Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = Global Ecosystem Dynamics Investigation (GEDI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 391
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

17 pages, 3664 KiB  
Article
Improving the Estimates of County-Level Forest Attributes Using GEDI and Landsat-Derived Auxiliary Information in Fay–Herriot Models
by Okikiola M. Alegbeleye, Krishna P. Poudel, Curtis VanderSchaaf and Yun Yang
Remote Sens. 2025, 17(14), 2407; https://doi.org/10.3390/rs17142407 - 12 Jul 2025
Viewed by 302
Abstract
National-scale forest inventories such as the Forest Inventory and Analysis (FIA) program in the United States are designed to provide data and estimates that meet target precision at the national and state levels. However, such design-based direct estimates are often not accurate at [...] Read more.
National-scale forest inventories such as the Forest Inventory and Analysis (FIA) program in the United States are designed to provide data and estimates that meet target precision at the national and state levels. However, such design-based direct estimates are often not accurate at a smaller geographic scale due to the small sample size. Small area estimation (SAE) techniques provide precise estimates at small domains by borrowing strength from remotely sensed auxiliary information. This study combined the FIA direct estimates with gridded mean canopy heights derived from recently published Global Ecosystem Dynamics Investigation (GEDI) Level 3 data and Landsat data to improve county-level estimates of total and merchantable volume, aboveground biomass, and basal area in the states of Alabama and Mississippi, USA. Compared with the FIA direct estimates, the area-level SAE models reduced root mean square error for all variables of interest. The multi-state SAE models had a mean relative standard error of 0.67. In contrast, single-state models had relative standard errors of 0.54 and 0.59 for Alabama and Mississippi, respectively. Despite GEDI’s limited footprints, this study reveals its potential to reduce direct estimate errors at the sub-state level when combined with Landsat bands through the small area estimation technique. Full article
Show Figures

Figure 1

40 pages, 4088 KiB  
Article
Multi-Sensor Fusion and Machine Learning for Forest Age Mapping in Southeastern Tibet
by Zelong Chi and Kaipeng Xu
Remote Sens. 2025, 17(11), 1926; https://doi.org/10.3390/rs17111926 - 1 Jun 2025
Cited by 1 | Viewed by 731
Abstract
Forest age is a key factor in determining the carbon sequestration capacity and trends of forests. Based on the Google Earth Engine platform and using the topographically complex and climatically diverse Southeastern Tibet as the study area, we propose a new method for [...] Read more.
Forest age is a key factor in determining the carbon sequestration capacity and trends of forests. Based on the Google Earth Engine platform and using the topographically complex and climatically diverse Southeastern Tibet as the study area, we propose a new method for forest age estimation that integrates multi-source remote-sensing data with machine learning. The study employs the Continuous Degradation Detection (CODED) algorithm combined with spectral unmixing models and Normalized Difference Fraction Index (NDFI) time series analysis to update forest disturbance information and provide annual forest distribution, mapping young forest distribution. For undisturbed forests, we compared 12 machine-learning models and selected the Random Forest model for age prediction. The input variables include multiscale satellite spectral bands (Sentinel-2 MSI, Landsat series, PROBA-V, MOD09A1), vegetation parameter products (canopy height, productivity), data from the Global Ecosystem Dynamics Investigation (GEDI), multi-band SAR data (C/L), vegetation indices (e.g., NDVI, LAI, FPAR), and environmental factors (climate seasonality, topography). The results indicate that the forests in Southeastern Tibet are predominantly overmature (>120 years), accounting for 87% of the total forest cover, while mature (80–120 years), sub-mature (60–80 years), intermediate-aged (40–60 years), and young forests (< 40 years) represent relatively lower proportions at 9%, 1%, 2%, and 1%, respectively. Forest age exhibits a moderate positive correlation with stem biomass (r = 0.54) and leaf-area index (r = 0.53), but weakly negatively correlated with L-band radar backscatter (HV polarization, r = −0.18). Significant differences in reflectance among different age groups are observed in the 500–1000 nm spectral band, with 100 m resolution PROBA-V data being the most suitable for age prediction. The Random Forest model achieved an overall accuracy of 62% on the independent validation set, with canopy height, L-band radar data, and temperature seasonality being the most important predictors. Compared with 11 other machine-learning models, the Random Forest model demonstrated higher accuracy and stability in estimating forest age under complex terrain and cloudy conditions. This study provides an expandable technical framework for forest age estimation in complex terrain areas, which is of significant scientific and practical value for sustainable forest resource management and global forest resource monitoring. Full article
Show Figures

