Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = HBMECs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1095 KB  
Article
In Vitro Model of the Human Blood–Brain Barrier to Explore HTLV-1 Immunopathogenesis
by Ana Beatriz Guimarães, Lucas Bernardo-Menezes, Elisa Azevedo, Almerinda Agrelli, Poliana Silva, Marília Sena, Waldecir Araújo Júnior, George Diniz, Wyndly Daniel Gaião, Claudio Rodrigues, Marton Cavalcante, Lúcio Roberto Castellano, Joelma Souza, Paula Magalhães, Antonio Carlos Vallinoto and Clarice Morais
Curr. Issues Mol. Biol. 2025, 47(10), 818; https://doi.org/10.3390/cimb47100818 - 3 Oct 2025
Viewed by 1163
Abstract
Cellular components and inflammatory mediators involved in the transmigration of HTLV-1-infected cells across the blood–brain barrier (BBB) are not fully understood. This study proposes a BBB model to identify the immunological mechanisms associated with HTLV-1 pathogenesis. PBMCs from individuals with HTLV-1-associated Myelopathy/Tropical Spastic [...] Read more.
Cellular components and inflammatory mediators involved in the transmigration of HTLV-1-infected cells across the blood–brain barrier (BBB) are not fully understood. This study proposes a BBB model to identify the immunological mechanisms associated with HTLV-1 pathogenesis. PBMCs from individuals with HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) (n = 4) or HTLV-1-infected individuals without HAM/TSP (n = 4) were isolated. An indirect cell co-culture was performed between human brain microvascular endothelial (hBMEC) cells and neuroblastoma (SH-SY5Y) cells. PBMCs from healthy individuals (n = 4) were used as a negative control, and MT-2 cells were used as a positive control. Supernatants and cells were collected to quantify inflammatory cytokines and assess cell death after 24, 48, and 72 h. Multiple comparisons were performed using the Kruskal–Wallis test, followed by Fisher’s LSD post hoc analysis. We observed that the production of cytokines IL-6, IL-8, IL-1β, TNF, IL-10, and IL-12p70, as well as the rate of neuronal death, was higher in co-cultures mimicking HAM/TSP carriers compared to HTLV-1-infected individuals without HAM/TSP and controls. Our results suggest that the HAM/TSP condition induces the release of IL-6, IL-8, IL-1β, TNF, IL-10, and IL-12p70, along with the infiltration of mononuclear cells, which may lead to neuronal death. Full article
Show Figures

Figure 1

24 pages, 1381 KB  
Article
Evaluation of the In Vitro Blood–Brain Barrier Transport of Ferula persica L. Bioactive Compounds
by Pouya Mohammadnezhad, Alberto Valdés, Melis Cokdinleyen, Jose A. Mendiola and Alejandro Cifuentes
Int. J. Mol. Sci. 2025, 26(16), 8017; https://doi.org/10.3390/ijms26168017 - 19 Aug 2025
Viewed by 1327
Abstract
Species of the Ferula genus are known for their traditional medicinal applications against diverse illnesses. Our previous study was the first to suggest the cholinesterase inhibitory activity of Ferula persica L. However, the neuroprotective efficacy of therapeutic molecules is often limited by their [...] Read more.
Species of the Ferula genus are known for their traditional medicinal applications against diverse illnesses. Our previous study was the first to suggest the cholinesterase inhibitory activity of Ferula persica L. However, the neuroprotective efficacy of therapeutic molecules is often limited by their ability to cross the blood–brain barrier (BBB) and reach the brain. In the present study, the BBB permeability of the main molecules present in the aerial parts and roots of F. persica L. extracted under optimum conditions was assessed using two well-established methods: the parallel artificial membrane permeability assay (PAMPA) and the HBMEC cell culture in vitro model. The results demonstrated a high permeability of several neuroprotective compounds, such as apigenin, diosmetin, and α-cyperone. Additionally, the neuroprotective potential of F. persica extracts was evaluated using SH-SY5Y neuron-like cells exposed to different insults, including oxidative stress (H2O2), excitotoxicity (L-glutamate), and Aβ1-42 peptide toxicity. However, none of the obtained extracts provided significant protection. This study highlights the importance of in vitro cell culture models for a better understanding of BBB permeability mechanisms and reports the tentative identification of newly formed sulfated metabolites derived from the metabolism of ferulic acid, apigenin, and diosmetin by HBMEC cells. Full article
Show Figures

Graphical abstract

17 pages, 1525 KB  
Article
Clonidine Protects Endothelial Cells from Angiotensin II-Induced Injury via Anti-Inflammatory and Antioxidant Mechanisms
by Bekir Sıtkı Said Ulusoy, Mehmet Cudi Tuncer and İlhan Özdemir
Life 2025, 15(8), 1193; https://doi.org/10.3390/life15081193 - 27 Jul 2025
Cited by 1 | Viewed by 1272
Abstract
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. [...] Read more.
Background: Cerebral aneurysm (CA) is a focal or diffuse pathological dilation of the cerebral arterial wall that arises due to various etiological factors. It represents a serious vascular condition, particularly affecting the elderly, and carries a high risk of rupture and neurological morbidity. Clonidine (CL), an α2-adrenergic receptor agonist, has been reported to suppress aneurysm progression; however, its underlying molecular mechanisms, especially in relation to cerebral endothelial dysfunction, remain unclear. This study aimed to investigate the potential of CL to mitigate CA development by modulating apoptosis, inflammation, and oxidative stress in an Angiotensin II (Ang II)-induced endothelial injury model. Methods: Human brain microvascular endothelial cells (HBMECs) were used to establish an in vitro model of endothelial dysfunction by treating cells with 1 µM Ang II for 48 h. CL was administered 2 h prior to Ang II exposure at concentrations of 0.1, 1, and 10 µM. Cell viability was assessed using the MTT assay. Oxidative stress markers, including reactive oxygen species (ROS) and Nitric Oxide (NO), were measured using 2′,7′–dichlorofluorescin diacetate (DCFDA). Gene expression levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP-2 and MMP-9), high mobility group box 1 (HMGB1), and nuclear factor kappa B (NF-κB) were quantified using RT-qPCR. Levels of proinflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and interferon-gamma (IFN-γ); were measured using commercial ELISA kits. Results: Ang II significantly increased ROS production and reduced NO levels, accompanied by heightened proinflammatory cytokine release and endothelial dysfunction. MTT assay revealed a marked decrease in cell viability following Ang II treatment (34.18%), whereas CL preserved cell viability in a concentration-dependent manner: 44.24% at 0.1 µM, 66.56% at 1 µM, and 81.74% at 10 µM. CL treatment also significantly attenuated ROS generation and inflammatory cytokine levels (p < 0.05). Furthermore, the expression of VEGF, HMGB1, NF-κB, MMP-2, and MMP-9 was significantly downregulated in response to CL. Conclusions: CL exerts a protective effect on endothelial cells by reducing oxidative stress and suppressing proinflammatory signaling pathways in Ang II-induced injury. These results support the potential of CL to mitigate endothelial injury in vitro, though further in vivo studies are required to confirm its translational relevance. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

23 pages, 8153 KB  
Article
SARS-Cov-2 Replication in a Blood–Brain Barrier Model Established with Human Brain Microvascular Endothelial Cells Induces Permeability and Disables ACE2-Dependent Regulation of Bradykinin B1 Receptor
by Sharton Vinicius Antunes Coelho, Gabriela Lisboa e Souza, Bruno Braz Bezerra, Luan Rocha Lima, Isadora Alonso Correa, Dalziza Victalina de Almeida, Rodrigo Pacheco da Silva-Aguiar, Ana Acácia S. Pinheiro, Pierre Sirois, Celso Caruso-Neves, Luciana Jesus da Costa, Julio Scharfstein and Luciana Barros de Arruda
Int. J. Mol. Sci. 2025, 26(12), 5540; https://doi.org/10.3390/ijms26125540 - 10 Jun 2025
Cited by 5 | Viewed by 3061
Abstract
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), [...] Read more.
Endothelial dysfunction plays a central role in COVID-19 pathogenesis, by affecting vascular homeostasis and worsening thromboinflammation. This imbalance may contribute to blood–brain barrier (BBB) disruption, which has been reported in long COVID-19 patients with neurological sequelae. The kallikrein–kinin system (KKS) generates bradykinin (BK), a proinflammatory peptide that induces microvascular leakage via B2R. Under inflammatory conditions, BK is converted to Des-Arg-BK (DABK), which activates B1R, a receptor upregulated in inflamed tissues. DABK is degraded by ACE2, the main SARS-CoV-2 receptor; thus, viral binding and ACE2 downregulation may lead to DABK/B1R imbalance. Here, we investigated these interactions using human brain microvascular endothelial cells (HBMECs), as a model of the BBB. Since endothelial cell lines express low levels of ACE2, HBMECs were modified with an ACE2-carrying pseudovirus. SARS-CoV-2 replication was confirmed by RNA, protein expression, and infectious particles release. Infection upregulated cytokines and endothelial permeability, enhancing viral and leukocyte transmigration. Additionally, viral replication impaired ACE2 function in HBMECs, amplifying the response to DABK, increasing nitric oxide (NO) production, and further disrupting endothelial integrity. Our findings reveal a mechanism by which SARS-CoV-2 impacts the BBB and highlights the ACE2/KKS/B1R axis as a potential contributor to long COVID-19 neurological symptoms. Full article
Show Figures

Figure 1

21 pages, 2427 KB  
Article
Neuroprotective Potential of Tetraselmis chuii Compounds: Insights into Blood–Brain Barrier Permeability and Intestinal Transport
by Melis Cokdinleyen, Alberto Valdés, Huseyin Kara, Elena Ibáñez and Alejandro Cifuentes
Pharmaceuticals 2025, 18(5), 629; https://doi.org/10.3390/ph18050629 - 26 Apr 2025
Cited by 2 | Viewed by 1913
Abstract
Background/Objectives: Alzheimer’s disease (AD) is the most common type of dementia, characterized by complex processes such as neuro-inflammation, oxidative damage, synaptic loss, and neuronal death. Carotenoids are among the potential therapeutic molecules that have attracted attention due to their neuroprotective properties, but their [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) is the most common type of dementia, characterized by complex processes such as neuro-inflammation, oxidative damage, synaptic loss, and neuronal death. Carotenoids are among the potential therapeutic molecules that have attracted attention due to their neuroprotective properties, but their efficacy is limited mainly by their capacity to cross the blood–brain barrier (BBB). Results: The results showed that T. chuii extracts could protect neuronal cells from neurotoxic damage, especially against L-glutamate and H2O2. Moreover, the BBB permeability and the intestinal transport analyses revealed that fucoxanthinol, crocoxanthin, diatoxanthin, neoxanthin, violaxanthin, and prasinoxanthin have diverse permeabilities depending on the incubation time and the cell model used. Fucoxanthinol was the carotenoid with the highest and similar permeability in HBMEC cells (4.41%, 5.13%, and 18.94% at 2, 4, and 24 h, respectively) and Caco-2 cells (7.01%, 8.63%, and 18.36% at the same times), while crocoxanthin, diatoxanthin, and neoxanthin showed different kinetics. Methods: The neuroprotective potential of two extracts obtained from Tetraselmis chuii microalga were evaluated against Aβ1-42-, L-glutamate-, and H2O2-induced toxicities in SH-SY5Y cells. In addition, the BBB permeability and the intestinal transepithelial transport of the main carotenoids present in the extracts were evaluated and compared using two cell culture models, HBMEC and Caco-2 cells. For that aim, the transport of the bioactive molecules across the barriers was evaluated using UHPLC-q-TOF-MS after 2, 4, and 24 h of incubation. Conclusions: These findings indicate that T. chuii is a promising natural source of bioactive compounds to develop functional foods against neurodegenerative diseases. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Figure 1

26 pages, 5853 KB  
Article
Kinin B1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments
by Carolina Batista, João Victor Roza Cruz, Michele Siqueira, João Bosco Pesquero, Joice Stipursky and Fabio de Almeida Mendes
Pharmaceuticals 2025, 18(4), 591; https://doi.org/10.3390/ph18040591 - 18 Apr 2025
Cited by 1 | Viewed by 1582
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical [...] Read more.
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

29 pages, 2363 KB  
Article
Human Brain Endothelial Cell-Derived Extracellular Vesicles Reduce Toxoplasma gondii Infection In Vitro in Human Brain and Umbilical Cord Vein Endothelial Cells
by Luiz Fernando Cardoso Garcia, Victoria Cruz Cavalari, Pryscilla Fanini Wowk and Letusa Albrecht
Int. J. Mol. Sci. 2025, 26(6), 2640; https://doi.org/10.3390/ijms26062640 - 14 Mar 2025
Cited by 1 | Viewed by 1855
Abstract
The endothelial layer, formed by endothelial cells, performs crucial functions in maintaining homeostasis. The endothelial integrity and function might be compromised due to various causes, including infection by Toxoplasma gondii, leading to an endothelial dysfunction. Toxoplasma gondii is an Apicomplexa parasite that [...] Read more.
The endothelial layer, formed by endothelial cells, performs crucial functions in maintaining homeostasis. The endothelial integrity and function might be compromised due to various causes, including infection by Toxoplasma gondii, leading to an endothelial dysfunction. Toxoplasma gondii is an Apicomplexa parasite that infects a broad range of animals, including humans. This parasite can invade all nucleated cells, as well as endothelial cells. The interaction between this protozoan and endothelial cells can be mediated by different molecules, such as extracellular vesicles (EVs), which may either favor or hinder the infectious process. To investigate this interaction, we evaluated the infection of T. gondii on human brain microvascular endothelial cells (HBMEC) and human umbilical vein endothelial cells (HUVEC), in addition to assessing transcriptional changes. We also featured the EVs secreted by T. gondii and by infected and non-infected HBMEC and HUVEC. Finally, we evaluated the infection of cells stimulated with EVs of parasitic or cellular origin. Our results demonstrated that HUVEC not only exhibit a higher infection rate than HBMEC but also display a more pro-inflammatory transcriptional profile, with increased expression of interleukin-6 (IL6), interleukin-8 (IL8), and monocyte chemotactic protein-1 (MCP1) following infection. Additionally, we observed few differences in the concentration, distribution, and morphology of EVs secreted by both cell types, although their properties in modulating infection varied significantly. When cells were EVs stimulated, EVs from T. gondii promoted an increase in the HBMEC infection, EVs from infected or uninfected HBMEC reduced the infection, whereas EVs from HUVEC had no effect on the infectious process. In conclusion, our data indicate that T. gondii infection induces distinct changes in different endothelial cell types, and EVs from these cells can contribute to the resolution of the infection. Full article
Show Figures

Figure 1

15 pages, 2950 KB  
Article
Involvement of RhoA/ROCK Signaling Pathway in Methamphetamine-Induced Blood-Brain Barrier Disruption
by Jong Su Hwang, Tam Thuy Lu Vo, Mikyung Kim, Eun Hye Cha, Kyo Cheol Mun, Eunyoung Ha and Ji Hae Seo
Biomolecules 2025, 15(3), 340; https://doi.org/10.3390/biom15030340 - 27 Feb 2025
Cited by 3 | Viewed by 2454
Abstract
Methamphetamine (METH) is a powerful addictive psychostimulant that gives rise to severe abusers worldwide. While many studies have reported on the neurotoxicity of METH, blood–brain barrier (BBB) dysfunction has recently attracted attention as an essential target in METH-induced pathological changes in the brain. [...] Read more.
Methamphetamine (METH) is a powerful addictive psychostimulant that gives rise to severe abusers worldwide. While many studies have reported on the neurotoxicity of METH, blood–brain barrier (BBB) dysfunction has recently attracted attention as an essential target in METH-induced pathological changes in the brain. However, its mechanism has not been fully understood. We found that METH increased paracellular permeability and decreased vascular integrity through FITC–dextran and trans-endothelial electrical resistance (TEER) assay in primary human brain endothelial cells (HBMECs). Also, redistribution of tight junction proteins (zonula occluden-1 and claudin-5) and reorganization of F-actin cytoskeleton were observed in METH-exposed HBMECs. To determine the mechanism of METH-induced BBB disruption, the RhoA/ROCK signaling pathway was examined in METH-treated HBMECs. METH-activated RhoA, followed by an increase in the phosphorylation of downstream effectors, myosin light chain (MLC) and cofilin, occurs in HBMECs. Pretreatment with ROCK inhibitors Y-27632 and fasudil reduced the METH-induced increase in phosphorylation of MLC and cofilin, preventing METH-induced redistribution of junction proteins and F-actin cytoskeletal reorganization. Moreover, METH-induced BBB leakage was alleviated by ROCK inhibitors in vitro and in vivo. Taken together, these results suggest that METH induces BBB dysfunction by activating the RhoA/ROCK signaling pathway, which results in the redistribution of junction proteins via F-actin cytoskeletal reorganization. Full article
Show Figures

Figure 1

25 pages, 13480 KB  
Article
Comparison of Drug Delivery Systems with Different Types of Nanoparticles in Terms of Cellular Uptake and Responses in Human Endothelial Cells, Pericytes, and Astrocytes
by Hakan Sahin, Oguz Yucel, Paul Holloway, Eren Yildirim, Serkan Emik, Gulten Gurdag, Gamze Tanriverdi and Gozde Erkanli Senturk
Pharmaceuticals 2024, 17(12), 1567; https://doi.org/10.3390/ph17121567 - 22 Nov 2024
Cited by 8 | Viewed by 2713
Abstract
Background/Objectives: The key components of the blood–brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. [...] Read more.
Background/Objectives: The key components of the blood–brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB. To overcome this challenge, nanotechnology, particularly drug delivery systems such as nanoparticles (NPs), have gained significant attention. Methods: Poly(lactide-co-glycolide) (PLGA) and albumin-based NPs (bovine/human), with or without transferrin (Tf) ligands (BSA, HSA, BSA-Tf, HSA-Tf), and nanolipid carriers (NLC) were synthesized. The interactions of these NPs with human brain microvascular endothelial cells (hBMECs), human brain vascular pericytes (hBVPs), and human astrocytes (hASTROs) were analyzed. Results: At doses of 15.62 µg/mL, 31.25 µg/mL, and 62.5 µg/mL, none of the NPs caused toxic effects on hBMECs, hBVPs, or hASTROs after 3 h of incubation. All NPs were internalized by the cells, but BSA-Tf and HSA-Tf showed significantly higher uptake in hBMECs in a dose-dependent manner. Ultrastructural analysis revealed notable differences between NP formulation and cell type. Conclusions: Our findings underscore the potential of ligand-targeted NPs to selectively interact with BBB endothelial cells. Ultrastructural analysis reveals distinct cellular processing pathways for various NP formulations across BBB-associated cell types, with autophagy emerging as a crucial mechanism for NP handling in pericytes and astrocytes. Changes in NP chemical properties upon biological exposure present significant challenges for nanomedicine design, emphasizing the need for further investigation into NP interactions at the cellular and subcellular levels. Full article
(This article belongs to the Special Issue Drug Delivery across the Blood–Brain Barrier)
Show Figures

Figure 1

15 pages, 4970 KB  
Article
Metabolites and Metabolic Functional Changes—Potential Markers for Endothelial Cell Senescence
by Jingyuan Ya, Alison Whitby and Ulvi Bayraktutan
Biomolecules 2024, 14(11), 1476; https://doi.org/10.3390/biom14111476 - 20 Nov 2024
Cited by 6 | Viewed by 2840
Abstract
Accumulation of senescent endothelial cells (ECs) in vasculature represents a key step in the development of vascular aging and ensuing age-related diseases. Given that removal of senescent ECs may prevent disease and improve health and wellbeing, the discovery of novel biomarkers that effectively [...] Read more.
Accumulation of senescent endothelial cells (ECs) in vasculature represents a key step in the development of vascular aging and ensuing age-related diseases. Given that removal of senescent ECs may prevent disease and improve health and wellbeing, the discovery of novel biomarkers that effectively identify senescent cells is of particular importance. As crucial elements for biological pathways and reliable bioindicators of cellular processes, metabolites demand attention in this context. Using senescent human brain microvascular endothelial cells (HBMECs) displaying a secretory phenotype and significant morphological, nuclear, and enzymatic changes compared to their young counterparts, this study has shown that senescent HBMECs lose their endothelial characteristics as evidenced by the disappearance of CD31/PECAM-1 from interendothelial cell junctions. The metabolic profiling of young versus senescent HBMECs also indicates significant differences in glucose, glutamine, and fatty acid metabolism. The analysis of intracellular and secreted metabolites proposes L-proline, L-glutamate, NAD+, and taurine/hypotaurine pathway components as potential biomarkers. However, further studies are required to assess the value of these agents as potential biomarkers and therapeutic targets. Full article
(This article belongs to the Special Issue Biomarkers of Cardiovascular and Cerebrovascular Diseases)
Show Figures

Figure 1

15 pages, 5854 KB  
Article
Mechanism of Marinobufagenin-Induced Hyperpermeability of Human Brain Microvascular Endothelial Cell Monolayer: A Potential Pathogenesis of Seizure in Preeclampsia
by Ahmed F. Pantho, Manisha Singh, Syeda H. Afroze, Kelsey R. Kelso, Jessica C. Ehrig, Niraj Vora, Thomas J. Kuehl, Steven R. Lindheim and Mohammad N. Uddin
Cells 2024, 13(21), 1800; https://doi.org/10.3390/cells13211800 - 30 Oct 2024
Viewed by 1457
Abstract
Preeclampsia (preE) is a hypertensive disorder in pregnancies. It is the third leading cause of mortality among pregnant women and fetuses worldwide, and there is much we have yet to learn about its pathophysiology. One complication includes cerebral edema, which causes a breach [...] Read more.
Preeclampsia (preE) is a hypertensive disorder in pregnancies. It is the third leading cause of mortality among pregnant women and fetuses worldwide, and there is much we have yet to learn about its pathophysiology. One complication includes cerebral edema, which causes a breach of the blood–brain barrier (BBB). Urinary marinobufagenin (MBG) is elevated in a preE rat model prior to developing hypertension and proteinuria. We investigated what effect MBG has on the endothelial cell permeability of the BBB. Human brain microvascular endothelial cells (HBMECs) were utilized to examine the permeability caused by MBG. The phosphorylation of ERK1/2, Jnk, p38, and Src was evaluated after the treatment with MBG. Apoptosis was evaluated by examining caspase 3/7. MBG ≥ 1 nM inhibited the proliferation of HBMECs by 46–50%. MBG induced monolayer permeability, causing a decrease in the phosphorylation of ERK1/2 and the activated phosphorylation of Jnk, p38, and Src. MBG increased the caspase 3/7 expression, indicating the activation of apoptosis. Apoptotic signaling or the disruption of endothelia tight junction proteins was not observed when using the p38 inhibitor as a pretreatment in MBG-treated cells. The MBG-induced enhancement of the HBMEC monolayer permeability occurs by the downregulation of ERK1/2, the activation of Jnk, p38, Src, and apoptosis, resulting in the cleavage of tight junction proteins, and are attenuated by p38 inhibition. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

23 pages, 15994 KB  
Article
C3a Mediates Endothelial Barrier Disruption in Brain-Derived, but Not Retinal, Human Endothelial Cells
by Hannah Nora Wolf, Larissa Guempelein, Juliane Schikora and Diana Pauly
Int. J. Mol. Sci. 2024, 25(20), 11240; https://doi.org/10.3390/ijms252011240 - 19 Oct 2024
Cited by 6 | Viewed by 5376
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is associated with pathological aquaporin-4 immunoglobulin G (AQP4-IgG), which cause brain damage. However, the impact of AQP4-IgG on retinal tissue remains unclear. Additionally, dysregulated complement anaphylatoxins C3a and C5a, known to modulate the endothelial barrier, are implicated in [...] Read more.
Neuromyelitis optica spectrum disorder (NMOSD) is associated with pathological aquaporin-4 immunoglobulin G (AQP4-IgG), which cause brain damage. However, the impact of AQP4-IgG on retinal tissue remains unclear. Additionally, dysregulated complement anaphylatoxins C3a and C5a, known to modulate the endothelial barrier, are implicated in NMOSD. This study evaluates the susceptibility of human brain microvascular endothelial cells (HBMEC) and human retinal endothelial cells (HREC) to C3a- and C5a-mediated stress using real-time cell barrier analysis, immunocytochemical staining, qPCR and IgG transmigration assays. The findings reveal that C3a induced a concentration-dependent paracellular barrier breakdown and increased transcellular permeability in HBMEC, while HREC maintained barrier integrity under the same conditions. C5a attenuated C3a-induced disruption in HBMEC, indicating a protective role. Anaphylatoxin treatment elevated transcript levels of complement component C3 and increased C5 gene and protein expression in HREC, with no changes observed in HBMEC. In HBMEC, C5a treatment led to a transient upregulation of C3a receptor (C3AR) mRNA and an early decrease in C5a receptor 1 (C5AR1) protein detection. Conversely, HREC exhibited a late increase in C5aR1 protein levels. These results indicate that the retinal endothelial barrier is more stable under anaphylatoxin-induced stress compared to the brain, potentially offering better protection against paracellular AQP4-IgG transport. Full article
(This article belongs to the Special Issue Molecular Research in Retinal Degeneration)
Show Figures

Graphical abstract

21 pages, 46267 KB  
Article
Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells
by Dorothy J. You, Bria M. Gorman, Noah Goshi, Nicholas R. Hum, Aimy Sebastian, Yong Ho Kim, Heather A. Enright and Bruce A. Buchholz
Int. J. Mol. Sci. 2024, 25(19), 10288; https://doi.org/10.3390/ijms251910288 - 24 Sep 2024
Cited by 1 | Viewed by 3919
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is [...] Read more.
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood–brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

19 pages, 5096 KB  
Article
Solid Lipid Nanoparticles Encapsulating a Benzoxanthene Derivative in a Model of the Human Blood–Brain Barrier: Modulation of Angiogenic Parameters and Inflammation in Vascular Endothelial Growth Factor-Stimulated Angiogenesis
by Giuliana Greco, Aleksandra Agafonova, Alessia Cosentino, Nunzio Cardullo, Vera Muccilli, Carmelo Puglia, Carmelina Daniela Anfuso, Maria Grazia Sarpietro and Gabriella Lupo
Molecules 2024, 29(13), 3103; https://doi.org/10.3390/molecules29133103 - 28 Jun 2024
Cited by 1 | Viewed by 2400
Abstract
Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. [...] Read more.
Lignans, a class of secondary metabolites found in plants, along with their derivatives, exhibit diverse pharmacological activities, including antioxidant, antimicrobial, anti-inflammatory, and antiangiogenic ones. Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process for cancer growth and development. Several studies have elucidated the synergistic relationship between angiogenesis and inflammation in various inflammatory diseases, highlighting a correlation between inflammation and vascular endothelial growth factor (VEGF)-induced angiogenesis. Thus, the identification of novel molecules capable of modulating VEGF effects presents promising prospects for developing therapies aimed at stabilizing, reversing, or even arresting disease progression. Lignans often suffer from low aqueous solubility and, for their use, encapsulation in a delivery system is needed. In this research, a bioinspired benzoxantene has been encapsulated in solid lipid nanoparticles that have been characterized for their pharmacotechnical properties and their thermotropic behavior. The effects of these encapsulated nanoparticles on angiogenic parameters and inflammation in VEGF-induced angiogenesis were evaluated using human brain microvascular endothelial cells (HBMECs) as a human blood–brain barrier model. Full article
Show Figures

Figure 1

30 pages, 4965 KB  
Article
Unraveling the Impact of Extracellular Vesicle-Depleted Serum on Endothelial Cell Characteristics over Time
by Luiz Fernando Cardoso Garcia, Pryscilla Fanini Wowk and Letusa Albrecht
Int. J. Mol. Sci. 2024, 25(9), 4761; https://doi.org/10.3390/ijms25094761 - 27 Apr 2024
Cited by 2 | Viewed by 4486
Abstract
Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate [...] Read more.
Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time. Full article
(This article belongs to the Special Issue Role of Extracellular Vesicles in Immunology)
Show Figures

Figure 1

Back to TopTop