Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Gastrodia elata tuber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4632 KB  
Article
Environmental and Rhizosphere Microbiome Drivers of Metabolic Profiles in Gastrodia elata: An Integrative Analysis of Soil, Metabolomics and Anti-Inflammatory Readouts
by Yan Yang, Longxing Guo, Yongguo Li, Miaomiao Ji, Tingting He, Kaiming Hou, Jian Li, Haonan Zhang, Zhilong Shi and Haizhu Zhang
Foods 2025, 14(24), 4265; https://doi.org/10.3390/foods14244265 - 11 Dec 2025
Viewed by 525
Abstract
Background: Gastrodiae Rhizoma, the dried tuber of Gastrodia elata Bl. (Orchidaceae), is a traditional Chinese medicinal (TCM) and edible plant. Its quality formation is closely associated with rhizosphere microorganisms; however, the specific underlying mechanisms remain unclear. Methods: Tubers and rhizosphere soils were collected [...] Read more.
Background: Gastrodiae Rhizoma, the dried tuber of Gastrodia elata Bl. (Orchidaceae), is a traditional Chinese medicinal (TCM) and edible plant. Its quality formation is closely associated with rhizosphere microorganisms; however, the specific underlying mechanisms remain unclear. Methods: Tubers and rhizosphere soils were collected from seven major production regions of G. elata. Soil physicochemical properties were analyzed, and integrative analyses combining soil microbiome and untargeted metabolome profiling were conducted. The anti-inflammatory activity of G. elata extracts was evaluated using a RAW264.7 macrophage model. Multivariate statistical approaches, including OPLS-DA and correlation network analysis, were used to decipher relationships among environmental factors, microbial communities, metabolic profiles, and bioactivities. Results: A total of 39,250 bacterial ASVs and 10,544 fungal ASVs were identified. The bacterial community, dominated by Proteobacteria and Acidobacteria, was strongly influenced by soil chemical factors, including pH and total nitrogen. The fungal community, primarily composed of Ascomycota and Basidiomycota, exhibited marked sensitivity to altitudinal gradients. Correlation analysis revealed that key secondary metabolites, including flavonoids and phenolic acids, along with their anti-inflammatory activities, were significantly associated with rhizosphere microorganisms such as Edaphobaculum, Hypocrea, and Pseudomonas. Conclusions: Our findings outline the pathways connecting environmental factors, the microbiome, and functional metabolites in G. elata, highlighting the importance of environmental–microbial interactions in determining metabolic outcomes. This work provides new insights into the ecological and molecular mechanisms behind the quality formation of this medicinal plant. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

18 pages, 3899 KB  
Article
Stage-Specific Lipidomes of Gastrodia elata Extracellular Vesicles Modulate Fungal Symbiosis
by Siyu Hao, Zhongyi Hua and Yuan Yuan
Int. J. Mol. Sci. 2025, 26(17), 8611; https://doi.org/10.3390/ijms26178611 - 4 Sep 2025
Viewed by 1026
Abstract
The mycoheterotrophic orchid Gastrodia elata relies entirely on symbiosis with Armillaria for nutrient acquisition during tuber development. The signaling mechanisms underlying this interaction have long been a research focus, and several pathways, such as phytohormone-mediated signaling, have been reported. However, the role of [...] Read more.
The mycoheterotrophic orchid Gastrodia elata relies entirely on symbiosis with Armillaria for nutrient acquisition during tuber development. The signaling mechanisms underlying this interaction have long been a research focus, and several pathways, such as phytohormone-mediated signaling, have been reported. However, the role of plant-derived extracellular vesicles (PDEVs) in G. elataArmillaria communication remains unexplored. In this study, we conducted a comprehensive lipidomic analysis of G. elata-derived extracellular vesicles (GDEVs) isolated from juvenile, immature (active symbiosis), and mature tubers. By employing high-resolution mass spectrometry and advanced statistical methods, we established a detailed EV lipidome profile for G. elata, identifying 996 lipid species spanning eight major classes. Distinct lipidomic remodeling was observed throughout tuber maturation. Notably, as the immature stage corresponds to the period of peak symbiotic activity, targeted lipidome comparisons enabled the identification of core lipid markers, particularly Glc-sitosterols and the polyketide 7,8-dehydroastaxanthin, which are highly enriched during active symbiosis and potentially associated with inter-kingdom communication. These findings suggest that developmentally regulated lipid transport via EVs plays a critical role in mediating G. elataArmillaria interaction. Our work not only illuminates the contribution of vesicle lipids to plant–fungal interaction but also provides a methodological foundation for investigating EV-mediated signaling in non-model plant–microbe systems. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
Show Figures

