Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = Glut5/SLC2A5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 6640 KiB  
Article
Involvement of Orotic Acid in Mitochondrial Activity of Ovarian Granulosa Cells and Oocyte Meiotic Maturation
by Weronika Marynowicz, Aleksandra Tatarczuch, Zuzanna Flis, Edyta Molik and Anna Ptak
Int. J. Mol. Sci. 2025, 26(10), 4479; https://doi.org/10.3390/ijms26104479 - 8 May 2025
Viewed by 660
Abstract
Orotic acid (OA) is a natural component of milk and is found in many biological fluids such as human ovarian follicular fluid. However, its effect on ovarian cells is unknown. Some studies suggest that OA may alter lipid metabolism and energy production in [...] Read more.
Orotic acid (OA) is a natural component of milk and is found in many biological fluids such as human ovarian follicular fluid. However, its effect on ovarian cells is unknown. Some studies suggest that OA may alter lipid metabolism and energy production in cells. In the present study, we determine the effect of OA on mitochondrial function and lipid droplet content in the human granulosa cell line. The effect of OA on in vitro mouse oocyte maturation and mitochondrial activity was also investigated. We found that repeated exposure to OA (0.01–1000 µM) did not alter the viability of human epithelial (HOSEpiC) and granulosa (HGrC1) ovarian cells. HGrC1 cells treated with a high dose of OA (500 µM) showed a more aerobic and energetic phenotype than control cells, whereas this effect was not observed after treatment with lower doses (0.01 and 100 µM) of OA. In addition, OA at a high dose (500 µM) reduced lipid droplet (LD) content without altering glucose (GLUT1, GLUT4) and fatty acid transporter (SLC27A1) gene expression in HGrC1 cells. At the same time, OA at 100 µM did not disrupt mouse in vitro oocyte maturation, whereas OA at 500 µM inhibited this process by arresting oocytes at the germinal vesicle (GV) stage with a reduction in mitochondrial activity. Our results show that OA at high doses can disrupt female reproduction, but normal dietary orotate intake does not have a negative effect on ovarian function. Full article
Show Figures

Figure 1

22 pages, 2221 KiB  
Article
Luminal Sweet Sensing and Enteric Nervous System Participate in Regulation of Intestinal Glucose Transporter, GLUT2
by Andrew W. Moran, Miran Alrammahi, Kristian Daly, Darren Weatherburn, Catherine Ionescu, Alexandra Blanchard and Soraya P. Shirazi-Beechey
Nutrients 2025, 17(9), 1547; https://doi.org/10.3390/nu17091547 - 30 Apr 2025
Viewed by 681
Abstract
Background/Objectives: Dietary glucose is transported across the intestinal absorptive cell into the systemic circulation by the apically located Na+-dependent glucose transporter 1 (SGLT1, SLC5A1) and basally residing Na+-independent glucose transporter 2 (GLUT2, SLC2A2). Whilst recent experimental evidence [...] Read more.
Background/Objectives: Dietary glucose is transported across the intestinal absorptive cell into the systemic circulation by the apically located Na+-dependent glucose transporter 1 (SGLT1, SLC5A1) and basally residing Na+-independent glucose transporter 2 (GLUT2, SLC2A2). Whilst recent experimental evidence has shown that sensing of sweet compounds by the gut-expressed sweet taste receptor T1R2–T1R3 and glucagon-like peptide-2 receptor signalling are components of the pathway controlling SGLT1 expression, little is known about the mechanisms involved in the regulation of GLUT2. In this study, we tested the hypothesis that T1R2–T1R3 and its downstream signalling pathway participate in the regulation of intestinal GLUT2. Methods: We used in vivo and in vitro approaches employing a weaning pig model, a heterologous expression assay, and knockout mice for elucidating the regulation of GLUT2 by luminal sugars. Results: A plant-based sweetener formulation included in piglets’ diet led to a marked increase in GLUT2 expression in piglets’ intestine, compared to controls. The sweeteners that do not activate pig T1R2–T1R3 failed to upregulate GLUT2. There was a significant increase in GLUT2 expression when the sweetener sucralose, which activates T1R2–T1R3, was included in the drinking water of wild-type mice. However, in knockout mice, in which the genes for the sweet receptor subunit T1R3 and the associated G-protein gustducin were deleted, there was no upregulation of GLUT2 expression in response to sucralose supplementation. There was a notable increase in GLUT2 expression in wild-type mice fed a high-carbohydrate diet compared to when maintained on a low-carbohydrate diet. However, in GLP-2 receptor knockout mice kept on the high-carbohydrate diet, there was no enhancement in GLUT2 expression. Conclusions: The experimental evidence suggests that luminal sweet sensing via T1R2–T1R3 and the enteroendocrine-derived GLP-2 are constituents of the regulatory pathway controlling GLUT2 expression. Full article
(This article belongs to the Special Issue The Interaction Between Flavor and Diet)
Show Figures