Figure 1

22 pages, 6961 KiB  
Article
Simulation-Based Correction of Geolocation Errors in GEDI Footprint Positions Using Monte Carlo Approach
by Xiaoyan Wang, Ruirui Wang, Banghui Yang, Le Yang, Fei Liu and Kaiwei Xiong
Forests 2025, 16(5), 768; https://doi.org/10.3390/f16050768 - 30 Apr 2025
Cited by 1 | Viewed by 432
Abstract
Traditional remote sensing techniques face notable limitations in accurately estimating forest canopy height. Optical data often suffer from vegetation occlusion, while radar systems, though capable of penetrating foliage, show reduced accuracy in complex terrains. The Global Ecosystem Dynamics Investigation (GEDI), a spaceborne LiDAR [...] Read more.
Traditional remote sensing techniques face notable limitations in accurately estimating forest canopy height. Optical data often suffer from vegetation occlusion, while radar systems, though capable of penetrating foliage, show reduced accuracy in complex terrains. The Global Ecosystem Dynamics Investigation (GEDI), a spaceborne LiDAR mission, offers high-resolution measurements that address these challenges. However, the complexity of waveform processing and the influence of geolocation uncertainty demand rigorous assessment. This study employs GEDI Version 2.0 data, which demonstrates substantial improvement in geolocation accuracy compared to Version 1.0, and integrates airborne laser scanning (ALS) data from the Changbai Mountain forest region to simulate GEDI waveforms. A Monte Carlo-based approach was used to quantify and correct geolocation offsets, resulting in a reduction in the average relative error (defined as the mean of the absolute differences between estimated and reference canopy heights divided by the reference values) in canopy height estimates from 11.92% to 8.55%. Compared to traditional correction strategies, this method demonstrates stronger robustness in heterogeneous forest conditions. The findings emphasize the effectiveness of simulation-based optimization in enhancing the geolocation accuracy and canopy height retrieval reliability of GEDI data, especially in complex terrain environments. This contributes to more precise global forest structure assessments and provides a methodological foundation for future improvements in spaceborne LiDAR applications. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 20523 KiB  
Article
Modeling Worldwide Tree Biodiversity Using Canopy Structure Metrics from Global Ecosystem Dynamics Investigation Data
by Jin Xu, Kjirsten Coleman, Volker C. Radeloff, Melissa Songer and Qiongyu Huang
Remote Sens. 2025, 17(8), 1408; https://doi.org/10.3390/rs17081408 - 16 Apr 2025
Viewed by 603
Abstract
Accurately quantifying global tree biodiversity is critical for enhancing forest ecosystem management and forest biodiversity conservation. With the launch of NASA’s Global Ecosystem Dynamics Investigation (GEDI), we evaluated the efficacy of space-borne lidar metrics in predicting tree species richness globally and explored whether [...] Read more.
Accurately quantifying global tree biodiversity is critical for enhancing forest ecosystem management and forest biodiversity conservation. With the launch of NASA’s Global Ecosystem Dynamics Investigation (GEDI), we evaluated the efficacy of space-borne lidar metrics in predicting tree species richness globally and explored whether integrating spectral vegetation metrics with space-borne lidar data could improve model performances. Using Forest Global Earth Observatory (ForestGEO) data, we developed three models using the random forest algorithm to predict global tree species richness across climate zones, including a dynamic habitat index (DHI)-only model, a GEDI-only model, and a combined GEDI-DHI model. We also developed four new canopy indices for our model and determined the optimal extent for aggregating GEDI metrics. Applying the optimal pixel size (5600 m), we found that the GEDI-only model predicted tree species richness across climate zones well (R2 = 0.55). One of our new GEDI metrics, representing canopy structure complexity, was among the top five most important features. The GEDI-DHI model performed similarly to the GEDI-only model using the ForestGEO dataset (R2 = 0.55). Our study provides an efficient and innovative method for using GEDI data to predict global tree species richness. However, the integration of GEDI metrics with DHIs did not significantly improve the model’s performance compared to the GEDI-only model. Considering the substantial variation in tree species richness across different climate zones, we recommend modeling tree species richness for each climate zone rather than using a global model. Additionally, incorporating open-source ground-measured tree species richness data can improve predictions and inform decision-making in forest conservation management. Full article
Show Figures