Figure 1

18 pages, 5973 KB  
Article
Genome-Wide Identification and Characterisation of the 4-Coumarate–CoA Ligase (4CL) Gene Family in Gastrodia elata and Their Transcriptional Response to Fungal Infection
by Shan Sha, Kailang Mu, Qiumei Luo, Shi Yao, Tianyu Tang, Wei Sun, Zhigang Ju and Yuxin Pang
Int. J. Mol. Sci. 2025, 26(15), 7610; https://doi.org/10.3390/ijms26157610 - 6 Aug 2025
Viewed by 882
Abstract
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have [...] Read more.
Gastrodia elata Blume is an important medicinal orchid, yet its large-scale cultivation is increasingly threatened by fungal diseases. The 4-coumarate–CoA ligase (4CL) gene family directs a key step in phenylpropanoid metabolism and plant defence, but its composition and function in G. elata have not been investigated. We mined the G. elata genome for 4CL homologues, mapped their chromosomal locations, and analysed their gene structures, conserved motifs, phylogenetic relationships, promoter cis-elements and codon usage bias. Publicly available transcriptomes were used to examine tissue-specific expression and responses to fungal infection. Subcellular localisation of selected proteins was verified by transient expression in Arabidopsis protoplasts. Fourteen Ge4CL genes were identified and grouped into three clades. Two members, Ge4CL2 and Ge4CL5, were strongly upregulated in tubers challenged with fungal pathogens. Ge4CL2 localised to the nucleus, whereas Ge4CL5 localised to both the nucleus and the cytoplasm. Codon usage analysis suggested that Escherichia coli and Oryza sativa are suitable heterologous hosts for Ge4CL expression. This study provides the first genome-wide catalogue of 4CL genes in G. elata and suggests that Ge4CL2 and Ge4CL5 may participate in antifungal defence, although functional confirmation is still required. The dataset furnishes a foundation for functional characterisation and the molecular breeding of disease-resistant G. elata cultivars. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 7490 KB  
Article
Exploring the Biocultural Nexus of Gastrodia elata in Zhaotong: A Pathway to Ecological Conservation and Economic Growth
by Yanxiao Fan, Menghua Tian, Defen Hu and Yong Xiong
Biology 2025, 14(7), 846; https://doi.org/10.3390/biology14070846 - 11 Jul 2025
Cited by 2 | Viewed by 2722
Abstract
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate [...] Read more.
Gastrodia elata, known as Tianma in Chinese, is a valuable medicinal and nutritional resource. The favorable climate of Zhaotong City, Yunnan Province, China, facilitates its growth and nurtures rich biocultural diversity associated with Tianma in the region. Local people not only cultivate Tianma as a traditional crop but have also developed a series of traditional knowledge related to its cultivation, processing, medicinal use, and culinary applications. In this study, field surveys employing ethnobotanical methods were conducted in Yiliang County, Zhaotong City, from August 2020 to May 2024, focusing on Tianma. A total of 114 key informants participated in semi-structured interviews. The survey documented 23 species (and forms) from seven families related to Tianma cultivation. Among them, there were five Gastrodia resource taxa, including one original species, and four forms. These 23 species served as either target cultivated species, symbiotic fungi (promoting early-stage Gastrodia germination), or fungus-cultivating wood. The Fagaceae family, with 10 species, was the most dominant, as its dense, starch-rich wood decomposes slowly, providing Armillaria with a long-term, stable nutrient substrate. The cultural importance (CI) statistics revealed that Castanea mollissima, G. elata, G. elata f. flavida, G. elata f. glauca, G. elata f. viridis, and Xuehong Tianma (unknown form) exhibited relatively high CI values, indicating their crucial cultural significance and substantial value within the local community. In local communities, traditionally processed dried Tianma tubers are mainly used to treat cardiovascular diseases and also serve as a culinary ingredient, with its young shoots and tubers incorporated into dishes such as cold salads and stewed chicken. To protect the essential ecological conditions for Tianma, the local government has implemented forest conservation measures. The sustainable development of the Tianma industry has alleviated poverty, protected biodiversity, and promoted local economic growth. As a distinctive plateau specialty of Zhaotong, Tianma exemplifies how biocultural diversity contributes to ecosystem services and human well-being. This study underscores the importance of biocultural diversity in ecological conservation and the promotion of human welfare. Full article
(This article belongs to the Special Issue Young Researchers in Conservation Biology and Biodiversity)
Show Figures

