Oral–Gut Microbiota Crosstalk and Epigenetic Targets in Metabolic and Neuropsychiatric Diseases
Abstract
1. Introduction
2. Oral Microbiota and the Pathogenesis of Metabolic Diseases
3. Oral Microbiome and the Pathogenesis of NPDs
4. OM-Induced Inflammation Drives Metabolic and Epigenetic Alterations Underlying NPD Pathogenesis
5. Therapeutic Remedies Based on Modulation of Oral Microbiome
5.1. Oral Hygiene to Prevent or Improve OM-Induced Metabolic Dysfunctions and NPDs
5.2. Nutritional Interventions and Pre-, Pro-, and Postbiotics to Improve Oral Health and OM-Induced Epigenetic Diseases, Metabolic Diseases, and NPDs
6. Critical Points, Limitations, and Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bransfield, R.C.; Mao, C.; Greenberg, R. Microbes and mental illness: Past, present, and future. In Proceedings of the Healthcare, Kyoto, Japan, 12–14 May 2023; p. 83. [Google Scholar]
- Nohesara, S.; Mostafavi Abdolmaleky, H.; Pirani, A.; Thiagalingam, S. Therapeutic Horizons: Gut Microbiome, Neuroinflammation, and Epigenetics in Neuropsychiatric Disorders. Cells 2025, 14, 1027. [Google Scholar] [CrossRef]
- Shirinian, M.; Chen, C.; Uchida, S.; Jadavji, N.M. The role of epigenetics in neuropsychiatric disorders. Front. Mol. Neurosci. 2022, 15, 985023. [Google Scholar] [CrossRef]
- Barroso, I.; McCarthy, M.I. The genetic basis of metabolic disease. Cell 2019, 177, 146–161. [Google Scholar] [CrossRef]
- Ilieva, M.S. Non-coding RNAs in neurological and neuropsychiatric disorders: Unraveling the hidden players in disease pathogenesis. Cells 2024, 13, 1063. [Google Scholar] [CrossRef]
- Zhu, H.; Guan, A.; Liu, J.; Peng, L.; Zhang, Z.; Wang, S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J. Neuroinflamm. 2023, 20, 223. [Google Scholar] [CrossRef]
- Ngo, J.; Osto, C.; Villalobos, F.; Shirihai, O.S. Mitochondrial heterogeneity in metabolic diseases. Biology 2021, 10, 927. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; López-Mora, C.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. New insights and potential therapeutic interventions in metabolic diseases. Int. J. Mol. Sci. 2023, 24, 10672. [Google Scholar] [CrossRef]
- Morella, I.M.; Brambilla, R.; Morè, L. Emerging roles of brain metabolism in cognitive impairment and neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2022, 142, 104892. [Google Scholar] [CrossRef]
- López-Gambero, A.J.; Rosell-Valle, C.; Medina-Vera, D.; Navarro, J.A.; Vargas, A.; Rivera, P.; Sanjuan, C.; Rodríguez de Fonseca, F.; Suárez, J. A negative energy balance is associated with metabolic dysfunctions in the hypothalamus of a humanized preclinical model of Alzheimer’s disease, the 5XFAD mouse. Int. J. Mol. Sci. 2021, 22, 5365. [Google Scholar] [CrossRef]
- Lossi, L.; Castagna, C.; Merighi, A. An overview of the epigenetic modifications in the brain under normal and pathological conditions. Int. J. Mol. Sci. 2024, 25, 3881. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Mostafavi Abdolmaleky, H.; Pirani, A.; Thiagalingam, S. Epigenetics and Gut Microbiota in the Pathogenesis and Treatment of Bipolar Disorder (BD). Cells 2025, 14, 1104. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Lin, Z.-J.; Li, C.-C.; Lin, X.; Shan, S.-K.; Guo, B.; Zheng, M.-H.; Li, F.; Yuan, L.-Q.; Li, Z.-h. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef]
- Abdolmaleky, H.M.; Martin, M.; Zhou, J.-R.; Thiagalingam, S. Epigenetic alterations of brain non-neuronal cells in major mental diseases. Genes 2023, 14, 896. [Google Scholar] [CrossRef]
- Pizzorusso, T.; Tognini, P. Interplay between metabolism, nutrition and epigenetics in shaping brain DNA methylation, neural function and behavior. Genes 2020, 11, 742. [Google Scholar] [CrossRef]
- Huang, K.; Li, S.; Yang, M.; Teng, Z.; Xu, B.; Wang, B.; Chen, J.; Zhao, L.; Wu, H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes. Rev. 2024, 25, e13816. [Google Scholar] [CrossRef]
- Cui, J.; Zhai, Z.; Wang, S.; Song, X.; Qiu, T.; Yu, L.; Zhai, Q.; Zhang, H. The role and impact of abnormal vitamin levels in autism spectrum disorders. Food Funct. 2024, 15, 1099–1115. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi Abdolmaleky, H.; Zhou, J.-R. Gut microbiota dysbiosis, oxidative stress, inflammation, and epigenetic alterations in metabolic diseases. Antioxidants 2024, 13, 985. [Google Scholar] [CrossRef] [PubMed]
- Rivera, E.J.; Goldin, A.; Fulmer, N.; Tavares, R.; Wands, J.R.; de la Monte, S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. J. Alzheimer’s Dis. 2005, 8, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Abdolmaleky, H.M.; Thiagalingam, S. Epigenetic aberrations in major psychiatric diseases related to diet and gut microbiome alterations. Genes 2023, 14, 1506. [Google Scholar] [CrossRef]
- Murru, A.; Anmella, G.; Giménez, A.; Vieta, E. Bipolar disorders, obesity, and metabolic disturbances: Mechanisms and implications. In Neurobiology of Bipolar Disorder; Elsevier: Amsterdam, The Netherlands, 2021; pp. 257–274. [Google Scholar]
- Lionaki, E.; Ploumi, C.; Tavernarakis, N. One-carbon metabolism: Pulling the strings behind aging and neurodegeneration. Cells 2022, 11, 214. [Google Scholar] [CrossRef]
- Yu, Y.; Martins, L.M. Mitochondrial One-Carbon Metabolism and Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 6302. [Google Scholar] [CrossRef]
- Frajerman, A.; Urban, M.; Rivollier, F.; Plaze, M.; Chaumette, B.; Krebs, M.-O.; Scoriels, L. Abnormalities in one-carbon metabolism in young patients with psychosis. Front. Psychiatry 2023, 14, 1128890. [Google Scholar] [CrossRef]
- Abdolmaleky, H.M.; Zhou, J.-R.; Thiagalingam, S. Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics 2021, 13, 1231–1245. [Google Scholar] [CrossRef]