Figure 1

23 pages, 5227 KiB  
Article
Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical Data
by Franciel Eduardo Rex, Carlos Alberto Silva, Eben North Broadbent, Ana Paula Dalla Corte, Rodrigo Leite, Andrew Hudak, Caio Hamamura, Hooman Latifi, Jingfeng Xiao, Jeff W. Atkins, Cibele Amaral, Ernandes Macedo da Cunha Neto, Adrian Cardil, Angelica M. Almeyda Zambrano, Veraldo Liesenberg, Jingjing Liang, Danilo Roberti Alves De Almeida and Carine Klauberg
Sensors 2025, 25(2), 308; https://doi.org/10.3390/s25020308 - 7 Jan 2025
Cited by 1 | Viewed by 3117
Abstract
Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite [...] Read more.
Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species. Data from Sentinel-2 optical imagery, ERA-5 climate data, SRTM-DEM imagery, and simulated GEDI data were selected for the characterization of diversity in four study areas. The integration of ancillary data can improve biodiversity metrics predictions. Random Forest (RF) regression models were suitable for estimating tree species diversity indices from remote sensing variables. From these models, we generated diversity index maps for the entire Cerrado using all GEDI data available in orbit. For all models, the structural metric Foliage Height Diversity (FHD) was selected; the Renormalized Difference Vegetation Index (RDVI) was also selected in all species diversity models. For the Shannon model, two GEDI variables were selected. Overall, the models indicated performances for species diversity ranging from (R2 = 0.24 to 0.56). In terms of RMSE%, the Shannon model had the lowest value among the diversity indices (31.98%). Our results suggested that the developed models are valuable tools for assessing species diversity in tropical savanna ecosystems, although each model can be chosen based on the objectives of a given study, the target amount of performance/error, and the availability of data. Full article
Show Figures

Figure 1

22 pages, 9868 KiB  
Article
Re-Estimating GEDI Ground Elevation Using Deep Learning: Impacts on Canopy Height and Aboveground Biomass
by Rei Mitsuhashi, Yoshito Sawada, Ken Tsutsui, Hidetake Hirayama, Tadashi Imai, Taishi Sumita, Koji Kajiwara and Yoshiaki Honda
Remote Sens. 2024, 16(23), 4597; https://doi.org/10.3390/rs16234597 - 7 Dec 2024
Cited by 1 | Viewed by 1906
Abstract
This paper presents a method to improve ground elevation estimates through waveform analysis from the Global Ecosystem Dynamics Investigation (GEDI) and examines its impact on canopy height and aboveground biomass (AGB) estimation. The method uses a deep learning model to estimate ground elevation [...] Read more.
This paper presents a method to improve ground elevation estimates through waveform analysis from the Global Ecosystem Dynamics Investigation (GEDI) and examines its impact on canopy height and aboveground biomass (AGB) estimation. The method uses a deep learning model to estimate ground elevation from the GEDI waveform. Geographic transferability was demonstrated by recalculating canopy height and AGB estimation accuracy using the improved ground elevation without changing established GEDI formulas for relative height (RH) and AGB. The study covers four regions in Japan and South America, from subarctic to tropical zones, integrating GEDI waveform data with airborne laser scan (ALS) data. Transfer learning was explored to enhance accuracy in regions not used for training. Ground elevation estimates using deep learning showed an RMSE improvement of over 3 m compared to the conventional GEDI L2A product, with generalization performance. Applying transfer learning and retraining with additional data further improved the estimation accuracy, even with limited datasets. The findings suggest that improving ground elevation estimates enhances canopy height and AGB accuracy, maximizing GEDI’s global AGB estimation algorithms. Optimizing models for each region could further enhance accuracy. The broader application of this method may improve global carbon cycle understanding and climate models. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

24 pages, 11680 KiB  
Article
Assessment and Optimization of Forest Aboveground Biomass in Liaoning Province
by Jiapeng Huang and Xinyue Cao
Forests 2024, 15(12), 2095; https://doi.org/10.3390/f15122095 - 26 Nov 2024
Viewed by 1094
Abstract
Forests are the largest terrestrial carbon reservoirs and the most cost-effective carbon sinks. Accurate estimation of forest aboveground biomass (AGB) can significantly reduce uncertainty in carbon stock assessments. However, due to the limitations of timely and reliable forestry surveys, as well as high-resolution [...] Read more.
Forests are the largest terrestrial carbon reservoirs and the most cost-effective carbon sinks. Accurate estimation of forest aboveground biomass (AGB) can significantly reduce uncertainty in carbon stock assessments. However, due to the limitations of timely and reliable forestry surveys, as well as high-resolution remote sensing data, mapping high-resolution and spatially continuous forest AGB remains challenging. The Global Ecosystem Dynamics Investigation (GEDI) is a remote sensing mission led by NASA, aimed at obtaining global forest three-dimensional structural information through LiDAR data, and has become an important tool for estimating forest structural parameters at regional scales. In 2019, the GEDI L4A product was introduced to improve AGB estimation accuracy. Currently, forest AGB maps in China have not been consistently evaluated, and research on biomass at the provincial level is still limited. Moreover, scaling GEDI’s footprint-based data to regional-scale gridded data remains a pressing issue. In this study, to verify the accuracy of GEDI L4A data and the reliability of the filtering parameters, the filtered GEDI L4A data were extracted and validated against airborne data, resulting in a Pearson correlation coefficient (ρ) of 0.69 (p < 0.001, statistically significant). This confirms the reliability of both the GEDI L4A data and the proposed filtering parameters. Taking Liaoning Province as an example, this study evaluated three forest AGB maps (Yang’s, Su’s, and Zhang’s maps), which were obtained as nationwide AGB product maps, using GEDI L4A data. The comparison with Su’s map yields the highest ρ value of 0.61. To enhance comparison accuracy, Kriging spatial interpolation was applied to the extracted GEDI footprint data, yielding continuous data. This ρ value increased to 0.75 when compared with Su’s map, with significant increases also observed against Yang’s and Zhang’s maps. The study further proposes a method to subtract the extracted GEDI data from the AGB values of the three maps, followed by Kriging interpolation, resulting in ρ values of 0.70, 0.80, and 0.69 for comparisons with Yang’s, Su’s, and Zhang’s maps, respectively. Additionally, comparisons with field measurements from the Mudanjiang Ecological Research Station yielded ρ values of 0.66, 0.65, and 0.50, indicating substantial improvements over direct comparisons. All the ρ values were statistically significant (p < 0.001). This study also conducted comparisons across different cities and forest cover types. The results indicate that cities in eastern Liaoning Province, such as Dalian and Anshan, which have larger forest cover areas, produced better results. Among the different forest types, evergreen needle-leaved forests and deciduous needle-leaved forests yielded better results. Full article
Show Figures

Figure 1

28 pages, 31167 KiB  
Article
Optimizing GEDI Canopy Height Estimation and Analyzing Error Impact Factors Under Highly Complex Terrain and High-Density Vegetation Conditions
by Runbo Chen, Xinchuang Wang, Xuejie Liu and Shunzhong Wang
Forests 2024, 15(11), 2024; https://doi.org/10.3390/f15112024 - 17 Nov 2024
Cited by 3 | Viewed by 2376
Abstract
The Global Ecosystem Dynamics Investigation (GEDI) system provides essential data for estimating forest canopy height on a global scale. However, factors such as complex topography and dense canopy can significantly reduce the accuracy of GEDI canopy height estimations. We selected the South Taihang [...] Read more.
The Global Ecosystem Dynamics Investigation (GEDI) system provides essential data for estimating forest canopy height on a global scale. However, factors such as complex topography and dense canopy can significantly reduce the accuracy of GEDI canopy height estimations. We selected the South Taihang region of Henan Province, China, as our study area and proposed an optimization framework to improve GEDI canopy height estimation accuracy. This framework includes correcting geolocation errors in GEDI footprints, screening and analyzing features that affect estimation errors, and combining two regression models with feature selection methods. Our findings reveal a geolocation error of 4 to 6 m in GEDI footprints at the orbital scale, along with an overestimation of GEDI canopy height in the South Taihang region. Relative height (RH), waveform characteristics, topographic features, and canopy cover significantly influenced the estimation error. Some studies have suggested that GEDI canopy height estimates for areas with high canopy cover lead to underestimation, However, our study found that accuracy increased with higher canopy cover in complex terrain and dense vegetation. The model’s performance improved significantly after incorporating the canopy cover parameter into the optimization model. Overall, the R2 of the best-optimized model was improved from 0.06 to 0.61, the RMSE was decreased from 8.73 m to 2.23 m, and the rRMSE decreased from 65% to 17%, resulting in an accuracy improvement of 74.45%. In general, this study reveals the factors affecting the accuracy of GEDI canopy height estimation in areas with complex terrain and dense vegetation cover, on the premise of minimizing GEDI geolocation errors. Employing the proposed optimization framework significantly enhanced the accuracy of GEDI canopy height estimates. This study also highlighted the crucial role of canopy cover in improving the precision of GEDI canopy height estimation, providing an effective approach for forest monitoring in such regions and vegetation conditions. Future studies should further improve the classification of tree species and expand the diversity of sample tree species to test the accuracy of canopy height estimated by GEDI in different forest structures, consider the distortion of optical remote sensing images caused by rugged terrain, and further mine the information in GEDI waveforms so as to enhance the applicability of the optimization framework in more diverse forest environments. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

15 pages, 4236 KiB  
Article
Automated Estimation of Building Heights with ICESat-2 and GEDI LiDAR Altimeter and Building Footprints: The Case of New York City and Los Angeles
by Yunus Kaya
Buildings 2024, 14(11), 3571; https://doi.org/10.3390/buildings14113571 - 9 Nov 2024
Cited by 1 | Viewed by 1929
Abstract
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) [...] Read more.
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) cadastral data, ground measurements (total station, Global Positioning System (GPS), ground laser scanning) and air-based (such as Unmanned Aerial Vehicle—UAV) measurement methods are used to determine building heights, more comprehensive and advanced techniques need to be used in large-scale studies, such as in cities or countries. Although satellite-based altimetry data, such as Ice, Cloud and land Elevation Satellite (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI), provide important information on building heights due to their high vertical accuracy, it is often difficult to distinguish between building photons and other objects. To overcome this challenge, a self-adaptive method with minimal data is proposed. Using building photons from ICESat-2 and GEDI data and building footprints from the New York City (NYC) and Los Angeles (LA) open data platform, the heights of 50,654 buildings in NYC and 84,045 buildings in LA were estimated. As a result of the study, root mean square error (RMSE) 8.28 m and mean absolute error (MAE) 6.24 m were obtained for NYC. In addition, 46% of the buildings had an RMSE of less than 5 m and 7% less than 1 m. In LA data, the RMSE and MAE were 6.42 m and 4.66 m, respectively. It was less than 5 m in 67% of the buildings and less than 1 m in 7%. However, ICESat-2 data had a better RMSE than GEDI data. Nevertheless, combining the two data provided the advantage of detecting more building heights. This study highlights the importance of using minimum data for determining urban-scale building heights. Moreover, continuous monitoring of urban alterations using satellite altimetry data would provide more effective energy consumption assessment and management. Full article
Show Figures

Figure 1

18 pages, 16040 KiB  
Article
Unveiling Anomalies in Terrain Elevation Products from Spaceborne Full-Waveform LiDAR over Forested Areas
by Hailan Jiang, Yi Li, Guangjian Yan, Weihua Li, Linyuan Li, Feng Yang, Anxin Ding, Donghui Xie, Xihan Mu, Jing Li, Kaijian Xu, Ping Zhao, Jun Geng and Felix Morsdorf
Forests 2024, 15(10), 1821; https://doi.org/10.3390/f15101821 - 17 Oct 2024
Cited by 2 | Viewed by 1395
Abstract
Anomalies displaying significant deviations between terrain elevation products acquired from spaceborne full-waveform LiDAR and reference elevations are frequently observed in assessment studies. While the predominant focus is on “normal” data, recognizing anomalies within datasets obtained from the Geoscience Laser Altimeter System (GLAS) and [...] Read more.
Anomalies displaying significant deviations between terrain elevation products acquired from spaceborne full-waveform LiDAR and reference elevations are frequently observed in assessment studies. While the predominant focus is on “normal” data, recognizing anomalies within datasets obtained from the Geoscience Laser Altimeter System (GLAS) and the Global Ecosystem Dynamics Investigation (GEDI) is essential for a comprehensive understanding of widely used spaceborne full-waveform data, which not only facilitates optimal data utilization but also enhances the exploration of potential applications. Nevertheless, our comprehension of anomalies remains limited as they have received scant specific attention. Diverging from prevalent practices of directly eliminating outliers, we conducted a targeted exploration of anomalies in forested areas using both transmitted and return waveforms from the GLAS and the GEDI in conjunction with airborne LiDAR point cloud data. We unveiled that elevation anomalies stem not from the transmitted pulses or product algorithms, but rather from scattering sources. We further observed similarities between the GLAS and the GEDI despite their considerable disparities in sensor parameters, with the waveforms characterized by a low signal-to-noise ratio and a near exponential decay in return energy; specifically, return signals of anomalies originated from clouds rather than the land surface. This discovery underscores the potential of deriving cloud-top height from spaceborne full-waveform LiDAR missions, particularly the GEDI, suggesting promising prospects for applying GEDI data in atmospheric science—an area that has received scant attention thus far. To mitigate the impact of abnormal return waveforms on diverse land surface studies, we strongly recommend incorporating spaceborne LiDAR-offered terrain elevation in data filtering by establishing an elevation-difference threshold against a reference elevation. This is especially vital for studies concerning forest parameters due to potential cloud interference, yet a consensus has not been reached within the community. Full article
Show Figures

Figure 1

21 pages, 6212 KiB  
Article
Validation and Error Minimization of Global Ecosystem Dynamics Investigation (GEDI) Relative Height Metrics in the Amazon
by Alyson East, Andrew Hansen, Patrick Jantz, Bryce Currey, David W. Roberts and Dolors Armenteras
Remote Sens. 2024, 16(19), 3550; https://doi.org/10.3390/rs16193550 - 24 Sep 2024
Cited by 6 | Viewed by 2205
Abstract
Global Ecosystem Dynamics Investigation (GEDI) is a relatively new technology for global forest research, acquiring LiDAR measurements of vertical vegetation structure across Earth’s tropical, sub-tropical, and temperate forests. Previous GEDI validation efforts have largely focused on top of canopy accuracy, and findings vary [...] Read more.
Global Ecosystem Dynamics Investigation (GEDI) is a relatively new technology for global forest research, acquiring LiDAR measurements of vertical vegetation structure across Earth’s tropical, sub-tropical, and temperate forests. Previous GEDI validation efforts have largely focused on top of canopy accuracy, and findings vary by geographic region and forest type. Despite this, many applications utilize measurements of vertical vegetation distribution from the lower canopy, with a wide diversity of uses for GEDI data appearing in the literature. Given the variability in data requirements across research applications and ecosystems, and the regional variability in GEDI data quality, it is imperative to understand GEDI error to draw strong inferences. Here, we quantify the accuracy of GEDI relative height metrics through canopy layers for the Brazilian Amazon. To assess the accuracy of on-orbit GEDI L2A relative height metrics, we utilize the GEDI waveform simulator to compare detailed airborne laser scanning (ALS) data from the Sustainable Landscapes Brazil project to GEDI data collected by the International Space Station. We also assess the impacts of data filtering based on biophysical and GEDI sensor conditions and geolocation correction on GEDI error metrics (RMSE, MAE, and Bias) through canopy levels. GEDI data accuracy attenuates through the lower percentiles in the relative height (RH) curve. While top of canopy (RH98) measurements have relatively high accuracy (R2 = 0.76, RMSE = 5.33 m), the accuracy of data decreases lower in the canopy (RH50: R2 = 0.54, RMSE = 5.59 m). While simulated geolocation correction yielded marginal improvements, this decrease in accuracy remained constant despite all error reduction measures. Some error rates for the Amazon are double those reported in studies from other regions. These findings have broad implications for the application of GEDI data, especially in studies where forest understory measurements are particularly challenging to acquire (e.g., dense tropical forests) and where understory accuracy is highly important. Full article
Show Figures

Figure 1

23 pages, 11056 KiB  
Article
Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data
by Yingchen Wang, Hongtao Wang, Cheng Wang, Shuting Zhang, Rongxi Wang, Shaohui Wang and Jingjing Duan
Remote Sens. 2024, 16(16), 2913; https://doi.org/10.3390/rs16162913 - 9 Aug 2024
Cited by 2 | Viewed by 2696
Abstract
Mapping wall-to-wall forest aboveground biomass (AGB) at large scales is critical for understanding global climate change and the carbon cycle. In previous studies, a regression-based method was commonly used to map the spatially continuous distribution of forest AGB with the aid of optical [...] Read more.
Mapping wall-to-wall forest aboveground biomass (AGB) at large scales is critical for understanding global climate change and the carbon cycle. In previous studies, a regression-based method was commonly used to map the spatially continuous distribution of forest AGB with the aid of optical images, which may suffer from the saturation effect. The Global Ecosystem Dynamics Investigation (GEDI) can collect forest vertical structure information with high precision on a global scale. In this study, we proposed a collaborative kriging (co-kriging) interpolation-based method for mapping spatially continuous forest AGB by integrating GEDI and Sentinel-2 data. First, by fusing spectral features from Sentinel-2 images with vertical structure features from GEDI, the optimal estimation model for footprint-level AGB was determined by comparing different machine-learning algorithms. Second, footprint-level predicted AGB was used as the main variable, with rh95 and B12 as covariates, to build a co-kriging guided interpolation model. Finally, the interpolation model was employed to map wall-to-wall forest AGB. The results showed the following: (1) For footprint-level AGB, CatBoost achieved the highest accuracy by fusing features from GEDI and Sentinel-2 data (R2 = 0.87, RMSE = 49.56 Mg/ha, rRMSE = 27.06%). (2) The mapping results based on the interpolation method exhibited relatively high accuracy and mitigated the saturation effect in areas with higher forest AGB (R2 = 0.69, RMSE = 81.56 Mg/ha, rRMSE = 40.98%, bias = −3.236 Mg/ha). The mapping result demonstrates that the proposed method based on interpolation combined with multi-source data can be a promising solution for monitoring spatially continuous forest AGB. Full article
(This article belongs to the Special Issue Remote Sensing and Lidar Data for Forest Monitoring)
Show Figures

Figure 1

22 pages, 6511 KiB  
Article
Regional Scale Inversion of Chlorophyll Content of Dendrocalamus giganteus by Multi-Source Remote Sensing
by Cuifen Xia, Wenwu Zhou, Qingtai Shu, Zaikun Wu, Li Xu, Huanfen Yang, Zhen Qin, Mingxing Wang and Dandan Duan
Forests 2024, 15(7), 1211; https://doi.org/10.3390/f15071211 - 12 Jul 2024
Cited by 4 | Viewed by 1115
Abstract
The spectrophotometer method is costly, time-consuming, laborious, and destructive to the plant. Samples will be lost during the transportation process, and the method can only obtain sample point data. This poses a challenge to the estimation of chlorophyll content at the regional level. [...] Read more.
The spectrophotometer method is costly, time-consuming, laborious, and destructive to the plant. Samples will be lost during the transportation process, and the method can only obtain sample point data. This poses a challenge to the estimation of chlorophyll content at the regional level. In this study, in order to improve the estimation accuracy, a new method of collaborative inversion of chlorophyll using Landsat 8 and Global Ecosystem Dynamics Investigation (GEDI) is proposed. Specifically, the chlorophyll content data set is combined with the preprocessed two remote-sensing (RS) factors to construct three regression models using a support vector machine (SVM), BP neural network (BP) and random forest (RF), and the better model is selected for inversion. In addition, the ordinary Kriging (OK) method is used to interpolate the GEDI point attribute data into the surface attribute data for modeling. The results showed the following: (1) The chlorophyll model of a single plant was y = 0.1373x1.7654. (2) The optimal semi-variance function models of pai, pgap_theta and pgap_theta_a3 are exponential models. (3) The top three correlations between the two RS data and the chlorophyll content were B2_3_SM, B2_3_HO, B2_5_EN and pai, pgap_theta, pgap_theta_a3. (4) The combination of the Landsat 8 imagery and GEDI resulted in the highest modeling accuracy, and RF had the best performance, with R2, RMSE and P values of 0.94, 0.18 g/m2 and 83.32%, respectively. This study shows that it is reliable to use Landsat 8 images and GEDI to retrieve the chlorophyll content of Dendrocalamus giganteus (D. giganteus), revealing the potential of multi-source RS data in the inversion of forest ecological parameters. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 6501 KiB  
Article
Application of Random Forest Method Based on Sensitivity Parameter Analysis in Height Inversion in Changbai Mountain Forest Area
by Xiaoyan Wang, Ruirui Wang, Shi Wei and Shicheng Xu
Forests 2024, 15(7), 1161; https://doi.org/10.3390/f15071161 - 4 Jul 2024
Cited by 2 | Viewed by 1525
Abstract
The vertical structure of forests, including the measurement of canopy height, helps researchers understand forest characteristics such as density and growth stages. It is one of the key variables for estimating forest biomass and is crucial for accurately monitoring changes in forest carbon [...] Read more.
The vertical structure of forests, including the measurement of canopy height, helps researchers understand forest characteristics such as density and growth stages. It is one of the key variables for estimating forest biomass and is crucial for accurately monitoring changes in forest carbon storage. However, current technologies face challenges in achieving cost-effective, accurate measurement of canopy height on a widespread scale. This study introduces a method aimed at extracting accurate forest canopy height from The Global Ecosystem Dynamics Investigation (GEDI) data, followed by a comprehensive large-scale analysis utilizing this approach. Before mapping, verifying and analyzing the accuracy and sensitivity of parameters that may affect the precision of GEDI data extraction, such as slope, aspect, and vegetation coverage, can aid in assessment and decision-making, enhancing inversion accuracy. Consequently, a random forest method based on parameter sensitivity analysis is developed to break through the constraints of traditional issues and achieve forest canopy height inversion. Sensitivity analysis of influencing parameters surpasses the uniform parameter calculation of traditional methods by differentiating the effects of various land use types, thereby enhancing the precision of height inversion. Moreover, potential factors affecting the accuracy of GEDI data, such as vegetation cover density, terrain complexity, and data acquisition conditions, are thoroughly analyzed and discussed. Subsequently, large-scale forest canopy height estimation is conducted by integrating vegetation cover Normalized Difference Vegetation Index (NDVI), sun altitude angle and terrain data, among other variables, and accuracy validation is performed using airborne LiDAR data. With an R2 value of 0.64 and an RMSE of 8.62, the mapping accuracy underscores the resilience of the proposed method in delineating forest canopy height within the Changbai Mountain forest domain. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

Back to TopTop