Figure 1

22 pages, 5318 KB  
Article
Identification of the Glyceraldehyde-3-Phosphate Dehydrogenase (GeGAPDH) Gene Family in Gastrodia elata Revealing Its Response Characteristics to Low-Temperature and Pathogen Stress
by Yaxing Yan, Mei Jiang, Pengjie Han, Xiaohu Lin and Xiao Wang
Plants 2025, 14(12), 1866; https://doi.org/10.3390/plants14121866 - 18 Jun 2025
Cited by 1 | Viewed by 1264
Abstract
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene plays a pivotal role in the glycolysis/gluconeogenesis process, contributing significantly to glycosyl donor synthesis, plant growth and development, and stress responses. Gastrodia elata Bl., a heterotrophic plant in the Orchidaceae family, has its dried tubers used [...] Read more.
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene plays a pivotal role in the glycolysis/gluconeogenesis process, contributing significantly to glycosyl donor synthesis, plant growth and development, and stress responses. Gastrodia elata Bl., a heterotrophic plant in the Orchidaceae family, has its dried tubers used as the traditional Chinese medicine. This study identified three GeGAPDH genes in G. elata, all encoding basic, stable, hydrophilic proteins. Phylogenetic analysis and subcellular localization predictions categorized GeGAPDH1 as a plastid subtype, while GeGAPDH2 and GeGAPDH3 were classified as cytoplasmic subtypes. Prokaryotic expression experiments demonstrated successful expression of the GeGAPDH1 protein in Escherichia coli, which exhibited significant GAPDH enzymatic activity. Subcellular localization experiments showed that GeGAPDH1 was localized in the plastid. Expression analysis indicated that the three GeGAPDH genes were predominantly expressed in tubers. Under low-temperature stress, although the total GAPDH enzyme activity in tubers did not change significantly, the expression of GeGAPDH1 was significantly up-regulated, while GeGAPDH2 and GeGAPDH3 were significantly down-regulated. This suggests that different subtypes of GeGAPDH may regulate cold resistance through different pathways. Upon pathogen infection, the GeGAPDH gene family exhibited pathogen-specific regulatory patterns. During infection by Fusarium oxysporum, both the expression levels of all three GeGAPDH genes and the total GAPDH enzyme activity in tubers increased significantly; however, F. solani infection induced a significant increase in total GAPDH enzyme activity without significant changes in gene expression. These results suggest that the GeGAPDH gene family may respond to different pathogen infections through transcriptional or translational regulation mechanisms. This study systematically identified and characterized the GeGAPDH gene family in G. elata, providing a theoretical foundation for understanding the functional differentiation of GAPDH in heterotrophic plants. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