Figure 1

22 pages, 1591 KiB  
Review
Clinical Efficacy and Safety of the Ketogenic Diet in Patients with Genetic Confirmation of Drug-Resistant Epilepsy
by Ji-Hoon Na, Hyunjoo Lee and Young-Mock Lee
Nutrients 2025, 17(6), 979; https://doi.org/10.3390/nu17060979 - 11 Mar 2025
Cited by 1 | Viewed by 2573
Abstract
Drug-resistant epilepsy (DRE) affects 20–30% of patients with epilepsy who fail to achieve seizure control with antiseizure medications, posing a significant therapeutic challenge. In this narrative review, we examine the clinical efficacy and safety of the classic ketogenic diet (cKD) and its variants, [...] Read more.
Drug-resistant epilepsy (DRE) affects 20–30% of patients with epilepsy who fail to achieve seizure control with antiseizure medications, posing a significant therapeutic challenge. In this narrative review, we examine the clinical efficacy and safety of the classic ketogenic diet (cKD) and its variants, including the modified Atkins diet (MAD), medium-chain triglyceride diet (MCTD), and low glycemic index treatment (LGIT), in patients with genetically confirmed drug-resistant epilepsy. These diets induce a metabolic shift from glucose to ketones, enhance mitochondrial function, modulate neurotransmitter balance, and exert anti-inflammatory effects. However, genetic factors strongly influence the efficacy and safety of the cKD, with absolute indications including glucose transporter type 1 deficiency syndrome (GLUT1DS) and pyruvate dehydrogenase complex deficiency (PDCD). Preferred adjunctive applications of the KD include genetic epilepsies, such as SCN1A-related Dravet syndrome, TSC1/TSC2-related tuberous sclerosis complex, and UBE3A-related Angelman syndrome. However, because of the risk of metabolic decompensation, the cKD is contraindicated in patients with pathogenic variants of pyruvate carboxylase and SLC22A5. Recent advancements in precision medicine suggest that genetic and microbiome profiling may refine patient selection and optimize KD-based dietary interventions. Genome-wide association studies and multiomics approaches have identified key metabolic pathways influencing the response to the cKD, and these pave the way for individualized treatment strategies. Future research should integrate genomic, metabolomic, and microbiome data to develop biomarker-driven dietary protocols with improved efficacy and safety. As dietary therapies continue to evolve, a personalized medical approach is essential to maximize their clinical utility for genetic epilepsy and refractory epilepsy syndromes. Full article
(This article belongs to the Special Issue Clinical Impact of Ketogenic Diet)
Show Figures

