective therapies to prevent AF, understanding the molecular mechanisms is of key importance. In this review, we highlight the key modulators of proteostasis derailment and describe the mechanisms that explain how they affect electrical and contractile function in atrial cardiomyocytes and AF. The key modulators of proteostasis derailment include (1) exhaustion of cardioprotective heat shock proteins (HSPs), (2) excessive endoplasmic reticulum (ER) stress and downstream autophagic protein degradation, (3) histone deacetylase 6 (HDAC6)-induced microtubule disruption, (4) activation of DNA damage-PARP1 activation and NAD+ axis and (5) mitochondrial dysfunction. Furthermore, we discuss druggable targets within these pathways that are involved in the prevention of proteostasis derailment, as well as the targets that aid in the recovery from AF. Finally, we will elaborate on the most favorable druggable targets for (future) testing in patients with AF, as well as drugs with potential benefits for AF recovery. Full article
(This article belongs to the Special Issue Cell and Gene Therapy for Cardiac Repair)
Show Figures

Graphical abstract

15 pages, 3949 KB  
Article
Valproic Acid Inhibits Progressive Hereditary Hearing Loss in a KCNQ4 Variant Model through HDAC1 Suppression
by Yoon Seok Nam, Young Mi Choi, Sungsu Lee and Hyong-Ho Cho
Int. J. Mol. Sci. 2023, 24(6), 5695; https://doi.org/10.3390/ijms24065695 - 16 Mar 2023
Cited by 4 | Viewed by 4274
Abstract
Genetic or congenital hearing loss still has no definitive cure. Among genes related to genetic hearing loss, the potassium voltage-gated channel subfamily Q member 4 (KCNQ4) is known to play an essential role in maintaining ion homeostasis and regulating hair cell membrane potential. [...] Read more.
Genetic or congenital hearing loss still has no definitive cure. Among genes related to genetic hearing loss, the potassium voltage-gated channel subfamily Q member 4 (KCNQ4) is known to play an essential role in maintaining ion homeostasis and regulating hair cell membrane potential. Variants of the KCNQ4 show reductions in the potassium channel activity and were responsible for non-syndromic progressive hearing loss. KCNQ4 has been known to possess a diverse variant. Among those variants, the KCNQ4 p.W276S variant produced greater hair cell loss related to an absence of potassium recycling. Valproic acid (VPA) is an important and commonly used histone deacetylase (HDAC) inhibitor for class I (HDAC1, 2, 3, and 8) and class IIa (HDAC4, 5, 7, and 9). In the current study, systemic injections of VPA attenuated hearing loss and protected the cochlear hair cells from cell death in the KCNQ4 p.W276S mouse model. VPA activated its known downstream target, the survival motor neuron gene, and increased acetylation of histone H4 in the cochlea, demonstrating that VPA treatment directly affects the cochlea. In addition, treatment with VPA increased the KCNQ4 binding with HSP90β by inhibiting HDAC1 activation in HEI-OC1 in an in vitro study. VPA is a candidate drug for inhibiting late-onset progressive hereditary hearing loss from the KCNQ4 p.W276S variant. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 3609 KB  
Article
Identification of Novel Natural Dual HDAC and Hsp90 Inhibitors for Metastatic TNBC Using e-Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Studies
by Nihal AbdElmoniem, Marwa H. Abdallah, Rua M. Mukhtar, Fatima Moutasim, Ahmed Rafie Ahmed, Alaa Edris, Walaa Ibraheem, Alaa A. Makki, Eman M. Elshamly, Rashid Elhag, Wadah Osman, Ramzi A. Mothana and Abdulrahim A. Alzain
Molecules 2023, 28(4), 1771; https://doi.org/10.3390/molecules28041771 - 13 Feb 2023
Cited by 27 | Viewed by 5076
Abstract
Breast cancer (BC) is one of the main types of cancer that endangers women’s lives. The characteristics of triple-negative breast cancer (TNBC) include a high rate of recurrence and the capacity for metastasis; therefore, new therapies are urgently needed to combat TNBC. Dual [...] Read more.
Breast cancer (BC) is one of the main types of cancer that endangers women’s lives. The characteristics of triple-negative breast cancer (TNBC) include a high rate of recurrence and the capacity for metastasis; therefore, new therapies are urgently needed to combat TNBC. Dual targeting HDAC6 and Hsp90 has shown good synergistic effects in treating metastatic TNBC. The goal of this study was to find potential HDAC6 and Hsp90 dual inhibitors. Therefore, several in silico approaches have been used. An e-pharmacophore model generation based on the HDAC6-ligand complex and subsequently a pharmacophore-based virtual screening on 270,450 natural compounds from the ZINC were performed, which resulted in 12,663 compounds that corresponded to the obtained pharmacophoric hypothesis. These compounds were docked into HDAC6 and Hsp90. This resulted in the identification of three compounds with good docking scores and favorable free binding energy against the two targets. The top three compounds, namely ZINC000096116556, ZINC000020761262, and ZINC000217668954, were further subjected to ADME prediction and molecular dynamic simulations, which showed promising results in terms of pharmacokinetic properties and stability. As a result, these three compounds can be considered potential HDAC6 and Hsp90 dual inhibitors and are recommended for experimental evaluation. Full article
Show Figures

Graphical abstract

12 pages, 1395 KB  
Communication
Cell-of-Origin Targeted Drug Repurposing for Triple-Negative and Inflammatory Breast Carcinoma with HDAC and HSP90 Inhibitors Combined with Niclosamide
by Udayan Bhattacharya, Mohammad Kamran, Maroua Manai, Massimo Cristofanilli and Tan A. Ince
Cancers 2023, 15(2), 332; https://doi.org/10.3390/cancers15020332 - 4 Jan 2023
Cited by 10 | Viewed by 5109
Abstract
We recently identified a cell-of-origin-specific mRNA signature associated with metastasis and poor outcome in triple-negative carcinoma (TNBC). This TNBC cell-of-origin signature is associated with the over-expression of histone deacetylases and zinc finger protein HDAC1, HDAC7, and ZNF92, respectively. Based on this signature, we [...] Read more.
We recently identified a cell-of-origin-specific mRNA signature associated with metastasis and poor outcome in triple-negative carcinoma (TNBC). This TNBC cell-of-origin signature is associated with the over-expression of histone deacetylases and zinc finger protein HDAC1, HDAC7, and ZNF92, respectively. Based on this signature, we discovered that the combination of three drugs (an HDAC inhibitor, an anti-helminthic Niclosamide, and an antibiotic Tanespimycin that inhibits HSP90) synergistically reduces the proliferation of the twelve tested TNBC cell lines. Additionally, we discovered that four out of five inflammatory breast carcinoma cell lines are sensitive to this combination. Significantly, the concentration of the drugs that are used in these experiments are within or below clinically achievable dose, and the synergistic activity only emerged when all three drugs were combined. Our results suggest that HDAC and HSP90 inhibitors combined with the tapeworm drug Niclosamide can achieve remarkably synergistic inhibition of TNBC and IBC. Since Niclosamide, HDAC, and HSP90 inhibitors were approved for clinical use for other cancer types, it may be possible to repurpose their combination for TNBC and IBC. Full article
(This article belongs to the Collection Breast Cancer: From Pathophysiology to Prevention and Treatment)
Show Figures

Figure 1

25 pages, 5777 KB  
Article
Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg
by Lang Zhang, Yuntao Zhou, Ziwei Song, Hongwei Liang, Shan Zhong, Yali Yu, Ting Liu, Hang Sha, Li He and Jinhua Gan
Antioxidants 2022, 11(10), 1944; https://doi.org/10.3390/antiox11101944 - 29 Sep 2022
Cited by 26 | Viewed by 4513
Abstract
As one of the most toxic elements, mercury (Hg) is a widespread toxicant in aquatic environments. Crayfish are considered suitable for indicating the impact of heavy metals on aquatic crustaceans. Nevertheless, Hg toxicity on Procambarus clarkii is largely unknown. In this research, the [...] Read more.
As one of the most toxic elements, mercury (Hg) is a widespread toxicant in aquatic environments. Crayfish are considered suitable for indicating the impact of heavy metals on aquatic crustaceans. Nevertheless, Hg toxicity on Procambarus clarkii is largely unknown. In this research, the acute Hg-induced alterations of biochemical responses, histopathology, hepatopancreatic transcriptome, and intestinal microbiome of Procambarus clarkii were studied. Firstly, Hg induced significant changes in reactive oxygen species (ROS) and malonaldehyde (MDA) content as well as antioxidant enzyme activity. Secondly, Hg exposure caused structural damage to the hepatopancreas (e.g., vacuolization of the epithelium and dilatation of the lumen) as well as to the intestines (e.g., dysregulation of lamina epithelialises and extension of lamina proprias). Thirdly, after treatment with three different concentrations of Hg, RNA-seq assays of the hepatopancreas revealed a large number of differentially expressed genes (DEGs) linked to a specific function. Among the DEGs, a lot of redox metabolism- (e.g., ACOX3, SMOX, GPX3, GLO1, and P4HA1), ion transport- (e.g., MICU3, MCTP, PYX, STEAP3, and SLC30A2), drug metabolism- (e.g., HSP70, HSP90A, CYP2L1, and CYP9E2), immune response- (e.g., SMAD4, HDAC1, and DUOX), and apoptosis-related genes (e.g., CTSL, CASP7, and BIRC2) were identified, which suggests that Hg exposure may perturb the redox equilibrium, disrupt the ion homeostasis, weaken immune response and ability, and cause apoptosis. Fourthly, bacterial 16S rRNA gene sequencing showed that Hg exposure decreased bacterial diversity and dysregulated intestinal microbiome composition. At the phylum level, there was a marked decrease in Proteobacteria and an increase in Firmicutes after exposure to high levels of Hg. With regards to genus, abundances of Bacteroides, Dysgonomonas, and Arcobacter were markedly dysregulated after Hg exposures. Our findings elucidate the mechanisms involved in Hg-mediated toxicity in aquatic crustaceans at the tissue, cellular, molecular as well as microbial levels. Full article
(This article belongs to the Special Issue Redox Metabolism in Ecophysiology and Evolution)
Show Figures

Figure 1

14 pages, 4015 KB  
Article
High-Intensity Focused Ultrasound Induces Adipogenesis via Control of Cilia in Adipose-Derived Stem Cells in Subcutaneous Adipose Tissue
by Seyeon Oh, Hyoung Moon Kim, Sosorburam Batsukh, Hye Jin Sun, Taehui Kim, Donghwan Kang, Kuk Hui Son and Kyunghee Byun
Int. J. Mol. Sci. 2022, 23(16), 8866; https://doi.org/10.3390/ijms23168866 - 9 Aug 2022
Cited by 12 | Viewed by 6567
Abstract
During skin aging, the volume of subcutaneous adipose tissue (sWAT) and the adipogenesis potential of adipose-derived stem cells (ASCs) decrease. It is known that the shortening of cilia length by pro-inflammatory cytokines is related to the decreased adipogenic differentiation of ASCs via increase [...] Read more.
During skin aging, the volume of subcutaneous adipose tissue (sWAT) and the adipogenesis potential of adipose-derived stem cells (ASCs) decrease. It is known that the shortening of cilia length by pro-inflammatory cytokines is related to the decreased adipogenic differentiation of ASCs via increase in Wnt5a/β-catenin. High-intensity focused ultrasound (HIFU) is known to upregulate heat shock proteins (HSP), which decrease levels of pro-inflammatory cytokines. In this study, we evaluated whether HIFU modulates the cilia of ASCs by upregulating HSP70 and decreasing inflammatory cytokines. HIFU was applied at 0.2 J to rat skin, which was harvested at 1, 3, 7, and 28 days. All results for HIFU-applied animals were compared with control animals that were not treated. HIFU increased expression of HSP70 and decreased expression of NF-κB, IL-6, and TNF-α in sWAT. HIFU decreased the expression of cilia disassembly-related factors (AurA and HDAC9) in ASCs. Furthermore, HIFU increased the expression of cilia assembly-related factors (KIF3A and IFT88), decreased that of WNT5A/β-catenin, and increased that of the adipogenesis markers PPARγ and CEBPα in sWAT. HIFU increased the number of adipocytes in the sWAT and the thickness of sWAT. In conclusion, HIFU could selectively increase sWAT levels by modulating the cilia of ASCs and be used for skin rejuvenation. Full article
Show Figures

Figure 1

14 pages, 2063 KB  
Article
VPA and TSA Interrupt the Interplay between mutp53 and HSP70, Leading to CHK1 and RAD51 Down-Regulation and Sensitizing Pancreatic Cancer Cells to AZD2461 PARP Inhibitor
by Maria Anele Romeo, Maria Saveria Gilardini Montani, Rossella Benedetti, Andrea Arena, Gabriella D’Orazi and Mara Cirone
Int. J. Mol. Sci. 2022, 23(4), 2268; https://doi.org/10.3390/ijms23042268 - 18 Feb 2022
Cited by 17 | Viewed by 3693
Abstract
HDAC inhibitors (HDACi) represent promising anti-cancer treatments, as the acetylation of histone and non-histone proteins is often dysregulated in cancer and contributes to cancer onset and progression. HDACi have been also reported to increase the cytotoxicity of DNA-damaging agents, such as radiation or [...] Read more.
HDAC inhibitors (HDACi) represent promising anti-cancer treatments, as the acetylation of histone and non-histone proteins is often dysregulated in cancer and contributes to cancer onset and progression. HDACi have been also reported to increase the cytotoxicity of DNA-damaging agents, such as radiation or cisplatin. In this study, we found that TSA and, even more effectively, VPA synergized with AZD2461, PARP1, 2 and 3 inhibitor (PARPi) to induce DNA damage and reduce pancreatic cancer cell survival. At a molecular level, VPA and TSA down-regulated CHK1 and RAD51, which is correlated with the interruption of the cross-talk between mutp53 and HSP70. Moreover, VPA and to a lesser extent TSA reactivated wtp53 in these cells, which contributed to CHK1 and RAD51 reduction. These findings suggest that the combination of HDACi and PARPi might improve the treatment of pancreatic cancer, which remains one of the most aggressive and therapy-resistant cancers. Full article
Show Figures

Graphical abstract

25 pages, 80831 KB  
Article
Propolin G-Suppressed Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells via Glycogen Synthase Kinase 3β-Mediated Snail and HDAC6-Regulated Vimentin Degradation
by Jih-Tung Pai, Xing-Han Chen, Yann-Lii Leu and Meng-Shih Weng
Int. J. Mol. Sci. 2022, 23(3), 1672; https://doi.org/10.3390/ijms23031672 - 31 Jan 2022
Cited by 12 | Viewed by 3979
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer with a poor prognosis. The incidence and mortality rate of TNBC are frequently found in younger women. Due to the absence of a good therapeutic strategy, effective remedies for inhibiting TNBC have been [...] Read more.
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer with a poor prognosis. The incidence and mortality rate of TNBC are frequently found in younger women. Due to the absence of a good therapeutic strategy, effective remedies for inhibiting TNBC have been developed for improving the cure rate. Epithelial-to-mesenchymal transition (EMT) is a critical mechanism to regulate cancer cell motility and invasion. Furthermore, ectopic expression of EMT molecules correlates with the metastasis and poor prognosis of TNBC. Targeting EMT might be a strategy for the therapy and prevention of TNBC. Propolin G, an active c-prenylflavanone in Taiwanese propolis, has been shown to possess anti-cancer activity in many cancers. However, the anti-metastasis activity of propolin G on TNBC is still unclear. The present study showed that the migration and invasion activities of TNBC cells was suppressed by propolin G. Down-regulated expression of Snail and vimentin and up-regulated expression of E-cadherin were dose- and time-dependently observed in propolin G-treated MDA-MB-231 cells. Propolin G inhibited Snail and vimentin expressions via the signaling pathways associated with post-translational modification. The activation of glycogen synthase kinase 3β (GSK-3β) by propolin G resulted in increasing GSK-3β interaction with Snail. Consequently, the nuclear localization and stability of Snail was disrupted resulting in promoting the degradation. Propolin G-inhibited Snail expression and the activities of migration and invasion were reversed by GSK-3β inhibitor pretreatment. Meanwhile, the outcomes also revealed that histone deacetylase 6 (HDAC6) activity was dose-dependently suppressed by propolin G. Correspondently, the amounts of acetyl-α-tubulin, a down-stream substrate of HDAC6, were increased. Dissociation of HDAC6/Hsp90 with vimentin leading to increased vimentin acetylation and degradation was perceived in the cells with the addition of propolin G. Moreover, up-regulated expression of acetyl-α-tubulin by propolin G was attenuated by HDAC6 overexpression. On the contrary, down-regulated expression of vimentin, cell migration and invasion by propolin G were overturned by HDAC6 overexpression. Conclusively, restraint cell migration and invasion of TNBC by propolin G were activated by the expression of GSK-3β-suppressed Snail and the interruption of HDAC6-mediated vimentin protein stability. Aiming at EMT, propolin G might be a potential candidate for TNBC therapy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 4406 KB  
Article
Smell Detection Agent Optimisation Framework and Systems Biology Approach to Detect Dys-Regulated Subnetwork in Cancer Data
by Suma L. Sivan and Vinod Chandra S. Sukumara Pillai
Biomolecules 2022, 12(1), 37; https://doi.org/10.3390/biom12010037 - 27 Dec 2021
Viewed by 3685
Abstract
Network biology has become a key tool in unravelling the mechanisms of complex diseases. Detecting dys-regulated subnetworks from molecular networks is a task that needs efficient computational methods. In this work, we constructed an integrated network using gene interaction data as well as [...] Read more.
Network biology has become a key tool in unravelling the mechanisms of complex diseases. Detecting dys-regulated subnetworks from molecular networks is a task that needs efficient computational methods. In this work, we constructed an integrated network using gene interaction data as well as protein–protein interaction data of differentially expressed genes derived from the microarray gene expression data. We considered the level of differential expression as well as the topological weight of proteins in interaction network to quantify dys-regulation. Then, a nature-inspired Smell Detection Agent (SDA) optimisation algorithm is designed with multiple agents traversing through various paths in the network. Finally, the algorithm provides a maximum weighted module as the optimum dys-regulated subnetwork. The analysis is performed for samples of triple-negative breast cancer as well as colorectal cancer. Biological significance analysis of module genes is also done to validate the results. The breast cancer subnetwork is found to contain (i) valid biomarkers including PIK3CA, PTEN, BRCA1, AR and EGFR; (ii) validated drug targets TOP2A, CDK4, HDAC1, IL6, BRCA1, HSP90AA1 and AR; (iii) synergistic drug targets EGFR and BIRC5. Moreover, based on the weight values assigned to nodes in the subnetwork, PLK1, CTNNB1, IGF1, AURKA, PCNA, HSPA4 and GAPDH are proposed as drug targets for further studies. For colorectal cancer module, the analysis revealed the occurrence of approved drug targets TYMS, TOP1, BRAF and EGFR. Considering the higher weight values, HSP90AA1, CCNB1, AKT1 and CXCL8 are proposed as drug targets for experimentation. The derived subnetworks possess cancer-related pathways as well. The SDA-derived breast cancer subnetwork is compared with that of tools such as MCODE and Minimum Spanning Tree, and observed a higher enrichment (75%) of significant elements. Thus, the proposed nature-inspired algorithm is a novel approach to derive the optimum dys-regulated subnetwork from huge molecular network. Full article
(This article belongs to the Special Issue Computational Approaches for the Study of Biomolecular Networks)
Show Figures

Figure 1

11 pages, 771 KB  
Article
Functional Depletion of HSP72 by siRNA and Quercetin Enhances Vorinostat-Induced Apoptosis in an HSP72-Overexpressing Cutaneous T-Cell Lymphoma Cell Line, Hut78
by Kazuyasu Fujii, Masashi Idogawa, Norihiro Suzuki, Keiji Iwatsuki and Takuro Kanekura
Int. J. Mol. Sci. 2021, 22(20), 11258; https://doi.org/10.3390/ijms222011258 - 19 Oct 2021
Cited by 14 | Viewed by 2953
Abstract
Histone deacetylase inhibitors (HDACis) are one of the therapeutic options for cutaneous T-cell lymphoma (CTCL), but they have limited effects. We previously demonstrated that HSP72 overexpression is associated with chemoresistance to HDACis in lymphoma cells. The purpose of this study was to investigate [...] Read more.
Histone deacetylase inhibitors (HDACis) are one of the therapeutic options for cutaneous T-cell lymphoma (CTCL), but they have limited effects. We previously demonstrated that HSP72 overexpression is associated with chemoresistance to HDACis in lymphoma cells. The purpose of this study was to investigate whether the functional depletion of HSP72 enhances the effect of the HDACi vorinostat. First, we established a stable HSP72-knockdown CTCL cell line and confirmed the influence of HSP72 reduction on the antitumor effects of vorinostat. Next, we studied the effect of quercetin, an inhibitor of HSP72, on the antineoplastic effects of vorinostat. In five CTCL cell lines examined, HSP72 expression was highest in Hut78 cells, and HSP72 knockdown enhanced vorinostat-induced apoptosis in these cells. Low-dose quercetin reduced HSP72 expression, increased HDAC activity, and enhanced vorinostat-induced suppression of Hut78 cell proliferation. A single low dose of quercetin induced G2 arrest and only slightly increased the sub-G1 cell fraction. Quercetin also significantly enhanced vorinostat-induced apoptosis, caspase-3, caspase-8, and caspase-9 activity, and the loss of mitochondrial membrane potential. HSP72 knockdown enhanced vorinostat-induced apoptosis in an HSP72-overexpressing CTCL cell line, and thus, quercetin may be a suitable candidate for combination therapy with vorinostat in clinical settings. Full article
(This article belongs to the Special Issue Pathogenesis and Treatment of Cutaneous Lymphoma)
Show Figures

Figure 1

12 pages, 2763 KB  
Article
Changes in Stress-Mediated Markers in a Human Cardiomyocyte Cell Line under Hyperglycemia
by Vikram Thakur, Narah Alcoreza, Jasmine Cazares and Munmun Chattopadhyay
Int. J. Mol. Sci. 2021, 22(19), 10802; https://doi.org/10.3390/ijms221910802 - 7 Oct 2021
Cited by 14 | Viewed by 4714
Abstract
Diabetes is a major risk factor for cardiovascular diseases, especially cardiomyopathy, a condition in which the smooth muscles of the heart become thick and rigid, affecting the functioning of cardiomyocytes, the contractile cells of the heart. Uncontrolled elevated glucose levels over time can [...] Read more.
Diabetes is a major risk factor for cardiovascular diseases, especially cardiomyopathy, a condition in which the smooth muscles of the heart become thick and rigid, affecting the functioning of cardiomyocytes, the contractile cells of the heart. Uncontrolled elevated glucose levels over time can result in oxidative stress, which could lead to inflammation and altered epigenetic mechanisms. In the current study, we investigated whether hyperglycemia can modify cardiac function by directly affecting these changes in cardiomyocytes. To evaluate the adverse effect of high glucose, we measured the levels of gap junction protein, connexin 43, which is responsible for modulating cardiac electric activities and Troponin I, a part of the troponin complex in the heart muscles, commonly used as cardiac markers of ischemic heart disease. AC16 human cardiomyocyte cells were used in this study. Under hyperglycemic conditions, these cells demonstrated altered levels of connexin 43 and Troponin-I after 24 h of exposure. We also examined hyperglycemia induced changes in epigenetic markers: H3K9me1, Sirtuin-1 (SIRT1), and histone deacetylase (HDAC)-2 as well as in inflammatory and stress-related mediators, such as heat shock protein (HSP)-60, receptor for advanced glycation end products (RAGE), toll-like receptor (TLR)-4, high mobility group box (HMGB)-1 and CXC chemokine receptor (CXCR)-4. Cardiomyocytes exposed to 25mM glucose resulted in the downregulation of HSP60 and SIRT1 after 48 h. We further examined that hyperglycemia mediated the decrease in the gap junction protein CX43, as well as CXC chemokine receptor CXCR4 which may affect the physiological functions of the cardiomyocytes when exposed to high glucose for 24 and 48 h. Upregulated expression of DNA-binding nuclear protein HMGB1, along with changes in histone methylation marker H3K9me1 have demonstrated hyperglycemia-induced damage to cardiomyocyte at 24 h of exposure. Our study established that 24 to 48 h of hyperglycemic exposure could stimulate stress-mediated inflammatory mediators in cardiomyocytes in vitro. These stress-related changes in hyperglycemia-induced cardiomyocytes may further initiate an increase in injury markers which eventually could alter the epigenetic processes. Therefore, epigenetic and inflammatory mechanisms in conjunction with alterations in a downstream signaling pathway could have a direct effect on the functionality of the cardiomyocytes exposed to high glucose during short and long-term exposures. Full article
Show Figures

Figure 1

Back to TopTop