Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = H3K9 trimethylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3149 KiB  
Article
Promoter H3K4me3 and Gene Expression Involved in Systemic Metabolism Are Altered in Fetal Calf Liver of Nutrient-Restricted Dams
by Susumu Muroya, Koichi Ojima, Saki Shimamoto, Takehito Sugasawa and Takafumi Gotoh
Int. J. Mol. Sci. 2025, 26(15), 7540; https://doi.org/10.3390/ijms26157540 - 4 Aug 2025
Abstract
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin [...] Read more.
Maternal undernutrition (MUN) causes severe metabolic disruption in the offspring of mammals. Here we determined the role of histone modification in hepatic gene expression in late-gestation fetuses of nutritionally restricted cows, an established model using low-nutrition (LN) and high-nutrition (HN) conditions. The chromatin immunoprecipitation sequencing results show that genes with an altered trimethylation of histone 3 lysine 4 (H3K4me3) are associated with cortisol synthesis and secretion, the PPAR signaling pathway, and aldosterone synthesis and secretion. Genes with the H3K27me3 alteration were associated with glutamatergic synapse and gastric acid secretion. Compared to HN fetuses, promoter H3K4me3 levels in LN fetuses were higher in GDF15, IRF2BP2, PPP1R3B, and QRFPR but lower in ANGPTL4 and APOA5. Intriguingly, genes with the greatest expression changes (>1.5-fold) exhibited the anticipated up-/downregulation from elevated or reduced H3K4me3 levels; however, a significant relationship was not observed between promoter CpG methylation or H3K27me3 and the gene set with the greatest expression changes. Furthermore, the stress response genes EIF2A, ATF4, DDIT3, and TRIB3 were upregulated in the MUN fetal liver, suggesting activation by upregulated GDF15. Thus, H3K4me3 likely plays a crucial role in MUN-induced physiological adaptation, altering the hepatic gene expression responsible for the integrated stress response and systemic energy metabolism, especially circulating lipoprotein lipase regulation. Full article
(This article belongs to the Special Issue Ruminant Physiology: Digestion, Metabolism, and Endocrine System)
Show Figures

Figure 1

18 pages, 2051 KiB  
Article
Chemotherapy (Etoposide)-Induced Intermingling of Heterochromatin and Euchromatin Compartments in Senescent PA-1 Embryonal Carcinoma Cells
by Marc Bayer, Jaroslava Zajakina, Myriam Schäfer, Kristine Salmina, Felikss Rumnieks, Juris Jansons, Felix Bestvater, Reet Kurg, Jekaterina Erenpreisa and Michael Hausmann
Cancers 2025, 17(15), 2480; https://doi.org/10.3390/cancers17152480 - 26 Jul 2025
Viewed by 380
Abstract
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence [...] Read more.
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence and stemness in PA-1 embryonal carcinoma cells, potentially affecting therapeutic outcomes. Thus, the respective epigenetic pathways are up or downregulated over a time period of days. These fluctuations go hand in hand with changes in spatial DNA organization. Methods: By means of Single-Molecule Localization Microscopy in combination with mathematical evaluation tools for pointillist data sets, we investigated the organization of euchromatin and heterochromatin at the nanoscale on the third and fifth day after etoposide treatment. Results: Using fluorescently labeled antibodies against H3K9me3 (heterochromatin tri-methylation sites) and H3K4me3 (euchromatin tri-methylation sites), we found that the induction of DSBs led to the de-condensation of heterochromatin and compaction of euchromatin, with a peak effect on day 3 after the treatment. On day 3, we also observed the co-localization of euchromatin and heterochromatin, which have marks that usually occur in exclusive low-overlapping network-like compartments. The evaluation of the SMLM data using topological tools (persistent homology and persistent imaging) and principal component analysis, as well as the confocal microscopy analysis of H3K9me3- and H3K4me3-stained PA-1 cells, supported the findings that distinct shifts in euchromatin and heterochromatin organization took place in a subpopulation of these cells during the days after the treatment. Furthermore, by means of flow cytometry, it was shown that the rearrangements in chromatin organization coincided with the simultaneous upregulation of the stemness promotors OCT4A and SOX2 and senescence promotors p21Cip1 and p27. Conclusions: Our findings suggest potential applications to improve cancer therapy by inhibiting chromatin remodeling and preventing therapy-induced senescence. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