Figure 1

14 pages, 985 KiB  
Article
Transcriptional Expression of SLC2A3 and SDHA Predicts the Risk of Local Tumor Recurrence in Patients with Head and Neck Squamous Cell Carcinomas Treated Primarily with Radiotherapy or Chemoradiotherapy
by Mercedes Camacho, Silvia Bagué, Cristina Valero, Anna Holgado, Laura López-Vilaró, Ximena Terra, Francesc-Xavier Avilés-Jurado and Xavier León
Int. J. Mol. Sci. 2025, 26(6), 2451; https://doi.org/10.3390/ijms26062451 - 9 Mar 2025
Cited by 1 | Viewed by 1254
Abstract
Reprogramming of metabolic pathways is crucial to guarantee the bioenergetic and biosynthetic demands of rapidly proliferating cancer cells and might be related to treatment resistance. We have previously demonstrated the deregulation of the succinate pathway in head and neck squamous cell carcinoma (HNSCC) [...] Read more.
Reprogramming of metabolic pathways is crucial to guarantee the bioenergetic and biosynthetic demands of rapidly proliferating cancer cells and might be related to treatment resistance. We have previously demonstrated the deregulation of the succinate pathway in head and neck squamous cell carcinoma (HNSCC) and its potential as a diagnostic and prognostic marker. Now we aim to identify biomarkers of resistance to radiotherapy (RT) by analyzing the expression of genes related to the succinate pathway and nutrient flux across the cell membrane. We determined the transcriptional expression of succinate receptor 1 (SUCNR1), succinate dehydrogenase A (SDHA), and the solute carrier (SLC) superfamily transporters responsible for the influx or efflux of a wide variety of nutrients (SLC2A3 and SLC16A3) in tumoral tissue from 120 HNSCC patients treated with RT or chemoradiotherapy (CRT). Our results indicated that the transcriptional expression of the glucose transporter SLC2A3 together with SDHA had the best predictive capacity for local response after treatment with RT or CRT. High SLC2A3 and SDHA expression predicted poor outcomes after RT or CRT, with these patients having a 4.2 times higher risk of local recurrence compared to the rest of the patients. These results might indicate that tumors that shifted toward a higher glucose influx and a higher oxidation of succinate via mitochondrial complex II present an ideal environment for radioresistance development. Patients with a high transcriptional expression of both SLC2A3 and SDHA had a significantly higher risk of local recurrence after treatment with RT or CRT. Full article
(This article belongs to the Special Issue Pathogenesis and Treatments of Head and Neck Cancer)
Show Figures

Figure 1

17 pages, 2539 KiB  
Article
C/EBPβ Regulates HIF-1α-Driven Invasion of Non-Small-Cell Lung Cancer Cells
by Seung Hee Seo, Ji Hae Lee, Eun Kyung Choi, Seung Bae Rho and Kyungsil Yoon
Biomolecules 2025, 15(1), 36; https://doi.org/10.3390/biom15010036 - 30 Dec 2024
Viewed by 1151
Abstract
Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and [...] Read more.
Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and accelerating metastasis. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) transcriptionally regulates hypoxia-inducible factor 1 subunit alpha (HIF1A) and thus promotes migration and invasion of non-small-cell lung cancer (NSCLC) cells under hypoxic conditions. Our results show that knockdown or forced expression of C/EBPβ was correlated with HIF-1α expression and that C/EBPβ directly bound to the promoter region of HIF1A. Silencing HIF1A inhibited the enhanced migration and invasion induced by C/EBPβ overexpression in NSCLC cells under hypoxia. Expression of the HIF-1α target gene, SLC2A1, was also altered in a C/EBPβ-dependent manner, and knockdown of SLC2A1 reduced migration and invasion enhanced by C/EBPβ overexpression. These results indicate that C/EBPβ is a critical regulator for the invasion of NSCLC cells in the hypoxic tumor microenvironment. Collectively, the C/EBPβ-HIF-1α-GLUT1 axis represents a potential therapeutic target for preventing metastatic progression of NSCLC and improving patient outcomes. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 4778 KiB  
Article
Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia
by Huynh Cao, Jeffrey Xiao, David J. Baylink, Vinh Nguyen, Nathan Shim, Jae Lee, Dave J. R. Mallari, Samiksha Wasnik, Saied Mirshahidi, Chien-Shing Chen, Hisham Abdel-Azim, Mark E. Reeves and Yi Xu
Biomedicines 2024, 12(10), 2250; https://doi.org/10.3390/biomedicines12102250 - 3 Oct 2024
Cited by 1 | Viewed by 2498
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., [...] Read more.
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