15 pages, 4511 KB  
Article
Melatonin Maintains Postharvest Quality in Fresh Gastrodia elata Tuber by Regulating Antioxidant Ability and Phenylpropanoid and Energy Metabolism During Storage
by Boyu Dong, Chengyue Kuang, Yulong Chen, Fangfang Da, Qiuping Yao, Dequan Zhu and Xiaochun Ding
Int. J. Mol. Sci. 2024, 25(21), 11752; https://doi.org/10.3390/ijms252111752 - 1 Nov 2024
Cited by 5 | Viewed by 1622
Abstract
Melatonin treatment has been reported to effectively preserve and improve the postharvest quality of fruits and vegetables during storage. This research focused on examining the significance of melatonin on maintaining the quality of fresh Gastrodia elata tubers throughout the storage period. The findings [...] Read more.
Melatonin treatment has been reported to effectively preserve and improve the postharvest quality of fruits and vegetables during storage. This research focused on examining the significance of melatonin on maintaining the quality of fresh Gastrodia elata tubers throughout the storage period. The findings demonstrated that melatonin application effectively reduced the deterioration rate and inhibited the rise in respiratory rate, malondialdehyde content, and weight loss, while slowing down the decline in soluble solid content. Melatonin treatment led to a decrease in hydrogen peroxide production and a rise in non-enzymatic antioxidant concentrations, including ascorbic acid. Furthermore, it boosted both the activity and expression of indispensable antioxidant enzymes, like superoxide dismutase, catalase, and ascorbate peroxidase. Additionally, melatonin treatment promoted the accumulation of total phenols, flavonoids, and lignin in fresh G. elata, while enhancing both the activity and expression of critical enzymes in the phenylpropanoid pathway, including phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, and 4-coumarate-CoA ligase. Moreover, melatonin treatment boosted the activity and expression of energy-associated enzymes including H+-ATPase, succinate dehydrogenase, Ca2+-ATPase, and cytochrome C oxidase, contributing to the improvement of energy levels in fresh G. elata. In summary, melatonin enhances the antioxidant potential and reduces oxidative damage in fresh G. elata by activating reactive oxygen species, phenylpropanoid metabolism, and energy metabolism, thereby maintaining its postharvest quality. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2529 KB  
Brief Report
Clonostachys rosea, a Pathogen of Brown Rot in Gastrodia elata in China
by Huan Yao, Kang Liu, Lei Peng, Touli Huang, Jinzhen Shi, Beilin Sun and Juan Zou
Biology 2024, 13(9), 730; https://doi.org/10.3390/biology13090730 - 17 Sep 2024
Cited by 2 | Viewed by 2699
Abstract
Gastrodia elata, commonly known as Tian Ma, is a perennial mycoheterotrophic orchid. Qianyang Tian Ma (QTM), a geographical indication agricultural product from Hongjiang City, Hunan Province, China, is primarily characterized by the red variety, G. elata f. elata. A severe outbreak [...] Read more.
Gastrodia elata, commonly known as Tian Ma, is a perennial mycoheterotrophic orchid. Qianyang Tian Ma (QTM), a geographical indication agricultural product from Hongjiang City, Hunan Province, China, is primarily characterized by the red variety, G. elata f. elata. A severe outbreak of tuber brown rot disease was documented in QTM during the harvesting season in Hunan. The fungal pathogen associated with the disease was isolated on potato saccharose agar (PSA) and identified through morphological and phylogenetic analyses. Pathogenicity tests were performed on healthy tubers of G. elata f. elata. The results showed that the representative isolate, named TMB, produced white hyphal colonies with a ring structure, broom-like phialides, partially curved ellipsoidal conidia, and orange–yellow spherical ascocarps on PSA. Phylogenetic analysis of the ITS, LSU, rpb2 and tub2 sequences using Bayesian and maximum-likelihood methods identified the isolate TMB as Clonostachys rosea, based on morphological and phylogenetic data. Pathogenicity tests revealed typical disease symptoms on healthy G. elata tubers 15 days post-inoculation with the isolate TMB. C. rosea is known to cause diseases in economically important crops, but there are no reports of its occurrence on G. elata f. elata in China. This study provides valuable insights into the occurrence, prevention, and control of brown rot disease in G. elata f. elata. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