- Nohesara, S.; Mostafavi Abdolmaleky, H.; Thiagalingam, S. Substance-induced psychiatric disorders, epigenetic and microbiome alterations, and potential for therapeutic interventions. Brain Sci. 2024, 14, 769. [Google Scholar] [CrossRef]
- Tao, K.; Yuan, Y.; Xie, Q.; Dong, Z. Relationship between human oral microbiome dysbiosis and neuropsychiatric diseases: An updated overview. Behav. Brain Res. 2024, 471, 115111. [Google Scholar] [CrossRef]
- Kerstens, R.; Ng, Y.Z.; Pettersson, S.; Jayaraman, A. Balancing the oral–gut–brain axis with diet. Nutrients 2024, 16, 3206. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Semjonova, A.; Inchingolo, A.M.; Patano, A.; Coloccia, G.; Ceci, S.; Marinelli, G.; Di Pede, C.; Ciocia, A.M. Oralbiotica/oralbiotics: The impact of oral microbiota on dental health and demineralization: A systematic review of the literature. Children 2022, 9, 1014. [Google Scholar] [CrossRef]
- Sun, X.; Li, M.; Xia, L.; Fang, Z.; Yu, S.; Gao, J.; Feng, Q.; Yang, P. Alteration of salivary microbiome in periodontitis with or without type-2 diabetes mellitus and metformin treatment. Sci. Rep. 2020, 10, 15363. [Google Scholar] [CrossRef]
- D’Angelo, E.; Fiori, F.; Ferraro, G.A.; Tessitore, A.; Nazzaro, L.; Serpico, R.; Contaldo, M. Autism Spectrum Disorder, Oral Implications, and Oral Microbiota. Children 2025, 12, 368. [Google Scholar] [CrossRef]
- Kisely, S. Periodontal health and psychiatric disorders. Curr. Oral Health Rep. 2023, 10, 111–116. [Google Scholar] [CrossRef]
- D’ambrosio, F.; Caggiano, M.; Schiavo, L.; Savarese, G.; Carpinelli, L.; Amato, A.; Iandolo, A. Chronic stress and depression in periodontitis and peri-implantitis: A narrative review on neurobiological, neurobehavioral and immune–microbiome interplays and clinical management implications. Dent. J. 2022, 10, 49. [Google Scholar] [CrossRef]
- Gupta, U.; Dey, P. The oral microbial odyssey influencing chronic metabolic disease. Arch. Physiol. Biochem. 2024, 130, 831–847. [Google Scholar] [CrossRef]
- Sun, H.-L.; Feng, Y.; Zhang, Q.; Li, J.-X.; Wang, Y.-Y.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.-T. The microbiome–gut–brain axis and dementia: A bibliometric analysis. Int. J. Environ. Res. Public Health 2022, 19, 16549. [Google Scholar] [CrossRef]
- Alex, A.M.; Levendosky, A.A.; Bogat, G.A.; Muzik, M.; Nuttall, A.K.; Knickmeyer, R.C.; Lonstein, J.S. Stress and mental health symptoms in early pregnancy are associated with the oral microbiome. BMJ Ment Health 2024, 27, e301100. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Piras, E.; Tamburini, S.; Bu, K.; Wallach, D.S.; Remsen, B.; Cantor, A.; Kong, J.; Goetz, D.; Hoffman, K.W. Gut and oral microbiome modulate molecular and clinical markers of schizophrenia-related symptoms: A transdiagnostic, multilevel pilot study. Psychiatry Res. 2023, 326, 115279. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Meng, H.; Gao, X.; Xu, L.; Feng, X. Effect of non-surgical periodontal treatment on short chain fatty acid levels in gingival crevicular fluid of patients with generalized aggressive periodontitis. J. Periodontal Res. 2014, 49, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Leonov, G.E.; Varaeva, Y.R.; Livantsova, E.N.; Starodubova, A.V. The complicated relationship of short-chain fatty acids and oral microbiome: A narrative review. Biomedicines 2023, 11, 2749. [Google Scholar] [CrossRef]
- Gomes-Filho, I.S.; Oliveira, M.T.; Cruz, S.S.d.; Cerqueira, E.d.M.M.; Trindade, S.C.; Vieira, G.O.; Couto Souza, P.H.; Adan, L.F.F.; Hintz, A.M.; Passos-Soares, J.d.S. Periodontitis is a factor associated with dyslipidemia. Oral Dis. 2022, 28, 813–823. [Google Scholar] [CrossRef]
- Bitencourt, F.V.; Nascimento, G.G.; Costa, S.A.; Orrico, S.R.P.; Ribeiro, C.C.C.; Leite, F.R.M. The role of dyslipidemia in periodontitis. Nutrients 2023, 15, 300. [Google Scholar] [CrossRef]
- Ghitea, T.C. Correlation of periodontal bacteria with chronic inflammation present in patients with metabolic syndrome. Biomedicines 2021, 9, 1709. [Google Scholar] [CrossRef]
- Iwashita, M.; Hayashi, M.; Nishimura, Y.; Yamashita, A. The link between periodontal inflammation and obesity. Curr. Oral Health Rep. 2021, 8, 76–83. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Z.; Pathak, J.L.; Li, H.; Wu, G.; Xu, S.; Wang, T.; Cheng, H.; Piao, Z.; Jaspers, R.T. Leptin-deficient ob/ob mice exhibit periodontitis phenotype and altered oral microbiome. J. Periodontal Res. 2023, 58, 392–402. [Google Scholar] [CrossRef]
- Sato, K.; Yamazaki, K.; Kato, T.; Nakanishi, Y.; Tsuzuno, T.; Yokoji-Takeuchi, M.; Yamada-Hara, M.; Miura, N.; Okuda, S.; Ohno, H. Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid. MBio 2021, 12, e0077121. [Google Scholar] [CrossRef]
- Jia, R.; Zhang, Y.; Wang, Z.; Hu, B.; Wang, Z.; Qiao, H. Association between lipid metabolism and periodontitis in obese patients: A cross-sectional study. BMC Endocr. Disord. 2023, 23, 119. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Qian, J.; Wang, N.; Bao, J.; Lu, J.; Chen, F.; Li, Y.; Zhang, Y.; Yan, F. Periodontitis salivary microbiota exacerbates nonalcoholic fatty liver disease in high-fat diet-induced obese mice. IScience 2023, 26, 106346. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Minty, M.; Canceill, T.; Loubières, P.; Azalbert, V.; Tercé, F.; Champion, C.; Burcelin, R.; Barthet, P.; Laurencin-Dalicieux, S. Obesity drives an oral microbiota signature of female patients with periodontitis: A pilot study. Diagnostics 2021, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Lê, S.; Laurencin-Dalicieux, S.; Minty, M.; Assoulant-Anduze, J.; Vinel, A.; Yanat, N.; Loubieres, P.; Azalbert, V.; Diemer, S.; Burcelin, R. Obesity is associated with the severity of periodontal inflammation due to a specific signature of subgingival microbiota. Int. J. Mol. Sci. 2023, 24, 15123. [Google Scholar] [CrossRef]
- Rahman, B.; Al-Marzooq, F.; Saad, H.; Benzina, D.; Al Kawas, S. Dysbiosis of the subgingival microbiome and relation to periodontal disease in association with obesity and overweight. Nutrients 2023, 15, 826. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, Z.; Wang, J.; Su, X.; Yang, J.; Zhang, Q.; Zhang, L. The oral microbiome profile and biomarker in Chinese type 2 diabetes mellitus patients. Endocrine 2020, 68, 564–572. [Google Scholar] [CrossRef]
- Wang, A.; Sun, Y.; Xu, M.; Qin, Q.; Zhu, W.; Xu, Y. The relationship with and effect of oral microbiota on NLRP3 inflammatory pathway in type 2 diabetes mellitus. Arch. Oral Biol. 2023, 155, 105801. [Google Scholar] [CrossRef]
- Guo, X.-j.; Dai, S.-x.; Lou, J.-d.; Ma, X.-x.; Hu, X.-j.; Tu, L.-p.; Cui, J.; Lu, H.; Jiang, T.; Xu, J.-t. Distribution characteristics of oral microbiota and its relationship with intestinal microbiota in patients with type 2 diabetes mellitus. Front. Endocrinol. 2023, 14, 1119201. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, F.; Cheng, X.; Wang, D.; Wang, Y.; Pan, Y.; Chen, L.; Wang, W.; Tian, Y. Dysbiosis of oral microbiota and metabolite profiles associated with type 2 diabetes mellitus. Microbiol. Spectr. 2023, 11, e03796-22. [Google Scholar] [CrossRef] [PubMed]
- Prince, Y.; Davison, G.M.; Davids, S.F.; Erasmus, R.T.; Kengne, A.P.; Graham, L.M.; Raghubeer, S.; Matsha, T.E. The relationship between the oral microbiota and metabolic syndrome. Biomedicines 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Dong, T.; Yuan, K.-Y.; Wang, N.-J.; Xia, F.-Z.; Liu, D.; Wang, Z.-M.; Ma, R.; Lu, Y.-L.; Huang, Z.-W. Shifts in the bacterial community of supragingival plaque associated with metabolic-associated fatty liver disease. Front. Cell. Infect. Microbiol. 2020, 10, 581888. [Google Scholar] [CrossRef]
- Takagi, K.; Tamura, Y.; Narita, N.; Komatsu, S.; Yamazaki, S.; Matsumura, A.; Kubota, K.; Matsumiya, T.; Sawada, K.; Nakaji, S. Involvement of Megasphaera in the oral microbiome and dyslipidemia onset: Evidence from a community-based study in Japan. Folia Microbiol. 2025, 1–12, online ahead of print. [Google Scholar] [CrossRef]
- San-Cristobal, R.; Navas-Carretero, S.; Milagro, F.I.; Riezu-Boj, J.I.; Guruceaga, E.; Celis-Morales, C.; Livingstone, K.M.; Brennan, L.; Lovegrove, J.A.; Daniel, H. Gene methylation parallelisms between peripheral blood cells and oral mucosa samples in relation to overweight. J. Physiol. Biochem. 2016, 73, 465–474. [Google Scholar] [CrossRef]
- Kalea, A.; Hoteit, R.; Suvan, J.; Lovering, R.; Palmen, J.; Cooper, J.; Khodiyar, V.; Harrington, Z.; Humphries, S.; D’Aiuto, F. Upregulation of gingival tissue miR-200b in obese periodontitis subjects. J. Dent. Res. 2015, 94, 59S–69S. [Google Scholar] [CrossRef]
- Byun, J.-S.; Lee, H.Y.; Tian, J.; Moon, J.S.; Choi, J.; Lee, S.-H.; Kim, Y.-G.; Yi, H.-S. Effect of salivary exosomal miR-25-3p on periodontitis with insulin resistance. Front. Immunol. 2022, 12, 775046. [Google Scholar]
- Liu, L.; Xiao, Z.; Ding, W.; Wen, C.; Ge, C.; Xu, K.; Cao, S. Relationship between microRNA expression and inflammatory factors in patients with both type 2 diabetes mellitus and periodontal disease. Am. J. Transl. Res. 2022, 14, 6627. [Google Scholar]
- Radović, N.; Nikolić Jakoba, N.; Petrović, N.; Milosavljević, A.; Brković, B.; Roganović, J. Micro RNA-146a and micro RNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients. J. Clin. Periodontol. 2018, 45, 663–671. [Google Scholar] [CrossRef]
- Al-Rawi, N.H.; Al-Marzooq, F.; Al-Nuaimi, A.S.; Hachim, M.Y.; Hamoudi, R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS ONE 2020, 15, e0237004. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Wang, P.-Y.; Lin, C.-Y.; Hung, S.-C. Association of the oral microbiome with cognitive function among older adults: Nhanes 2011–2012. J. Nutr. Health Aging 2024, 28, 100264. [Google Scholar] [CrossRef]
- Qiao, Y.; Gong, W.; Li, B.; Xu, R.; Wang, M.; Shen, L.; Shi, H.; Li, Y. Oral microbiota changes contribute to autism spectrum disorder in mice. J. Dent. Res. 2022, 101, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.-y.; Hau, C.C.-f.; Tong, W.-m.; Watt, R.M.; Yiu, C.K.Y.; Shum, K.K.-m. Alterations of oral microbiota in young children with autism: Unraveling potential biomarkers for early detection. J. Dent. 2025, 152, 105486. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xu, M.; Xiao, K.; Yu, K. Association between oral microbiome and depression: A population-based study. J. Affect. Disord. 2025, 379, 441–447. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, C.; Shi, C.; Zhai, T.; Zhu, J.; Wei, D.; Shen, J.; Liu, Z.; Jia, K.; Zhao, L. Mechanisms of oral microflora in Parkinson’s disease. Behav. Brain Res. 2024, 474, 115200. [Google Scholar] [CrossRef]
- Forsyth, C.B.; Shannon, K.M.; Kordower, J.H.; Voigt, R.M.; Shaikh, M.; Jaglin, J.A.; Estes, J.D.; Dodiya, H.B.; Keshavarzian, A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 2011, 6, e28032. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, X.; Xu, S.; Wu, C.; Song, Y.; Qin, N.; Chen, S.-D.; Xiao, Q. Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav. Immun. 2018, 70, 194–202. [Google Scholar]
- Panzarella, V.; Mauceri, R.; Baschi, R.; Maniscalco, L.; Campisi, G.; Monastero, R. Oral health status in subjects with amnestic mild cognitive impairment and Alzheimer’s disease: Data from the Zabut Aging Project. J. Alzheimer’s Dis. 2022, 87, 173–183. [Google Scholar]
- Wan, J.; Fan, H. Oral microbiome and alzheimer’s disease. Microorganisms 2023, 11, 2550. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef] [PubMed]
- Haditsch, U.; Roth, T.; Rodriguez, L.; Hancock, S.; Cecere, T.; Nguyen, M.; Arastu-Kapur, S.; Broce, S.; Raha, D.; Lynch, C.C. Alzheimer’s disease-like neurodegeneration in Porphyromonas gingivalis infected neurons with persistent expression of active gingipains. J. Alzheimer’s Dis. 2020, 75, 1361–1376. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-C.; Tsai, S.-J.; Hsu, J.-W.; Huang, K.-L.; Chen, T.-J.; Chen, M.-H. Risk of periodontitis in adolescents with bipolar disorder: A cohort study of 21,255 subjects. Eur. Child Adolesc. Psychiatry 2024, 33, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Fatima, Z.; Bey, A.; Azmi, S.; Gupta, N.; Khan, A. Mental depression as a risk factor for periodontal disease: A case–control study. Eur. J. Gen. Dent. 2016, 5, 86–89. [Google Scholar] [CrossRef]
- Yolken, R.; Prandovszky, E.; Severance, E.G.; Hatfield, G.; Dickerson, F. The oropharyngeal microbiome is altered in individuals with schizophrenia and mania. Schizophr. Res. 2021, 234, 51–57. [Google Scholar] [CrossRef]
- Ling, Z.; Cheng, Y.; Liu, X.; Yan, X.; Wu, L.; Shao, L.; Gao, J.; Lei, W.; Song, Q.; Zhao, L. Altered oral microbiota and immune dysfunction in Chinese elderly patients with schizophrenia: A cross-sectional study. Transl. Psychiatry 2023, 13, 383. [Google Scholar] [CrossRef]
- Lin, D.; Fu, Z.; Liu, J.; Perrone-Bizzozero, N.; Hutchison, K.E.; Bustillo, J.; Du, Y.; Pearlson, G.; Calhoun, V.D. Association between the oral microbiome and brain resting state connectivity in schizophrenia. Schizophr. Res. 2024, 270, 392–402. [Google Scholar] [CrossRef]
- Huang, H.; Yang, N.; Chen, M.-m.; Chen, X.; Chen, W.; Li, X.; Chen, Y.; Deng, Z.; Zhou, W.; Xu, S.-x. Altered oral health and microbiota in drug-free patients with schizophrenia. BMC Psychiatry 2025, 25, 274. [Google Scholar] [CrossRef]
- Guo, H.; Li, B.; Yao, H.; Liu, D.; Chen, R.; Zhou, S.; Ji, Y.; Zeng, L.; Du, M. Profiling the oral microbiomes in patients with Alzheimer’s disease. Oral Dis. 2023, 29, 1341–1355. [Google Scholar] [CrossRef]
- Na, H.S.; Jung, N.Y.; Song, Y.; Kim, S.Y.; Kim, H.J.; Lee, J.Y.; Chung, J. A distinctive subgingival microbiome in patients with periodontitis and Alzheimer’s disease compared with cognitively unimpaired periodontitis patients. J. Clin. Periodontol. 2024, 51, 43–53. [Google Scholar] [CrossRef]
- Sritana, N.; Phungpinij, A. Analysis of Oral Microbiota in Elderly Thai Patients with Alzheimer’s Disease and Mild Cognitive Impairment. Int. J. Environ. Res. Public Health 2024, 21, 1242. [Google Scholar] [CrossRef]
- Mihaila, D.; Donegan, J.; Barns, S.; LaRocca, D.; Du, Q.; Zheng, D.; Vidal, M.; Neville, C.; Uhlig, R.; Middleton, F.A. The oral microbiome of early stage Parkinson’s disease and its relationship with functional measures of motor and non-motor function. PLoS ONE 2019, 14, e0218252. [Google Scholar] [CrossRef] [PubMed]
- Manghi, P.; Filosi, M.; Zolfo, M.; Casten, L.G.; Garcia-Valiente, A.; Mattevi, S.; Heidrich, V.; Golzato, D.; Perini, S.; Thomas, A.M. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders. Nat. Commun. 2024, 15, 9743. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, B.; Lapsley, C.; McDowell, A.; Miliotis, G.; McLafferty, M.; O’Neill, S.M.; Coleman, S.; McGinnity, T.M.; Bjourson, A.J.; Murray, E.K. Variations in the oral microbiome are associated with depression in young adults. Sci. Rep. 2021, 11, 15009. [Google Scholar] [CrossRef] [PubMed]
- Agranyoni, O.; Rowley, T.; Johnson, S.B.; Volk, H.; Schleif, W.; Hernandez, R.G.; Klein, L.M.; Yolken, R.H.; Sabunciyan, S. Oral microbiome composition is associated with depressive symptoms during pregnancy. Brain Behav. Immun. Health 2025, 45, 100978. [Google Scholar] [CrossRef]
- Nohesara, S.; Abdolmaleky, H.M.; Dickerson, F.; Pinto-Tomas, A.A.; Jeste, D.V.; Thiagalingam, S. Associations of microbiome pathophysiology with social activity and behavior are mediated by epigenetic modulations: Avenues for designing innovative therapeutic strategies. Neurosci. Biobehav. Rev. 2025, 174, 106208. [Google Scholar] [CrossRef]
- Abdolmaleky, H.M.; Nohesara, S.; Zhou, J.-R.; Thiagalingam, S. Epigenetics in evolution and adaptation to environmental challenges: Pathways for disease prevention and treatment. Epigenomics 2025, 17, 317–333. [Google Scholar] [CrossRef]
- Hernandez Martinez, C.d.J.; Glessner, J.; Finoti, L.S.; Silva, P.F.; Messora, M.; Coletta, R.D.; Hakonarson, H.; Palioto, D.B. Methylome-wide analysis in systemic microbial-induced experimental periodontal disease in mice with different susceptibility. Front. Cell. Infect. Microbiol. 2024, 14, 1369226. [Google Scholar] [CrossRef]
- Takano, M.; Nishihara, R.; Sugano, N.; Matsumoto, K.; Yamada, Y.; Takane, M.; Fujisaki, Y.; Ito, K. The effect of systemic anti-tumor necrosis factor-alpha treatment on Porphyromonas gingivalis infection in type 2 diabetic mice. Arch. Oral Biol. 2010, 55, 379–384. [Google Scholar] [CrossRef]
- Palioto, D.B.; Finoti, L.S.; Kinane, D.F.; Benakanakere, M. Epigenetic and inflammatory events in experimental periodontitis following systemic microbial challenge. J. Clin. Periodontol. 2019, 46, 819–829. [Google Scholar] [CrossRef]
- Niwa, T.; Ushijima, T. Induction of epigenetic alterations by chronic inflammation and its significance on carcinogenesis. Adv. Genet. 2010, 71, 41–56. [Google Scholar]
- Claycombe, K.J.; Brissette, C.A.; Ghribi, O. Epigenetics of inflammation, maternal infection, and nutrition. J. Nutr. 2015, 145, 1109S–1115S. [Google Scholar] [CrossRef] [PubMed]
- Ligthart, S.; Marzi, C.; Aslibekyan, S.; Mendelson, M.M.; Conneely, K.N.; Tanaka, T.; Colicino, E.; Waite, L.L.; Joehanes, R.; Guan, W. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016, 17, 255. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Sorolla, C.; Garcia-Gomez, A.; Català-Moll, F.; Toledano, V.; Ciudad, L.; Avendaño-Ortiz, J.; Maroun-Eid, C.; Martín-Quirós, A.; Martínez-Gallo, M.; Ruiz-Sanmartín, A. Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis. Genome Med. 2019, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Jiao, Y.; Larsson, L.; Almeida, L.; Garaicoa-Pazmino, C.; Le, J.; Squarize, C.; Inohara, N.; Giannobile, W.V.; Castilho, R. Epigenetic modifications of histones in periodontal disease. J. Dent. Res. 2016, 95, 215–222. [Google Scholar] [CrossRef]
- Liaw, A.; Liu, C.; Bartold, M.; Ivanovski, S.; Han, P. Salivary histone deacetylase in periodontal disease: A cross-sectional pilot study. J. Periodontal Res. 2023, 58, 433–443. [Google Scholar] [CrossRef]
- Liaw, A.; Liu, C.; Bartold, M.; Ivanovski, S.; Han, P. Effect of non-surgical periodontal therapy on salivary histone deacetylases expression: A prospective clinical study. J. Clin. Periodontol. 2024, 51, 926–935. [Google Scholar] [CrossRef]
- Görgülü, N.G.; Doğan, B. Effect of non-surgical periodontal treatment on salivary and serum biomarkers in stage III grade B and C periodontitis. J. Periodontol. 2022, 93, 1191–1205. [Google Scholar] [CrossRef]
- Olsen, I.; Singhrao, S.K.; Osmundsen, H. Periodontitis, pathogenesis and progression: miRNA-mediated cellular responses to Porphyromonas gingivalis. J. Oral Microbiol. 2017, 9, 1333396. [Google Scholar] [CrossRef]
- Nayar, G.; Gauna, A.; Chukkapalli, S.; Velsko, I.; Kesavalu, L.; Cha, S. Polymicrobial infection alter inflammatory microRNA in rat salivary glands during periodontal disease. Anaerobe 2016, 38, 70–75. [Google Scholar] [CrossRef]
- Sharma, R.; Frasch, M.G.; Zelgert, C.; Zimmermann, P.; Fabre, B.; Wilson, R.; Waldenberger, M.; MacDonald, J.W.; Bammler, T.K.; Lobmaier, S.M. Maternal–fetal stress and DNA methylation signatures in neonatal saliva: An epigenome-wide association study. Clin. Epigenetics 2022, 14, 87. [Google Scholar] [CrossRef]
- Ragusa, M.; Santagati, M.; Mirabella, F.; Lauretta, G.; Cirnigliaro, M.; Brex, D.; Barbagallo, C.; Domini, C.N.; Gulisano, M.; Barone, R. Potential associations among alteration of salivary miRNAs, saliva microbiome structure, and cognitive impairments in autistic children. Int. J. Mol. Sci. 2020, 21, 6203. [Google Scholar] [CrossRef] [PubMed]
- DiCarlo, G.E.; Mabry, S.J.; Cao, X.; McMillan, C.; Woynaroski, T.G.; Harrison, F.E.; Reddy, I.A.; Matthies, H.J.; Flynn, C.R.; Wallace, M.T. Autism-associated variant in the SLC6A3 gene alters the oral microbiome and metabolism in a murine model. Front. Psychiatry 2021, 12, 655451. [Google Scholar] [CrossRef] [PubMed]
- Mercante, F.; Abbaspour, A.; Pucci, M.; Sabatucci, A.; Rania, M.; Konstantinidou, F.; Gatta, V.; Stuppia, L.; Cifani, C.; Bulik, C.M. Epigenetic alterations and microbiota changes in the saliva of individuals with binge-eating spectrum disorders compared with normal weight healthy controls. Life Sci. 2025, 374, 123695. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, L.; Ren, L.; Zhu, R.; Jiang, Y.; Qiao, Y.; Li, Y. Dysbiosis and Metabolic Dysregulation of Salivary Microbiota in Schizophrenia. J. Multidiscip. Healthc. 2025, 18, 813–825. [Google Scholar] [CrossRef]
- François, M.; Pascovici, D.; Wang, Y.; Vu, T.; Liu, J.-W.; Beale, D.; Hor, M.; Hecker, J.; Faunt, J.; Maddison, J. Saliva Proteome, Metabolome and Microbiome Signatures for Detection of Alzheimer’s Disease. Metabolites 2024, 14, 714. [Google Scholar] [CrossRef]
- Lemon, K.P.; Klepac-Ceraj, V.; Schiffer, H.K.; Brodie, E.L.; Lynch, S.V.; Kolter, R. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. mBio 2010, 1, e00129-10. [Google Scholar] [CrossRef]
- Hicks, S.D.; Uhlig, R.; Afshari, P.; Williams, J.; Chroneos, M.; Tierney-Aves, C.; Wagner, K.; Middleton, F.A. Oral microbiome activity in children with autism spectrum disorder. Autism Res. 2018, 11, 1286–1299. [Google Scholar] [CrossRef]
- Nohesara, S.; Mostafavi Abdolmaleky, H.; Pirani, A.; Pettinato, G.; Thiagalingam, S. The Obesity–Epigenetics–Microbiome Axis: Strategies for Therapeutic Intervention. Nutrients 2025, 17, 1564. [Google Scholar] [CrossRef]
- Costa, C.F.; Correia-de-Sá, T.; Araujo, R.; Barbosa, F.; Burnet, P.W.; Ferreira-Gomes, J.; Sampaio-Maia, B. The oral-gut microbiota relationship in healthy humans: Identifying shared bacteria between environments and age groups. Front. Microbiol. 2024, 15, 1475159. [Google Scholar] [CrossRef]
- Bao, J.; Li, L.; Zhang, Y.; Wang, M.; Chen, F.; Ge, S.; Chen, B.; Yan, F. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota. Int. J. Oral Sci. 2022, 14, 32. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Jiao, Y.; Gillilland, M.G.; Hayashi, A.; Imai, J.; Sugihara, K.; Miyoshi, M.; Brazil, J.C.; Kuffa, P. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 2020, 182, 447–462.e414. [Google Scholar] [CrossRef] [PubMed]
- Irie, K.; Azuma, T.; Tomofuji, T.; Yamamoto, T. Exploring the role of IL-17A in oral dysbiosis-associated periodontitis and its correlation with systemic inflammatory disease. Dent. J. 2023, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, P.; Xu, F.; Zheng, Y.; Zhao, H. Advances in the study of IL-17 in neurological diseases and mental disorders. Front. Neurol. 2023, 14, 1284304. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Mao, T.; Fan, J.; Shen, Y.; Xue, L.; Du, K.; Li, Y.; Wang, L.; Wang, X. IL-17A Induces Circadian Disruptions Through the Epigenetic Repression of BMAL1 in Mice With Alzheimer’s Disease. J. Cell. Mol. Med. 2025, 29, e70546. [Google Scholar] [CrossRef]
- Schamarek, I.; Anders, L.; Chakaroun, R.M.; Kovacs, P.; Rohde-Zimmermann, K. The role of the oral microbiome in obesity and metabolic disease: Potential systemic implications and effects on taste perception. Nutr. J. 2023, 22, 28. [Google Scholar] [CrossRef]
- Lê, S.; Cecchin-Albertoni, C.; Thomas, C.; Kemoun, P.; Minty, M.; Blasco-Baque, V. The role of dysbiotic oral microbiota in cardiometabolic diseases: A narrative review. Diagnostics 2023, 13, 3184. [Google Scholar] [CrossRef]
- Al-Roub, A.; Al Madhoun, A.; Akhter, N.; Thomas, R.; Miranda, L.; Jacob, T.; Al-Ozairi, E.; Al-Mulla, F.; Sindhu, S.; Ahmad, R. IL-1β and TNFα cooperativity in regulating IL-6 expression in adipocytes depends on CREB binding and H3K14 acetylation. Cells 2021, 10, 3228. [Google Scholar] [CrossRef]
- Suárez, L.J.; Garzón, H.; Arboleda, S.; Rodríguez, A. Oral dysbiosis and autoimmunity: From local periodontal responses to an imbalanced systemic immunity. A review. Front. Immunol. 2020, 11, 591255. [Google Scholar] [CrossRef]
- Luo, H.; Wu, B.; Kamer, A.R.; Adhikari, S.; Sloan, F.; Plassman, B.L.; Tan, C.; Qi, X.; Schwartz, M.D. Oral health, diabetes, and inflammation: Effects of oral hygiene behaviour. Int. Dent. J. 2022, 72, 484–490. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Chen, Y.; Yu, L.; Zhou, J.; Wang, N.; Liu, T.; Fu, C. Associations of oral hygiene with incident hypertension and type 2 diabetes mellitus: A population based cohort study in Southwest China. J. Clin. Hypertens. 2022, 24, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Avcu, N.; Avcu, F.; Beyan, C.; Ural, A.U.; ad Kaptan, K.; Özyurt, M.; Nevruz, O.; Yalçin, A. The relationship between gastric-oral Helicobacter pylori and oral hygiene in patients with vitamin B12–deficiency anemia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2001, 92, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Ge, J.; Pan, Q.; Hu, N.; Hua, F. Salivary microbiome variations in type 2 diabetes mellitus patients with different stages of periodontitis. BMC Oral Health 2024, 24, 1424. [Google Scholar] [CrossRef] [PubMed]
- Ebersole, J.L.; Kirakodu, S.S.; Zhang, X.; Dawson, D., III; Miller, C.S. Salivary microbiome and biomarker characteristics of diabetics with periodontitis. Mol. Oral Microbiol. 2025, 40, 37–49. [Google Scholar] [CrossRef]
- Qin, H.; Li, G.; Xu, X.; Zhang, C.; Zhong, W.; Xu, S.; Yin, Y.; Song, J. The role of oral microbiome in periodontitis under diabetes mellitus. J. Oral Microbiol. 2022, 14, 2078031. [Google Scholar] [CrossRef]
- Li, H.; Zou, Y.; Ding, G. Dietary Factors Associated with Dental Erosion: A Meta-Analysis. PLoS ONE 2012, 7, e42626. [Google Scholar] [CrossRef]
- Jagelavičienė, E.; Vaitkevičienė, I.; Šilingaitė, D.; Šinkūnaitė, E.; Daugėlaitė, G. The relationship between vitamin D and periodontal pathology. Medicina 2018, 54, 45. [Google Scholar] [CrossRef]
- Graells, J.; Ojeda, R.M.; Muniesa, C.; Gonzalez, J.; Saavedra, J. Glossitis with linear lesions: An early sign of vitamin B12 deficiency. J. Am. Acad. Dermatol. 2009, 60, 498–500. [Google Scholar] [CrossRef]
- Ramsey, D.; Muskin, P.R. Vitamin deficiencies and mental health: How are they linked. Curr. Psychiatry 2013, 12, 37–43. [Google Scholar]
- Sultana, O.F.; Hia, R.A.; Reddy, P.H. A combinational therapy for preventing and delaying the onset of alzheimer’s disease: A focus on probiotic and vitamin co-supplementation. Antioxidants 2024, 13, 202. [Google Scholar] [CrossRef]
- Wang, S.-D.; Wang, X.; Zhao, Y.; Xue, B.-H.; Wang, X.-T.; Chen, Y.-X.; Zhang, Z.-Q.; Tian, Y.-R.; Xie, F.; Qian, L.-J. Homocysteine-induced disturbances in DNA methylation contribute to development of stress-associated cognitive decline in rats. Neurosci. Bull. 2022, 38, 887–900. [Google Scholar] [CrossRef]
- Holmes, H.E.; Valentin, R.E.; Jernerén, F.; de Jager Loots, C.A.; Refsum, H.; Smith, A.D.; Guarente, L.; Dellinger, R.W.; Sampson, D.; Initiative, A.s.D.N. Elevated homocysteine is associated with increased rates of epigenetic aging in a population with mild cognitive impairment. Aging Cell 2024, 23, e14255. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Kuo, H.K.; Lai, Y.L. The association between serum folate levels and periodontal disease in older adults: Data from the National Health and Nutrition Examination Survey 2001/02. J. Am. Geriatr. Soc. 2007, 55, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Roffman, J.L.; Lamberti, J.S.; Achtyes, E.; Macklin, E.A.; Galendez, G.C.; Raeke, L.H.; Silverstein, N.J.; Smoller, J.W.; Hill, M.; Goff, D.C. Randomized multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia. JAMA Psychiatry 2013, 70, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P.; Kumar, S.; Vaibhav, K. Role of Folic acid as adjuvant treatment in Schizophrenia: A randomized controlled trial. Eur. Psychiatry 2023, 66, S634–S635. [Google Scholar]
- An, Y.; Feng, L.; Zhang, X.; Wang, Y.; Wang, Y.; Tao, L.; Qin, Z.; Xiao, R. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin. Epigenetics 2019, 11, 139. [Google Scholar] [CrossRef]
- Buzatu, R.; Luca, M.M.; Bumbu, B.A. Does Vitamin C Supplementation Provide a Protective Effect in Periodontal Health? A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 8598. [Google Scholar] [CrossRef]
- Guo, H.; Ding, J.; Liu, Q.; Li, Y.; Liang, J.; Zhang, Y. Vitamin C and metabolic syndrome: A meta-analysis of observational studies. Front. Nutr. 2021, 8, 728880. [Google Scholar] [CrossRef]
- Plevin, D.; Galletly, C. The neuropsychiatric effects of vitamin C deficiency: A systematic review. BMC Psychiatry 2020, 20, 315. [Google Scholar] [CrossRef]
- Blaschke, K.; Ebata, K.T.; Karimi, M.M.; Zepeda-Martínez, J.A.; Goyal, P.; Mahapatra, S.; Tam, A.; Laird, D.J.; Hirst, M.; Rao, A. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 2013, 500, 222–226. [Google Scholar] [CrossRef]
- Liang, F.; Zhou, Y.; Zhang, Z.; Zhang, Z.; Shen, J. Association of vitamin D in individuals with periodontitis: An updated systematic review and meta-analysis. BMC Oral Health 2023, 23, 387. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, J. Serum vitamin D status and metabolic syndrome: A systematic review and dose-response meta-analysis. Nutr. Res. Pract. 2021, 15, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Chai, B.; Gao, F.; Wu, R.; Dong, T.; Gu, C.; Lin, Q.; Zhang, Y. Vitamin D deficiency as a risk factor for dementia and Alzheimer’s disease: An updated meta-analysis. BMC Neurol. 2019, 19, 284. [Google Scholar] [CrossRef] [PubMed]
- Wilczynski, K.M.; Checinska, K.; Kulczyk, K.; Janas-Kozik, M. Vitamin D deficiency and depressive symptoms: Meta-analysis of studies. Psychiatr. Pol. 2022, 56, 1327–1344. [Google Scholar]
- Zhu, J.-l.; Luo, W.-w.; Cheng, X.; Li, Y.; Zhang, Q.-z.; Peng, W.-x. Vitamin D deficiency and schizophrenia in adults: A systematic review and meta-analysis of observational studies. Psychiatry Res. 2020, 288, 112959. [Google Scholar] [CrossRef]
- Jiang, X.; Xia, L.; Tang, T.; Fan, X.; Wang, R.; Wang, M.; Yang, W.; Yan, J.; Qi, K.; Li, P. Decreased vitamin D bio-availability with altered DNA methylation of its metabolism genes in association with the metabolic disorders among the school-aged children with degree I, II, and III obesity. J. Nutr. Biochem. 2024, 129, 109627. [Google Scholar] [CrossRef]
- Xue, J.; Schoenrock, S.A.; Valdar, W.; Tarantino, L.M.; Ideraabdullah, F.Y. Maternal vitamin D depletion alters DNA methylation at imprinted loci in multiple generations. Clin. Epigenetics 2016, 8, 107. [Google Scholar] [CrossRef]
- Fischbach, M.A. Microbiome: Focus on causation and mechanism. Cell 2018, 174, 785–790. [Google Scholar] [CrossRef]
- Walter, J.; Armet, A.M.; Finlay, B.B.; Shanahan, F. Establishing or exaggerating causality for the gut microbiome: Lessons from human microbiota-associated rodents. Cell 2020, 180, 221–232. [Google Scholar] [CrossRef]
- Homayouni Rad, A.; Pourjafar, H.; Mirzakhani, E. A comprehensive review of the application of probiotics and postbiotics in oral health. Front. Cell. Infect. Microbiol. 2023, 13, 1120995. [Google Scholar] [CrossRef]
- Luo, S.-C.; Wei, S.-M.; Luo, X.-T.; Yang, Q.-Q.; Wong, K.-H.; Cheung, P.C.; Zhang, B.-B. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: An oral microbiota perspective. npj Biofilms Microbiomes 2024, 10, 14. [Google Scholar] [CrossRef]


| Metabolic Disorder | Type of Study/Number of Participants | Microbiota Testing Method/Relevant Pathway or Oral Disease | Key Findings and Affected Oral Bacteria | Ref. |
|---|---|---|---|---|
| Obesity | Human/9 healthy normal weight and 10 classed as obese | 16S rRNA gene sequening/periodontal inflammation | Higher abundance of the Capnocytophaga genus (2.47% vs. 0.27%) in subjects classed as obese vs. normal weight | [48] |
| Obesity | Human/34 healthy normal weight and 11 classed as obese | 16S rRNA gene sequening/periodontal inflammation | Reduction in OM diversity and an elevation in periodontal inflammation; greater abundance of Staphylococcaceae (1.13% vs. 0.48%) in periodontal microbiota in subjects classed as obese vs. normal weight | [49] |
| Obesity | Human/25 classed as obese or overweight vs. 25 of normal weight | 16S rRNA gene sequencing/moderate–severe periodontitis | Increased abundance of periopathogens, including Aggregatibacter and actinomycetemcomitans in subjects with obesity | [50] |
| Type 2 diabetes (T2DM) | Human/280 patients with T2DM and 162 healthy controls | 16S rRNA gene sequencing/increased risk of periodontitis | Increased Neisseria (14.12%), Streptococcus, Haemophilus, and Pseudomonas genera, decreased Acinetobacteria, and elevated Firmicutes/Bacteroidetes ratio (7.6% vs. 2.74%) in T2DM vs. controls | [51] |
| T2DM | Human/15 patients with T2DM vs. controls | 16S rRNA gene sequencing/inflammation | Reduced saliva Fusobacteriota and Campilobacterota and increased Proteobacteria abundance in T2DM, triggering the NLRP3 inflammasome pathway | [52] |
| T2DM | Human/183 patients with type 2 diabetes and 74 controls | 16S rRNA gene sequencing/inflammatory mediators of oral and intestinal flora | Higher oral Streptococcus, Actinobacteria, Rothia, Cetobacterium, and intestinal Bifidobacterium, Streptococcus, and Blautia correlate with T2DM; upregulated glycine betaine degradation pathway in oral and intestinal flora | [53] |
| T2DM | Human/10 patients with type 2 diabetes and 10 controls | Metagenomic sequencing/OM dysbiosis in T2DM and increased risk of oral diseases | Increased periodontal pathogens like P. gingivalis and Prevotella melaninogenica and harmful salivary metabolites such as cadaverine and L-(+)-leucine | [54] |
| Metabolic syndrome (MetS) | Human/128 subgingival plaque samples from participants with and without MetS | Metagenomic and 16S rRNA gene sequencing/inflammation | Increased abundance of Actinomyces dentalis, Actinomyces naeslundii, Actinomyces viscosus, Corynebacterium matruchotii, Leptotrichia buccalis, and Streptococcus sanguinis in MetS | [55] |
| Metabolic-associated fatty liver disease (MAFLD) | Human/24 patients with MAFLD and 22 healthy controls | 16S rRNA gene sequencing/chronic low-grade inflammation | Increased Actinomyces and Prevotella 2 spp. in supragingival plaques in MAFLD; insulin resistance correlates with the abundance of Granulicatella, Veillonella, Streptococcus, and Scardovia spp., and obesity with Streptococcus, Olsenella, Scardovia, and Selenomonas spp. | [56] |
| Dyslipidemia | Human/763 tongue coating samples | 16S rRNA gene sequencing/lipid metabolism | Increased relative abundance of Megasphaera in dyslipidemia; dyslipidemia is linked to the abundance of Veillonella, Atopobium, Stomatobaculum, Tanneralla, and Megasphaera | [57] |
| Neuropsychiatric Disorders | Study Type/Samples/Microbiota Testing Method | Oral Microbiota Changes in Patients | Effects on the Disease State | Ref. |
|---|---|---|---|---|
| Schizophrenia (SCZ) and mania | Human/throat swab/16S rRNA gene sequencing | Decreased Neisseria subflava, Weeksellaceae, and Prevotella and increased Streptococci | Correlation between Neisseria subflava and cognitive performance | [77] |
| SCZ | Human/swabs from the middle site of the tongue/Illumina MiSeq sequencing | Decreased Prevotella and Veillonella; increased Streptococcus and Fusobacterium | OM composition affects peripheral inflammatory cytokines | [78] |
| SCZ | Human/saliva/16S rRNA gene sequencing | Increased in some Gram-positive (Actinomyces, Rothia, Atopobium, Streptococcus) and Gram-negative bacteria (Prevotella, Leptotrichia Porphyromonas, Lautropia, and Capnocytophaga) | OM dysbiosis is associated with brain functional connectivity changes | [79] |
| SCZ | Human/saliva/16S rRNA gene sequencing | Decreased Actinobacteriota in patients | A poor oral environment is associated with altered OM in SCZ | [80] |
| Alzheimer’s disease (AD) | Human/saliva and periodontal samples/16S rRNA gene sequencing | Streptococcus oralis and Porphyromonas gingivalis are the predominant salivary and periodontal bacteria, respectively | Association between altered OM and cognition in AD | [81] |
| AD vs. cognitively unimpaired patients with periodontitis | Human/buccal, supragingival, and subgingival plaque samples/16S rRNA gene sequencing | Increased Atopobium rimae, Dialister pneumosintes, Olsenella sp. HMT 807, Saccharibacteria (TM7) sp. HMT 348, and several species of Prevotella in AD | Direct association between periodontitis caused by OM dysbiosis and greater cognitive decline | [82] |
| AD | Human/saliva/16S rRNA gene sequencing | Increased Fusobacteriota and Peptostreptococcaceae and decreased Veillonella vs. the MCI and controls | Association between abnormal immune responses and inflammatory processes and OM changes in AD | [83] |
| Parkinson’s disease (PD) | Human/saliva/shotgun metatranscriptomic profiling | Decrease in a bacteriophage (Streptococcus phage PhiSpn 200), and increase in three yeast species (Candida albicans, Candida dubliniensis, and Saccharomyces cerevisiae) in PD | Significant alterations in several indices of motor, cognitive, and sensory function | [84] |
| Autism spectrum disorders (ASDs) | Human/saliva/metagenomic approach | Increased Actinomyces hongkongensis, Actinomyces johnsonii, Cutibacterium acnes, the Eikenella species NML 130454, and Rothia dentocariosa | Association between the OM composition and cognitive impairments in ASDs | [85] |
| Depression | Human/saliva/16S rRNA gene sequencing | Increased Neisseria spp. and Prevotella nigrescens | OM dysbiosis is associated with depression | [86] |
| Depression | Human/saliva/16S rRNA gene sequencing | Decreased Neisseria genus | Negative correlation between Neisseria genus and pro-inflammatory cytokines | [87] |
| Experiment | Epigenetic Changes | Immunoassays/Outcome | Ref. |
|---|---|---|---|
| Orally administered P. gingivalis in mice to induce periodontitis | Methylation of PI3K/Akt1, Ctnnb1, and Hsp90aa1 | ELISA/increases inflammation (TNF signaling), which is reversed by TNF-α inhibition | [90,91] |
| P. gingivalis gavage in mice, which induces periodontitis | Increases DNMT3b expression, likely due to “repercussion” | Immunofluorescence staining and Procarta Multiplex Cytokine Kit/increases inflammatory markers BTLA and IL-18R1 | [92] |
| Monocytes exposed to LPS or monocytes of patients with sepsis | DNA methylation changes related to inflammatory genes | The cytometric bead array and ELISA/alterations in IL-10 and IL-6 levels | [96] |
| Oral dysbiosis in vivo and oral epithelial cells exposure to LPS in vitro | Induces histone modifications | Immunohistochemistry, immunofluorescence, and immunoblotting/activates the transcriptional coactivators p300/CBP, and promotes NF-κB accumulation | [97] |
| Clinical gingivitis | Downregulates HDAC4, HDAC8, and HDAC10 in saliva in gingivitis, and HDAC4, HDAC6, HDAC8, and HDAC9 in periodontitis | ELISA plate reader/3–6 months non-surgical periodontal therapy improved HDACs changes; decreased salivary MMP-8 and MAF (inflammatory) and increased serum T-SOD (antioxidant) levels | [98,99,100] |
| P. gingivalis infection in THP-1 macrophages or P. gingivalis LPS | Upregulates miR-132 via TLR2/4 and NF-κB signaling and miR-146a | RT-PCR and ELISA/reduces IRAK1/TRAF6 expression and increases IL-1β, IL-6, and TNF-α secretion | [101] |
| In vivo polymicrobial periodontal infection in ApoE−/− mice | Induces miR-146a in periodontal tissues and the spleen | RT-PCR/reduces IRAK1/TRAF6 expression and increases IL-1β, IL-6, and TNF-α secretion [101] | [102] |
| Tannerella abundance in saliva in ASD | Increases salivary miR-141-3p expression | Increases cognitive dysfunction | [104] |
| Increased salivary Bacilli and reduced Lachnospirales in eating disorder | Upregulation of exosomal let-7b-5p, mir-15b-5p, mir-429, and mir-221-3p, and hypomethylation of DAT1 | RT-PCR/increases dopamine transporter (DAT1) gene expression affecting dopamine signaling | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafavi, S.; Nohesara, S.; Pirani, A.; Mostafavi Abdolmaleky, H.; Thiagalingam, S. Oral–Gut Microbiota Crosstalk and Epigenetic Targets in Metabolic and Neuropsychiatric Diseases. Nutrients 2025, 17, 3367. https://doi.org/10.3390/nu17213367
Mostafavi S, Nohesara S, Pirani A, Mostafavi Abdolmaleky H, Thiagalingam S. Oral–Gut Microbiota Crosstalk and Epigenetic Targets in Metabolic and Neuropsychiatric Diseases. Nutrients. 2025; 17(21):3367. https://doi.org/10.3390/nu17213367
Chicago/Turabian StyleMostafavi, Sahar, Shabnam Nohesara, Ahmad Pirani, Hamid Mostafavi Abdolmaleky, and Sam Thiagalingam. 2025. "Oral–Gut Microbiota Crosstalk and Epigenetic Targets in Metabolic and Neuropsychiatric Diseases" Nutrients 17, no. 21: 3367. https://doi.org/10.3390/nu17213367
APA StyleMostafavi, S., Nohesara, S., Pirani, A., Mostafavi Abdolmaleky, H., & Thiagalingam, S. (2025). Oral–Gut Microbiota Crosstalk and Epigenetic Targets in Metabolic and Neuropsychiatric Diseases. Nutrients, 17(21), 3367. https://doi.org/10.3390/nu17213367