26 pages, 4618 KiB  
Article
Plantaginis Semen Ameliorates Hyperuricemia Induced by Potassium Oxonate
by Tian Liu, Liting Wang, Li Ji, Leixin Mu, Kaihe Wang, Guang Xu, Shifeng Wang and Qun Ma
Int. J. Mol. Sci. 2024, 25(15), 8548; https://doi.org/10.3390/ijms25158548 - 5 Aug 2024
Cited by 6 | Viewed by 2521
Abstract
Plantaginis semen is the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd., which has a long history in alleviating hyperuricemia (HUA) and chronic kidney diseases. While the major chemical ingredients and mechanism remained to be illustrated. Therefore, this work aimed [...] Read more.
Plantaginis semen is the dried ripe seed of Plantago asiatica L. or Plantago depressa Willd., which has a long history in alleviating hyperuricemia (HUA) and chronic kidney diseases. While the major chemical ingredients and mechanism remained to be illustrated. Therefore, this work aimed to elucidate the chemicals and working mechanisms of PS for HUA. UPLC-QE-Orbitrap-MS was applied to identify the main components of PS in vitro and in vivo. RNA sequencing (RNA-seq) was conducted to explore the gene expression profile, and the genes involved were further confirmed by real-time quantitative PCR (RT-qPCR). A total of 39 components were identified from PS, and 13 of them were detected in the rat serum after treating the rat with PS. The kidney tissue injury and serum uric acid (UA), xanthine oxidase (XOD), and cytokine levels were reversed by PS. Meanwhile, renal urate anion transporter 1 (Urat1) and glucose transporter 9 (Glut9) levels were reversed with PS treatment. RNA-seq analysis showed that the PPAR signaling pathway; glycine, serine, and threonine metabolism signaling pathway; and fatty acid metabolism signaling pathway were significantly modified by PS treatment. Further, the gene expression of Slc7a8, Pck1, Mgll, and Bhmt were significantly elevated, and Fkbp5 was downregulated, consistent with RNA-seq results. The PPAR signaling pathway involved Pparα, Pparγ, Lpl, Plin5, Atgl, and Hsl were elevated by PS treatment. URAT1 and PPARα proteins levels were confirmed by Western blotting. In conclusion, this study elucidates the chemical profile and working mechanisms of PS for prevention and therapy of HUA and provides a promising traditional Chinese medicine agency for HUA prophylaxis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 2242 KiB  
Review
Substance Delivery across the Blood-Brain Barrier or the Blood-Retinal Barrier Using Organic Cation Transporter Novel Type 2 (OCTN2)
by Toshihiko Tashima
Future Pharmacol. 2024, 4(3), 479-493; https://doi.org/10.3390/futurepharmacol4030027 - 4 Aug 2024
Cited by 1 | Viewed by 1699
Abstract
The membrane impermeability of a drug poses a significant challenge in drug research and development, preventing effective drug delivery to the target site. Specifically, the blood-brain barrier (BBB) presents a formidable obstacle to the delivery of drugs targeting the central nervous system (CNS) [...] Read more.
The membrane impermeability of a drug poses a significant challenge in drug research and development, preventing effective drug delivery to the target site. Specifically, the blood-brain barrier (BBB) presents a formidable obstacle to the delivery of drugs targeting the central nervous system (CNS) into the brain, whereas the blood-retinal barrier (BRB) presents a tremendous obstacle to the delivery of drugs targeting the ocular diseases into the eyes. The development of drugs for Alzheimer’s or Parkinson’s disease targeting the CNS and for diabetic retinopathy and age-related macular degeneration targeting the eyes remains an unmet medical need for patients. Transporters play a crucial physiological role in maintaining homeostasis in metabolic organs. Various types of solute carrier (SLC) transporters are expressed in the capillary endothelial cells of the BBB, facilitating the delivery of nutrients from the blood flow to the brain. Therefore, carrier-mediated transport across the BBB can be achieved using SLC transporters present in capillary endothelial cells. It is well-known that CNS drugs typically incorporate N-containing groups, indicating that cation transporters facilitate their transport into the brain. In fact, carrier-mediated transport across the BBB can be accomplished using glucose transporter type 1 (Glut1) as a glucose transporter, L-type amino acid transporter 1 (LAT1) as a large neutral amino acid transporter, and H+/cation antiporter as a cation transporter. Surprisingly, although organic cation transporter novel type 2 (OCTN2) is expressed in the capillary endothelial cells, there has been limited investigation into OCTN2-mediated substance delivery into the brain across the BBB. Furthermore, it is suggested that OCTN2 is expressed at the BRB. In this prospective review, I present the advantages and possibilities of substance delivery into the brain across the BBB or into the eyes across the BRB, mediated by OCTN2 via carrier-mediated transport or receptor-mediated transcytosis. Full article
Show Figures