14 pages, 6064 KB  
Article
Bioactivity Profiling and Quantification of Gastrodin in Gastrodia elata Cultivated in the Field versus Facility via Hyphenated High-Performance Thin-Layer Chromatography
by Fernanda L. B. Mügge, Cheul Muu Sim, Bernd Honermeier and Gertrud E. Morlock
Int. J. Mol. Sci. 2023, 24(12), 9936; https://doi.org/10.3390/ijms24129936 - 9 Jun 2023
Cited by 6 | Viewed by 3365
Abstract
Gastrodia elata (Orchidaceae) is native to mountainous areas of Asia and is a plant species used in traditional medicine for more than two thousand years. The species was reported to have many biological activities, such as neuroprotective, antioxidant, and anti-inflammatory activity. After many [...] Read more.
Gastrodia elata (Orchidaceae) is native to mountainous areas of Asia and is a plant species used in traditional medicine for more than two thousand years. The species was reported to have many biological activities, such as neuroprotective, antioxidant, and anti-inflammatory activity. After many years of extensive exploitation from the wild, the plant was added to lists of endangered species. Since its desired cultivation is considered difficult, innovative cultivation methods that can reduce the costs of using new soil in each cycle and at the same time avoid contamination with pathogens and chemicals are urgently needed on large scale. In this work, five G. elata samples cultivated in a facility utilizing electron beam-treated soil were compared to two samples grown in the field concerning their chemical composition and bioactivity. Using hyphenated high-performance thin-layer chromatography (HPTLC) and multi-imaging (UV/Vis/FLD, also after derivatization), the chemical marker compound gastrodin was quantified in the seven G. elata rhizome/tuber samples, which showed differences in their contents between facility and field samples and between samples collected during different seasons. Parishin E was also found to be present. Combining HPTLC with on-surface (bio)assays, the antioxidant activity and inhibition of acetylcholinesterase as well as the absence of cytotoxicity against human cells were demonstrated and compared between samples. Full article
(This article belongs to the Special Issue Biological Properties of Medicinal Plants)
Show Figures

Figure 1

16 pages, 1641 KB  
Article
Quality Evaluation of Gastrodia Elata Tubers Based on HPLC Fingerprint Analyses and Quantitative Analysis of Multi-Components by Single Marker
by Yehong Li, Yiming Zhang, Zejun Zhang, Yupiao Hu, Xiuming Cui and Yin Xiong
Molecules 2019, 24(8), 1521; https://doi.org/10.3390/molecules24081521 - 17 Apr 2019
Cited by 70 | Viewed by 6790
Abstract
Gastrodia elata (G. elata) tuber is a valuable herbal medicine used to treat many diseases. The procedure of establishing a reasonable and feasible quality assessment method for G. elata tuber is important to ensure its clinical safety and efficacy. In this [...] Read more.
Gastrodia elata (G. elata) tuber is a valuable herbal medicine used to treat many diseases. The procedure of establishing a reasonable and feasible quality assessment method for G. elata tuber is important to ensure its clinical safety and efficacy. In this research, an effective and comprehensive evaluation method for assessing the quality of G. elata has been developed, based on the analysis of high performance liquid chromatography (HPLC) fingerprint, combined with the quantitative analysis of multi-components by single marker (QAMS) method. The contents of the seven components, including gastrodin, p-hydroxybenzyl alcohol, p-hydroxy benzaldehyde, parishin A, parishin B, parishin C, and parishin E were determined, simultaneously, using gastrodin as the reference standard. The results demonstrated that there was no significant difference between the QAMS method and the traditional external standard method (ESM) (p > 0.05, RSD < 4.79%), suggesting that QAMS was a reliable and convenient method for the content determination of multiple components, especially when there is a shortage of reference substances. In conclusion, this strategy could be beneficial for simplifying the processes in the quality control of G. elata tuber and giving references to promote the quality standards of herbal medicines. Full article
Show Figures