18 pages, 4532 KiB  
Article
Epigenetic Modifiers to Treat Retinal Degenerative Diseases
by Evgenya Y. Popova, Lisa Schneper, Aswathy Sebastian, Istvan Albert, Joyce Tombran-Tink and Colin J. Barnstable
Cells 2025, 14(13), 961; https://doi.org/10.3390/cells14130961 - 23 Jun 2025
Viewed by 633
Abstract
We have previously demonstrated the ability of inhibitors of LSD1 and HDAC1 to block rod degeneration, preserve vision, maintain transcription of rod photoreceptor genes, and downregulate transcripts involved in cell death, gliosis, and inflammation in the mouse model of Retinitis Pigmentosa (RP), rd10. [...] Read more.
We have previously demonstrated the ability of inhibitors of LSD1 and HDAC1 to block rod degeneration, preserve vision, maintain transcription of rod photoreceptor genes, and downregulate transcripts involved in cell death, gliosis, and inflammation in the mouse model of Retinitis Pigmentosa (RP), rd10. To extend our findings, we tested the hypothesis that this effect was due to altered chromatin structure by using a range of inhibitors of chromatin condensation to prevent photoreceptor degeneration in the rd10 mouse model. We used inhibitors for both G9A/GLP, which catalyzes methylation of H3K9, and EZH2, which catalyzes trimethylation of H3K27, and compared them to the actions of inhibitors of LSD1 and HDAC. All the inhibitors are likely to decondense chromatin and all preserve, to different extents, retinas from degeneration in rd10 mice, but they act through different metabolic pathways. One group of inhibitors, modifiers for LSD1 and EZH2, demonstrate a high level of maintenance of rod-specific transcripts, activation of Ca2+ and Wnt signaling pathways with the inhibition of antigen processing and presentation, immune response, and microglia phagocytosis. Another group of inhibitors, modifiers for HDAC and G9A/GLP, work through upregulation of NGF-stimulated transcription, while downregulating genes belong to immune response, extracellular matrix, cholesterol signaling, and programmed cell death. Our results provide robust support for our hypothesis that inhibition of chromatin condensation can be sufficient to prevent rod death in rd10 mice. Full article
(This article belongs to the Special Issue Retinal Disorders: Cellular Mechanisms and Targeted Therapies)
Show Figures

Graphical abstract

25 pages, 2090 KiB  
Article
The Growth, Pathogenesis, and Secondary Metabolism of Fusarium verticillioides Are Epigenetically Modulated by Putative Heterochromatin Protein 1 (FvHP1)
by Andrés G. Jacquat, Natalia S. Podio, María Carmen Cañizares, Pilar A. Velez, Martín G. Theumer, Vanessa A. Areco, María Dolores Garcia-Pedrajas and José S. Dambolena
J. Fungi 2025, 11(6), 424; https://doi.org/10.3390/jof11060424 - 31 May 2025
Viewed by 1677
Abstract
Fusarium verticillioides is a globally prevalent phytopathogenic fungus responsible for multiple diseases in maize and a major producer of the mycotoxin fumonisin B1 (FB1), a highly toxic fungal secondary metabolite (FSM). The histone code, which includes reversible modifications such as acetylation and methylation, [...] Read more.
Fusarium verticillioides is a globally prevalent phytopathogenic fungus responsible for multiple diseases in maize and a major producer of the mycotoxin fumonisin B1 (FB1), a highly toxic fungal secondary metabolite (FSM). The histone code, which includes reversible modifications such as acetylation and methylation, plays a critical role in regulating chromatin structure and gene expression. In fungi, di- and tri-methylation of histone H3 at lysine 9 (H3K9me2/3) serves as a key epigenetic mark associated with heterochromatin formation and transcriptional repression. In this study, we identified and characterized a putative heterochromatin protein 1 (HP1) family member in F. verticillioides, designated FvHP1, based on conserved domain architecture and phylogenetic analyses. FvHP1 retains essential residues required for H3K9me2/3 recognition, supporting its functional conservation within the HP1 protein family. Phenotypic analysis of the ΔFvHP1 mutant revealed impaired vegetative growth, reduced conidiation and virulence, and altered FB1 mycotoxin production. Additionally, the accumulation of red pigment in the mutant was linked to the deregulation of secondary metabolism, specifically the overproduction of fusarubin-type naphthoquinones, such as 8-O-methylnectriafurone. These results support the role of FvHP1 in facultative heterochromatin-mediated repression of sub-telomeric biosynthetic gene clusters, including the pigment-associated PGL1 cluster. Our findings provide new insights into the epigenetic regulation of fungal pathogenicity and metabolite production, as well as the first evidence of a functional HP1 homolog in F. verticillioides. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

27 pages, 4757 KiB  
Article
Paramutation-Like Behavior of Genic piRNA-Producing Loci in Drosophila virilis
by Alina V. Bespalova, Dina A. Kulikova, Elena S. Zelentsova, Alexander P. Rezvykh, Iuliia O. Guseva, Ana P. Dorador, Mikhail B. Evgen’ev and Sergei Y. Funikov
Int. J. Mol. Sci. 2025, 26(9), 4243; https://doi.org/10.3390/ijms26094243 - 29 Apr 2025
Viewed by 570
Abstract
Piwi-interacting RNAs (piRNAs) play a crucial role in silencing transposable elements (TEs) in the germ cells of Metazoa by acting as sequence-specific guides. Originating from distinct genomic loci, called piRNA clusters, piRNA can trigger an epigenetic conversion of TE insertions into piRNA clusters [...] Read more.
Piwi-interacting RNAs (piRNAs) play a crucial role in silencing transposable elements (TEs) in the germ cells of Metazoa by acting as sequence-specific guides. Originating from distinct genomic loci, called piRNA clusters, piRNA can trigger an epigenetic conversion of TE insertions into piRNA clusters by means of a paramutation-like process. However, the variability in piRNA clusters’ capacity to induce such conversions remains poorly understood. Here, we investigated two Drosophila virilis strains with differing capacities to produce piRNAs from the subtelomeric RhoGEF3 and Adar gene loci. We found that active piRNA generation correlates with high levels of the heterochromatic mark histone 3 lysine 9 trimethylation (H3K9me3) over genomic regions that give rise to piRNAs. Importantly, the maternal transmission of piRNAs drives their production in the progeny, even from homologous loci previously inactive in piRNA biogenesis. The RhoGEF3 locus, once epigenetically converted, maintained enhanced piRNA production in subsequent generations lacking the original allele carrying the active piRNA cluster. In contrast, piRNA expression from the converted Adar locus was lost in offspring lacking the inducer allele. The present findings suggest that the paramutation-like behavior of piRNA clusters may be influenced not only by piRNAs but also by structural features and the chromatin environment in the proximity to telomeres, providing new insights into the epigenetic regulation of the Drosophila genome. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 4271 KiB  
Article
Differential H3K4me3 Domains in Normal and Colorectal Cancer Cells Reveal Novel Epigenetic Targets
by Ravinder Kaur Bahia, Camila Lopez, Gino Nardocci and James R. Davie
Int. J. Mol. Sci. 2025, 26(6), 2546; https://doi.org/10.3390/ijms26062546 - 12 Mar 2025
Cited by 1 | Viewed by 1747
Abstract
Histone H3 trimethylated at lysine 4 (H3K4me3) is an histone mark associated with transcriptionally active genes. H3K4me3 has two types of distribution: a sharp distribution of approximately 500 bp and a broad H3K4me3 domain that may extend 4 kb and longer through the [...] Read more.
Histone H3 trimethylated at lysine 4 (H3K4me3) is an histone mark associated with transcriptionally active genes. H3K4me3 has two types of distribution: a sharp distribution of approximately 500 bp and a broad H3K4me3 domain that may extend 4 kb and longer through the gene body. Most transcribed genes have a narrow H3K4me3 configuration, whereas genes involved in cell identity and tumor suppression have a broad arrangement in normal cells. In cancer cells, genes that promote cancer possess a broad H3K4me3 domain. In this study, we performed H3K4me3 chromatin immunoprecipitation sequencing to determine the genes with narrow and broad H3K4me3 configurations in normal colon epithelial cells and three colon cancer cell lines. The analysis revealed that genes involved in cell adhesion and nervous system development had an H3K4me3 peak next to their transcription start site in normal cells but not in colon cancer cells. Genes coding for long non-coding RNA (lncRNA) were differentially marked with a broad H3K4me3 domain in normal colon versus colon cancer cells (FENDRR in normal colon; ELFN1-AS1 in colon cancer). Identifying the genes that are silenced or activated, particularly in colon cancer, provides a list of actionable targets for designing effective treatments for this prevalent human disease. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

16 pages, 1328 KiB  
Article
GDAP1 Is Dysregulated at DNA Methylation and H3K4me3 Levels in Alcohol Use Disorder
by Emilia Kawecka, Henning Plättner, Lena Ederer, Kilian Niemann, Sarah Pasche, Milan Zimmermann, Susanne Edelmann and Vanessa Nieratschker
Int. J. Mol. Sci. 2025, 26(4), 1623; https://doi.org/10.3390/ijms26041623 - 14 Feb 2025
Viewed by 871
Abstract
Alcohol use disorder (AUD) contributes significantly to the global burden of disease. The susceptibility for AUD is mediated through an interaction of genetic risk factors and environmental influences. These gene × environment (G × E) interactions manifest as epigenetic regulations of gene expression, [...] Read more.
Alcohol use disorder (AUD) contributes significantly to the global burden of disease. The susceptibility for AUD is mediated through an interaction of genetic risk factors and environmental influences. These gene × environment (G × E) interactions manifest as epigenetic regulations of gene expression, among other things. Previous research suggests an association between Ganglioside Induced Differentiation Associated Protein 1 (GDAP1) DNA methylation and AUD. Here, we investigate the epigenetic dysregulation of GDAP1 in AUD through comparing DNA methylation in whole blood and saliva, as well as H3K4-trimethylation (H3K4me3) in PBMC (Peripheral Blood Mononuclear Cell) samples of AUD patients and healthy control individuals. Additionally, the effect of abstinence-based therapy was investigated. AUD patients before treatment exhibit significantly lower promoter DNA methylation levels in whole blood and saliva, as well as lower H3K4me3 near the transcription start site. GDAP1 gene expression was not significantly altered. Following treatment, H3K4me3 was significantly increased in patients and no longer differed from control individuals. There was no significant effect of treatment on DNA methylation. We conclude that GDAP1 is epigenetically dysregulated in AUD patients, and is responsive to abstinence-based therapy at the level of H3K4me3. It should be investigated further to establish its potential as a diagnostic biomarker. Full article
(This article belongs to the Special Issue Molecular Advances in Mental Disorders)
Show Figures

Figure 1

27 pages, 8963 KiB  
Article
Alternaria alternata (Fr) Keissl Crude Extract Inhibits HIV Subtypes and Integrase Drug-Resistant Strains at Different Stages of HIV Replication
by Darian Naidu, Ernest Oduro-Kwateng, Mahmoud E. S. Soliman, Sizwe I. Ndlovu and Nompumelelo P. Mkhwanazi
Pharmaceuticals 2025, 18(2), 189; https://doi.org/10.3390/ph18020189 - 30 Jan 2025
Cited by 1 | Viewed by 1335
Abstract
Background/Objectives: The development of HIV drug resistance to current antiretrovirals, and the antiretrovirals’ inability to cure HIV, provides the need of developing novel drugs that inhibit HIV-1 subtypes and drug-resistance strains. Fungal endophytes, including Alternaria alternata, stand out for their potentially [...] Read more.
Background/Objectives: The development of HIV drug resistance to current antiretrovirals, and the antiretrovirals’ inability to cure HIV, provides the need of developing novel drugs that inhibit HIV-1 subtypes and drug-resistance strains. Fungal endophytes, including Alternaria alternata, stand out for their potentially antiviral secondary metabolites. Hence, this study investigates the anti-HIV activities and mechanism of action of the A. alternata crude extract against different HIV-1 subtypes and integrase-resistant mutant strains. Methods: Cytotoxicity of the A. alternata crude extract on TZM-bl cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed. The crude extract antiviral activity against subtypes A, B, C, and D and integrase drug-resistant strain T66K and S230R was determined using a luciferase-based antiviral assay. Luciferase and p24 ELISA-based time-of-addition assays were used to determine the mechanism of action of the crude extract. Docking scores and protein ligand interactions of integrase T66K and S230R strains against the identified bioactive compounds were determined. Results: The crude extract CC50 was 300 μg/mL and not cytotoxic to the TZM-bl cell lines. In HIV-1 subtypes A, B, C, and D, the crude extract exhibited 100% inhibition and therapeutic potential. The A. alternata crude extract had strong anti-HIV-1 activity against integrase strand transfer drug-resistant strains T66K and S230R, with a 0.7265- and 0. 8751-fold increase in susceptibility. The crude extract had antiviral activity during attachment, reverse transcription, integration, and proteolysis. In silico calculations showed compounds 2,3-2H-Benzofuran-2-one, 3,3,4,6-tetramethyl-, 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl, Coumarin, 3,4-dihydro-4,5,7-trimethyl-, Cyclopropanecarboxamide, N-cycloheptyl, Pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(2-methylpropyl)- crude extract bioactive compounds had strong docking scores and diverse binding mechanisms with integrase. Conclusions: The A. alternata crude extract demonstrates strong antiviral activity against different HIV-1 subtypes and integrase drug-resistance strains. The extract inhibited various stages of the HIV-1 life cycle. The bioactive compounds 2,3-2H-Benzofuran-2-one, 3,3,4,6-tetramethyl-, 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl, Coumarin, 3,4-dihydro-4,5,7-trimethyl-, Cyclopropanecarboxamide, N-cycloheptyl, Pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(2-methylpropyl)- may be responsible for the antiviral activity of A. alternata. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

17 pages, 3800 KiB  
Article
miR-217-5p NanomiRs Inhibit Glioblastoma Growth and Enhance Effects of Ionizing Radiation via EZH2 Inhibition and Epigenetic Reprogramming
by Jack Korleski, Sweta Sudhir, Yuan Rui, Christopher A. Caputo, Sophie Sall, Amanda L. Johnson, Harmon S. Khela, Tanmaya Madhvacharyula, Anisha Rasamsetty, Yunqing Li, Bachchu Lal, Weiqiang Zhou, Karen Smith-Connor, Stephany Y. Tzeng, Jordan J. Green, John Laterra and Hernando Lopez-Bertoni
Cancers 2025, 17(1), 80; https://doi.org/10.3390/cancers17010080 - 30 Dec 2024
Viewed by 1900
Abstract
Background/Objectives: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving [...] Read more.
Background/Objectives: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM. Methods: We utilized computational analyses to identify a subset of clinically relevant genes that were predicted to be repressed in a Polycomb repressive complex 2 (PRC2)-dependent manner in GBM upon induction of stem cell-driving events. These associations were validated in patient-derived GBM neurosphere models using state-of-the-art molecular techniques to express, silence, and measure microRNA (miRNA) and gene expression changes. Advanced Poly(β-amino ester) nanoparticle formulations (PBAEs) were used to deliver miRNAs in vivo to orthotopic human GBM tumor models. Results: We show that glioma stem cell (GSC) formation and tumor propagation involve the crosstalk between multiple epigenetic mechanisms, resulting in the repression of the miRNAs that regulate PRC2 function and histone H3 lysine 27 tri-methylation (H3K27me3). We also identified miR-217-5p as an EZH2 regulator repressed in GSCs and showed that miR-217-5p reconstitution using advanced nanoparticle formulations re-activates the PRC2-repressed genes, inhibits GSC formation, impairs tumor growth, and enhances the effects of ionizing radiation in an orthotopic model of GBM. Conclusions: These findings suggest that inhibiting PRC2 function by targeting EZH2 with miR-217-5p advanced nanoparticle formulations could have a therapeutic benefit in GBM. Full article
Show Figures

Figure 1

22 pages, 7069 KiB  
Article
APOL1 Modulates Renin–Angiotensin System
by Vinod Kumar, Prabhjot Kaur, Kameshwar Ayasolla, Alok Jha, Amen Wiqas, Himanshu Vashistha, Moin A. Saleem, Waldemar Popik, Ashwani Malhotra, Christoph A. Gebeshuber, Karl Skorecki and Pravin C. Singhal
Biomolecules 2024, 14(12), 1575; https://doi.org/10.3390/biom14121575 - 10 Dec 2024
Cited by 1 | Viewed by 1791
Abstract
Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin–angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing [...] Read more.
Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin–angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels). G1/DPDs and G2/DPDs also showed increased mRNA expression for Angiotensinogen and Angiotensin II Type 1 (AT1R) and 2 (AT2R) receptors. Protein concentrations of Brain Acid-Soluble Protein [BASP]1, Enhancer of Zeste Homolog [EZH]2, Histone Deacetylase [HDAC]1, and Histone 3 Lysine27 trimethylated [H3K27me3] in WT1-IP (immunoprecipitated proteins with WT1 antibody) fractions were significantly higher in G0/DPDs vs. G1/DPD and G2/DPDs. Moreover, DPD-silenced BASP1 displayed an increased expression of renin. Notably, VDR agonist-treated DPDs showed escalated levels of VDR and a higher expression of PDMMs, but an attenuated expression of renin. Human Embryonic Kidney (HEK) cells transfected with increasing APOL1(G0) plasmid concentrations showed a corresponding reduction in renin mRNA expression. Bioinformatics studies predicted the miR193a target sites in the VDR 3′UTR (untranslated region), and the luciferase assay confirmed the predicted sites. As expected, podocytes transfected with miR193a plasmid displayed a reduced VDR and an enhanced expression of renin. Renal cortical section immunolabeling in miR193a transgenic (Tr) mice showed renin-expressing podocytes. Kidney tissue extracts from miR193aTr mice also showed reduced expression of VDR and PDMMs, but enhanced expression of Renin. Blood Ang II levels were higher in miR193aTr, APOLG1, and APOL1G1/G2 mice when compared to control mice. Based on these findings, miR193a regulates the activation of RAS and podocyte molecular markers through modulation of VDR and WT1 in the APOL1 milieu. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 6925 KiB  
Review
Targeting EZH2 in Cancer: Mechanisms, Pathways, and Therapeutic Potential
by Maria Saveria Gilardini Montani, Rossella Benedetti and Mara Cirone
Molecules 2024, 29(24), 5817; https://doi.org/10.3390/molecules29245817 - 10 Dec 2024
Cited by 2 | Viewed by 2367
Abstract
Enhancer of zeste homolog 2 (EZH2) is a methyltransferase involved in cell cycle regulation, cell differentiation, and cell death and plays a role in modulating the immune response. Although it mainly functions by catalyzing the tri-methylation of H3 histone on K27 (H3K27), to [...] Read more.
Enhancer of zeste homolog 2 (EZH2) is a methyltransferase involved in cell cycle regulation, cell differentiation, and cell death and plays a role in modulating the immune response. Although it mainly functions by catalyzing the tri-methylation of H3 histone on K27 (H3K27), to inhibit the transcription of target genes, EZH2 can directly methylate several transcription factors or form complexes with them, regulating their functions. EZH2 expression/activity is often dysregulated in cancer, contributing to carcinogenesis and immune escape, thereby representing an important target in anti-cancer therapy. This review summarizes some of the mechanisms through which EZH2 regulates the expression and function of tumor suppressor genes and oncogenic molecules such as STAT3, mutant p53, and c-Myc and how it modulates the anti-cancer immune response. The influence of posttranslational modifications on EZH2 activity and stability and the possible strategies leading to its inhibition are also reviewed. Full article
Show Figures

Figure 1

8 pages, 694 KiB  
Opinion
Histone Modification Pathways Suppressing Cryptic Transcription
by Hong-Yeoul Ryu
Epigenomes 2024, 8(4), 42; https://doi.org/10.3390/epigenomes8040042 - 12 Nov 2024
Viewed by 1977
Abstract
Cryptic transcription refers to the unintended expression of non-canonical sites within the genome, producing aberrant RNA and proteins that may disrupt cellular functions. In this opinion piece, I will explore the role of histone modifications in modulating cryptic transcription and its implications for [...] Read more.
Cryptic transcription refers to the unintended expression of non-canonical sites within the genome, producing aberrant RNA and proteins that may disrupt cellular functions. In this opinion piece, I will explore the role of histone modifications in modulating cryptic transcription and its implications for gene expression and cellular integrity, particularly with a focus on H3K36 and H3K4 methylation marks. H3K36 tri-methylation plays a crucial role in maintaining chromatin integrity by facilitating the recruitment of the Rpd3S histone deacetylase (HDAC) complex, which helps restore closed chromatin states following transcription and prevents cryptic initiation within gene bodies. In parallel, crosstalk between H3K4 di-methylation and histone ubiquitylation and sumoylation is critical for recruiting the Set3 HDAC complex, which maintains low histone acetylation levels in gene bodies and further suppresses cryptic transcription. Therefore, by elucidating these regulatory mechanisms, this opinion highlights the intricate interplay of histone modifications in preserving transcriptional fidelity and suggests potential pathways for future research to develop novel therapies for age-related disorders and other diseases associated with dysregulated gene expression. Full article
(This article belongs to the Special Issue Histone Variants)
Show Figures

Figure 1

31 pages, 3300 KiB  
Review
The Roles of H3K9me3 Writers, Readers, and Erasers in Cancer Immunotherapy
by Urszula Oleksiewicz, Monika Kuciak, Anna Jaworska, Dominika Adamczak, Anna Bisok, Julia Mierzejewska, Justyna Sadowska, Patrycja Czerwinska and Andrzej A. Mackiewicz
Int. J. Mol. Sci. 2024, 25(21), 11466; https://doi.org/10.3390/ijms252111466 - 25 Oct 2024
Cited by 8 | Viewed by 9945
Abstract
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular [...] Read more.
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks. Epigenetic processes influence chromatin structure and accessibility, thus governing gene expression, replication, and DNA damage repair. However, aberrations within epigenetic signatures are frequently observed in cancer. One of the key epigenetic marks is the trimethylation of histone 3 at lysine 9 (H3K9me3), confined mainly within constitutive heterochromatin to suppress DNA accessibility. It is deposited at repetitive elements, centromeric and telomeric loci, as well as at the promoters of various genes. Dysregulated H3K9me3 deposition disrupts multiple pathways, including immune signaling. Consequently, altered H3K9me3 dynamics may modify the efficacy of immunotherapy. Indeed, growing evidence highlights the pivotal roles of various proteins mediating H3K9me3 deposition (SETDB1/2, SUV39H1/2), erasure (KDM3, KDM4 families, KDM7B, LSD1) and interpretation (HP1 proteins, KAP1, CHD4, CDYL, UHRF1) in modulating immunotherapy effectiveness. Here, we review the existing literature to synthesize the available information on the influence of these H3K9me3 writers, erasers, and readers on the response to immunotherapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 4398 KiB  
Article
Impacts of Hyperglycemia on Epigenetic Modifications in Human Gingival Fibroblasts and Gingiva in Diabetic Rats
by Kento Kojima, Nobuhisa Nakamura, Airi Hayashi, Shun Kondo, Megumi Miyabe, Takeshi Kikuchi, Noritaka Sawada, Tomokazu Saiki, Tomomi Minato, Reina Ozaki, Sachiko Sasajima, Akio Mitani and Keiko Naruse
Int. J. Mol. Sci. 2024, 25(20), 10979; https://doi.org/10.3390/ijms252010979 - 12 Oct 2024
Cited by 1 | Viewed by 1341
Abstract
Periodontal disease is considered one of the diabetic complications with high morbidity and severity. Recent studies demonstrated the involvement of the epigenome on diabetic complications. Histone modifications change chromatin architecture and gene activation. Histone modifications have been reported to alter chromatin structure and [...] Read more.
Periodontal disease is considered one of the diabetic complications with high morbidity and severity. Recent studies demonstrated the involvement of the epigenome on diabetic complications. Histone modifications change chromatin architecture and gene activation. Histone modifications have been reported to alter chromatin structure and regulate gene transcription. In this study, we investigated the impacts of H3 lysine 4 trimethylation (H3K4me3) and specific histone methyltransferases of H3K4 methylation, su(var)3-9, enhancer-of-zeste, and trithorax domain 1A (SETD1A) on periodontal tissue affected by the diabetic condition. We observed the increase in H3K4me3 and SETD1A in gingival tissue of diabetic rats compared with the normal rats. Cultured human fibroblasts (hGFs) confirmed a high glucose-induced increase in H3K4me3 and SETD1A. We further demonstrated that high glucose increased the gene expression of matrix metalloproteinase (MMP) 1 and MMP13, which were canceled by sinefungin, an SETD1A inhibitor. Our investigation suggests that diabetes triggers histone modifications in the gingival tissue, resulting in gingival inflammation. Histone modifications may play crucial roles in the development of periodontal disease in diabetes. Full article
Show Figures

Figure 1

16 pages, 1653 KiB  
Review
H3K27me3 Loss in Central Nervous System Tumors: Diagnostic, Prognostic, and Therapeutic Implications
by Giuseppe Angelico, Manuel Mazzucchelli, Giulio Attanasio, Giordana Tinnirello, Jessica Farina, Magda Zanelli, Andrea Palicelli, Alessandra Bisagni, Giuseppe Maria Vincenzo Barbagallo, Francesco Certo, Maurizio Zizzo, Nektarios Koufopoulos, Gaetano Magro, Rosario Caltabiano and Giuseppe Broggi
Cancers 2024, 16(20), 3451; https://doi.org/10.3390/cancers16203451 - 11 Oct 2024
Cited by 3 | Viewed by 3316
Abstract
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation [...] Read more.
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation of lysine 27 on the histone H3 protein, plays a crucial role in regulating gene expression and maintaining chromatin architecture (e.g., in X-chromosome inactivation). Notably, a reduction in H3K27me3 levels, frequently tied to mutations in the H3 gene family such as H3F3A and HIST1H3B, is evident in diverse brain tumor variants, including the diffuse midline glioma characterized by the H3K27M mutation and certain pediatric high-grade gliomas. The loss of H3K27me3 has been linked to more aggressive behavior in meningiomas, with the trimethylation loss associated with significantly shorter recurrence-free survival (RFS) among grade 2 meningiomas, albeit not within grade 1 tumors. Pediatric posterior fossa ependymomas characterized by a lowered H3K27me3 and DNA hypomethylation exhibit poor prognosis, underscoring the prognostic significance of these epigenetic alterations in CNS tumors. Comprehending the role of H3K27me3 in CNS tumors is vital for advancing diagnostic tools and therapeutic interventions, with the goal of enhancing patient outcomes and quality of life. This review underscores the importance of ongoing investigations into H3K27me to refine and optimize management strategies for CNS tumors, paving the way for improved personalized medicine practices in oncology. Full article
Show Figures

Figure 1

Back to TopTop