Figure 1

14 pages, 1987 KiB  
Article
Nuclear Factor-Kappa-B Mediates the Advanced Glycation End Product-Induced Repression of Slc2a4 Gene Expression in 3T3-L1 Adipocytes
by Maria Luiza Estimo Michalani, Marisa Passarelli and Ubiratan Fabres Machado
Int. J. Mol. Sci. 2024, 25(15), 8242; https://doi.org/10.3390/ijms25158242 - 28 Jul 2024
Cited by 1 | Viewed by 1575
Abstract
Advanced glycated end products (AGEs) are cytotoxic compounds that are mainly increased in diabetes mellitus (DM), kidney failure, inflammation, and in response to the ingestion of AGE-rich diets. AGEs can also impair glycemic homeostasis by decreasing the expression of the Slc2a4 (solute carrier [...] Read more.
Advanced glycated end products (AGEs) are cytotoxic compounds that are mainly increased in diabetes mellitus (DM), kidney failure, inflammation, and in response to the ingestion of AGE-rich diets. AGEs can also impair glycemic homeostasis by decreasing the expression of the Slc2a4 (solute carrier family 2 member 4) gene and its GLUT4 (solute carrier family 2, facilitated glucose transporter member 4) protein in muscle. However, the mechanisms underlying AGE’s effect on adipocytes have not been demonstrated yet. This study investigated the effects of AGEs upon Slc2a4/GLUT4 expression in 3T3-L1 adipocytes, as well as the potential role of NFKB (nuclear factor NF-kappa-B) activity in the effects observed. Adipocytes were cultured in the presence of control albumin (CA) or advanced glycated albumin (GA) at concentrations of 0.4, 3.6, and 5.4 mg/mL for 24 h or 72 h. Slc2a4, Rela, and Nfkb1mRNAs were measured by RT-qPCR, GLUT4, IKKA/B, and p50/p65 NFKB subunits using Western blotting, and p50/p65 binding into the Slc2a4 promoter was analyzed by chromatin immunoprecipitation (ChIP) assay. GA at 0.4 mg/mL increased Slc2a4/GLUT4 expression after 24 h and 72 h (from 50% to 100%), but at 5.4 mg/mL, Slc2a4/GLUT4 expression decreased at 72 h (by 50%). Rela and Nfkb1 expression increased after 24 h at all concentrations, but this effect was not observed at 72 h. Furthermore, 5.4 mg/mL of GA increased the p50/p65 nuclear content and binding into Slc2a4 at 72 h. In summary, this study reveals AGE-induced and NFKB-mediated repression of Slc2a4/GLUT4 expression. This can compromise the adipocyte glucose utilization, contributing not only to the worsening of glycemic control in DM subjects but also the impairment of glycemic homeostasis in non-DM subjects under the high intake of AGE-rich foods. Full article
Show Figures

Figure 1

20 pages, 869 KiB  
Review
Neurodevelopment Is Dependent on Maternal Diet: Placenta and Brain Glucose Transporters GLUT1 and GLUT3
by Tomoko Daida, Bo-Chul Shin, Carlos Cepeda and Sherin U. Devaskar
Nutrients 2024, 16(14), 2363; https://doi.org/10.3390/nu16142363 - 21 Jul 2024
Cited by 8 | Viewed by 4997
Abstract
Glucose is the primary energy source for most mammalian cells and its transport is affected by a family of facilitative glucose transporters (GLUTs) encoded by the SLC2 gene. GLUT1 and GLUT3, highly expressed isoforms in the blood–brain barrier and neuronal membranes, respectively, are [...] Read more.
Glucose is the primary energy source for most mammalian cells and its transport is affected by a family of facilitative glucose transporters (GLUTs) encoded by the SLC2 gene. GLUT1 and GLUT3, highly expressed isoforms in the blood–brain barrier and neuronal membranes, respectively, are associated with multiple neurodevelopmental disorders including epilepsy, dyslexia, ADHD, and autism spectrum disorder (ASD). Dietary therapies, such as the ketogenic diet, are widely accepted treatments for patients with the GLUT1 deficiency syndrome, while ameliorating certain symptoms associated with GLUT3 deficiency in animal models. A ketogenic diet, high-fat diet, and calorie/energy restriction during prenatal and postnatal stages can also alter the placental and brain GLUTs expression with long-term consequences on neurobehavior. This review focuses primarily on the role of diet/energy perturbations upon GLUT isoform-mediated emergence of neurodevelopmental and neurodegenerative disorders. Full article
(This article belongs to the Special Issue Nutrition and Dietary Patterns: Effects on Brain Function)
Show Figures

Graphical abstract

14 pages, 1221 KiB  
Review
Regulation of Urate Homeostasis by Membrane Transporters
by Tappei Takada, Hiroshi Miyata, Yu Toyoda, Akiyoshi Nakayama, Kimiyoshi Ichida and Hirotaka Matsuo
Gout Urate Cryst. Depos. Dis. 2024, 2(2), 206-219; https://doi.org/10.3390/gucdd2020016 - 19 Jun 2024
Cited by 6 | Viewed by 3106
Abstract
Uric acid is the final purine metabolite in humans. Serum urate levels are regulated by a balance between urate production, mainly in the liver, and its excretion via the kidneys and small intestine. Given that uric acid exists as a urate anion at [...] Read more.
Uric acid is the final purine metabolite in humans. Serum urate levels are regulated by a balance between urate production, mainly in the liver, and its excretion via the kidneys and small intestine. Given that uric acid exists as a urate anion at physiological pH 7.4, membrane transporters are required to regulate urate homeostasis. In the kidney, urate transporter 1, glucose transporter 9, and organic anion transporter 10 contribute to urate reabsorption, whereas sodium-dependent phosphate transport protein 1 would be involved in urate excretion. Other transporters have been suggested to be involved in urate handling in the kidney; however, further evidence is required in humans. ATP-binding cassette transporter G2 (ABCG2) is another urate transporter, and its physiological role as a urate exporter is highly demonstrated in the intestine. In addition to urate, ABCG2 regulates the behavior of endogenous substances and drugs; therefore, the functional inhibition of ABCG2 has physiological and pharmacological effects. Although these transporters explain a large part of the urate regulation system, they are not sufficient for understanding the whole picture of urate homeostasis. Therefore, numerous studies have been conducted to find novel urate transporters. This review provides the latest evidence of urate transporters from pathophysiological and clinical pharmacological perspectives. Full article
Show Figures

Figure 1

10 pages, 431 KiB  
Article
Placental Expression of Glucose and Zinc Transporters in Women with Gestational Diabetes
by Łukasz Ustianowski, Michał Czerewaty, Kajetan Kiełbowski, Estera Bakinowska, Maciej Tarnowski, Krzysztof Safranow and Andrzej Pawlik
J. Clin. Med. 2024, 13(12), 3500; https://doi.org/10.3390/jcm13123500 - 14 Jun 2024
Cited by 3 | Viewed by 1141
Abstract
Background/Objectives: Gestational diabetes (GDM) is a metabolic disorder with altered glucose levels diagnosed in pregnant women. The pathogenesis of GDM is not fully known, but it is thought to be caused by impaired insulin production and insulin resistance induced by diabetogenic factors. [...] Read more.
Background/Objectives: Gestational diabetes (GDM) is a metabolic disorder with altered glucose levels diagnosed in pregnant women. The pathogenesis of GDM is not fully known, but it is thought to be caused by impaired insulin production and insulin resistance induced by diabetogenic factors. The placenta may play an important role in the development of GDM. Glucose transporters (GLUTs) are responsible for the delivery of glucose into the foetal circulation. Placental zinc transporters regulate insulin and glucagon secretion, as well as gluconeogenesis and glycolysis. The aim of this study was to investigate the placental expression of GLUT3, GLUT4, GLUT7 and SLC30A8 in women with GDM. Furthermore, we evaluated whether the expression profiles of these transporters were correlated with clinical parameters. Methods: This study included 26 patients with GDM and 28 patients with normal glucose tolerance (NGT). Results: The placental expression of GLUT3 was significantly reduced in the GDM group, while the placental expression of GLUT4, GLUT7 and SLC30A8 was significantly upregulated in the GDM group. GLUT3 expression correlated significantly with body mass index (BMI) increase during pregnancy and body mass increase during pregnancy, while GLUT4 expression correlated negatively with BMI at birth. Conclusions: These results suggest the involvement of GLUT3 and GLUT4, GLUT7 and SLC30A8 in the pathogenesis of GDM. Full article
(This article belongs to the Special Issue Gestational Diabetes: Current Knowledge and Therapeutic Prospects)
Show Figures

Figure 1

19 pages, 6374 KiB  
Article
Profiling Cell Heterogeneity and Fructose Transporter Expression in the Rat Nephron by Integrating Single-Cell and Microdissected Tubule Segment Transcriptomes
by Ronghao Zhang, Darshan Aatmaram Jadhav, Najeong Kim, Benjamin Kramer and Agustin Gonzalez-Vicente
Int. J. Mol. Sci. 2024, 25(5), 3071; https://doi.org/10.3390/ijms25053071 - 6 Mar 2024
Cited by 1 | Viewed by 2473
Abstract
Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells based on transcriptome similarity, irrespective of the anatomical location and order within the nephron. Thus, a transcriptome cluster may obscure the heterogeneity of the cell population within a [...] Read more.
Single-cell RNA sequencing (scRNAseq) is a crucial tool in kidney research. These technologies cluster cells based on transcriptome similarity, irrespective of the anatomical location and order within the nephron. Thus, a transcriptome cluster may obscure the heterogeneity of the cell population within a nephron segment. Elevated dietary fructose leads to salt-sensitive hypertension, in part, through fructose reabsorption in the proximal tubule (PT). However, the organization of the four known fructose transporters in apical PTs (SGLT4, SGLT5, GLUT5, and NaGLT1) remains poorly understood. We hypothesized that cells within each subsegment of the proximal tubule exhibit complex, heterogeneous fructose transporter expression patterns. To test this hypothesis, we analyzed rat kidney transcriptomes and proteomes from publicly available scRNAseq and tubule microdissection databases. We found that microdissected PT-S1 segments consist of 81% ± 12% cells with scRNAseq-derived transcriptional characteristics of S1, whereas PT-S2 express a mixture of 18% ± 9% S1, 58% ± 8% S2, and 19% ± 5% S3 transcripts, and PT-S3 consists of 75% ± 9% S3 transcripts. The expression of all four fructose transporters was detectable in all three PT segments, but key fructose transporters SGLT5 and GLUT5 progressively increased from S1 to S3, and both were significantly upregulated in S3 vs. S1/S2 (Slc5a10: 1.9 log2FC, p < 1 × 10−299; Scl2a5: 1.4 log2FC, p < 4 × 10−105). A similar distribution was found in human kidneys. These data suggest that S3 is the primary site of fructose reabsorption in both humans and rats. Finally, because of the multiple scRNAseq transcriptional phenotypes found in each segment, our findings also imply that anatomical labels applied to scRNAseq clusters may be misleading. Full article
(This article belongs to the Special Issue Renal Dysfunction, Uremic Compounds, and Other Factors 2.0)
Show Figures

Figure 1

17 pages, 8291 KiB  
Article
The Impact of SLC2A8 RNA Interference on Glucose Uptake and the Transcriptome of Human Trophoblast Cells
by Aleksandra Lipka, Łukasz Paukszto, Victoria C. Kennedy, Amelia R. Tanner, Marta Majewska and Russell V. Anthony
Cells 2024, 13(5), 391; https://doi.org/10.3390/cells13050391 - 24 Feb 2024
Cited by 2 | Viewed by 1968
Abstract
While glucose is the primary fuel for fetal growth, the placenta utilizes the majority of glucose taken up from the maternal circulation. Of the facilitative glucose transporters in the placenta, SLC2A8 (GLUT8) is thought to primarily function as an intracellular glucose transporter; however, [...] Read more.
While glucose is the primary fuel for fetal growth, the placenta utilizes the majority of glucose taken up from the maternal circulation. Of the facilitative glucose transporters in the placenta, SLC2A8 (GLUT8) is thought to primarily function as an intracellular glucose transporter; however, its function in trophoblast cells has not been determined. To gain insight into the function of SLC2A8 in the placenta, lentiviral-mediated RNA interference (RNAi) was performed in the human first-trimester trophoblast cell line ACH-3P. Non-targeting sequence controls (NTS RNAi; n = 4) and SLC2A8 RNAi (n = 4) infected ACH-3P cells were compared. A 79% reduction in SLC2A8 mRNA concentration was associated with an 11% reduction (p ≤ 0.05) in ACH-3P glucose uptake. NTS RNAi and SLC2A8 RNAi ACH-3P mRNA were subjected to RNAseq, identifying 1525 transcripts that were differentially expressed (|log2FC| > 1 and adjusted p-value < 0.05), with 273 transcripts derived from protein-coding genes, and the change in 10 of these mRNAs was validated by real-time qPCR. Additionally, there were 147 differentially expressed long non-coding RNAs. Functional analyses revealed differentially expressed genes involved in various metabolic pathways associated with cellular respiration, oxidative phosphorylation, and ATP synthesis. Collectively, these data indicate that SLC2A8 deficiency may impact placental uptake of glucose, but that its likely primary function in trophoblast cells is to support cellular respiration. Since the placenta oxidizes the majority of the glucose it takes up to support its own metabolic needs, impairment of SLC2A8 function could set the stage for functional placental insufficiency. Full article
(This article belongs to the Special Issue Signaling Pathways in Pregnancy)
Show Figures

Figure 1

15 pages, 4300 KiB  
Article
Development of a Highly Differentiated Human Primary Proximal Tubule MPS Model (aProximate MPS Flow)
by Francesca Pisapia, Donovan O’Brien, Elena Tasinato, Kathryn L. Garner and Colin D. A. Brown
Bioengineering 2024, 11(1), 7; https://doi.org/10.3390/bioengineering11010007 - 21 Dec 2023
Cited by 3 | Viewed by 3046
Abstract
The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly [...] Read more.
The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly predictive of human outcome. To address this, we developed a physiologically relevant micro-physiological system (MPS) model of the human PT, the aProximate MPS Flow platform (Patent No: G001336.GB). In this model, primary human PT cells (hPTCs) are subjected to fluidic media flow and a shear stress of 0.01–0.2 Pa. We observe that these cells replicate the polarity of hPTCs and exhibit a higher expression of all the key transporters of SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A2 (OCT2), SLC47A1 (MATE1), SLC22A12 (URAT1), SLC2A9 (GLUT9), ABCB1 (MDR1), ABCC2 (MRP2), LRP2 (megalin), CUBN (cubilin), compared with cells grown under static conditions. Immunofluorescence microscopy confirmed an increase in OAT1, OAT3, and cilia protein expression. Increased sensitivity to nephrotoxic protein cisplatin was observed; creatinine and FITC-albumin uptake was significantly increased under fluidic shear stress conditions. Taken together, these data suggest that growing human PT cells under media flow significantly improves the phenotype and function of hPTC monolayers and has benefits to the utility and near-physiology of the model. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

Back to TopTop