Figure 1

14 pages, 2050 KB  
Article
Optimal Extraction Study of Gastrodin-Type Components from Gastrodia Elata Tubers by Response Surface Design with Integrated Phytochemical and Bioactivity Evaluation
by Minhui Hu, Hui Yan, Yuanyuan Fu, Yulan Jiang, Weifeng Yao, Sheng Yu, Li Zhang, Qinan Wu, Anwei Ding and Mingqiu Shan
Molecules 2019, 24(3), 547; https://doi.org/10.3390/molecules24030547 - 2 Feb 2019
Cited by 22 | Viewed by 5177
Abstract
Gastrodia elata tuber (GET) is a popular traditional Chinese medicines (TCMs). In this study, response surface methodology (RSM) with a Box–Behnken design (BBD) was performed to optimize the extraction parameters of gastrodin-type components (gastrodin, gastrodigenin, parishin A, parishin B, parishin C and parishin [...] Read more.
Gastrodia elata tuber (GET) is a popular traditional Chinese medicines (TCMs). In this study, response surface methodology (RSM) with a Box–Behnken design (BBD) was performed to optimize the extraction parameters of gastrodin-type components (gastrodin, gastrodigenin, parishin A, parishin B, parishin C and parishin E). Different from the conventional studies that merely focused on the contents of phytochemical, we gave consideration to both quantitative analysis of the above six components by HPLC and representative bioactivities of GET, including antioxidation and protection of human umbilical vein endothelial cells (HUVEC). Four independent variables (ethanol concentration, liquid-material ratio, soaking time and extraction time) were investigated with the integrated evaluation index of phytochemical contents. With the validation experiments, the optimal extraction parameters were as follows: ethanol concentration of 41%, liquid–solid ratio of 28.58 mL/g, soaking time of 23.91 h and extraction time of 46.60 min. Under the optimum conditions, the actual standardized comprehensive score was 1.8134 ± 0.0110, which was in accordance with the predicted score of 1.8100. This firstly established method was proved to be feasible and reliable to optimize the extraction parameters of the bioactive components from GET. Furthermore, it provides some reference for the quality control and extraction optimization of TCMs. Full article
Show Figures

Graphical abstract

12 pages, 3187 KB  
Article
Evaluation of a Nondestructive NMR and MRI Method for Monitoring the Drying Process of Gastrodia elata Blume
by Yannan Chen, Hongjing Dong, Jingkun Li, Lanping Guo and Xiao Wang
Molecules 2019, 24(2), 236; https://doi.org/10.3390/molecules24020236 - 10 Jan 2019
Cited by 35 | Viewed by 4396
Abstract
Gastrodia elata Blume (G. elata) is a prominent traditional herb and its dry tuber is officially listed in the Chinese Pharmacopoeia. To ensure the quality of dried G. elata, the establishment of a nondestructive and convenient method to monitor the [...] Read more.
Gastrodia elata Blume (G. elata) is a prominent traditional herb and its dry tuber is officially listed in the Chinese Pharmacopoeia. To ensure the quality of dried G. elata, the establishment of a nondestructive and convenient method to monitor the drying process is necessary. In this study, a nondestructive low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) method was introduced to monitor the drying process of G. elata. Three water states (bound, immobilized, and free) in G. elata samples were investigated through multiexponential fitting and inversion of the NMR data. The variation and distribution of the three water states during drying were monitored by LF-NMR, and the spatial distribution of water and internal structural changes were analyzed by MRI. Linear analysis of the moisture content, L* (lightness), b* (yellowness), and NMR parameters showed good correlations among them. Furthermore, partial least squares regression (PLSR) model analysis, which takes into account all NMR parameters, also showed good correlations among these parameters. All results showed that LF-NMR was feasible and convenient for monitoring moisture content. Therefore, LF-NMR and MRI could be used to monitor the moisture content nondestructively in the drying process of Chinese traditional herbs. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop