Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (695)

Search Parameters:
Keywords = GRP94

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3909 KB  
Article
Transcriptional Profiling Defines Unique Subtypes of Transit Amplifying Neural Progenitors Within the Neonatal Mouse Subventricular Zone
by Rebecca Zaritsky, Ekta Kumari, Fernando Janczur Velloso, Alexander Lemenze, Seema Husain and Steven W. Levison
Biomolecules 2025, 15(10), 1438; https://doi.org/10.3390/biom15101438 - 11 Oct 2025
Viewed by 30
Abstract
While significant progress has been made in understanding the heterogeneity of Neural Stem Cells (NSCs), our understanding of similar heterogeneity among the more abundant transit amplifying progenitors is lagging. Our work on the neural progenitors (NPs) of the neonatal subventricular zone (SVZ) began [...] Read more.
While significant progress has been made in understanding the heterogeneity of Neural Stem Cells (NSCs), our understanding of similar heterogeneity among the more abundant transit amplifying progenitors is lagging. Our work on the neural progenitors (NPs) of the neonatal subventricular zone (SVZ) began over a decade ago, when we used antibodies to the four antigens, CD133, LeX, CD140a, and NG2 to perform Fluorescence-activated cell sorting to classify subsets of the neonatal mouse SVZ as either multi-potential (MP1, MP2, MP3, MP4 and PFMPs), glial-restricted (GRP1, GRP2, and GRP3), or neuron-astrocyte restricted (BNAP). Using RNA sequencing, we have characterized the distinctive molecular fingerprints of four SVZ neural progenitor subtypes and compared their gene expression profiles to those of the NSCs. We performed bioinformatic analyses to provide insights into each NP type’s unique interactome and the transcription factors regulating their development. Overall, we identified 1581 genes upregulated in at least one NP subset compared to the NSCs. Of these genes, 796 genes were upregulated in BNAP/GRP1 compared to NSCs; 653 in GRP2/MP3; 440 in GRP3; and 527 in PFMPs. One gene that emerged from our analysis that can be used to distinguish the NPs from the NSCs is Etv1, also known as Er81. Also notable is that the NSCs downregulated cilia formation genes as they differentiated to become multipotential progenitors. Among the NPs, both PFMP and GRP3 subtypes differentially expressed genes related to neuron and oligodendrocyte development, including Matn4, Lhfpl3 and Olig2. GRP3s uniquely expressed Etv5, a transcription factor known to promote glial cell fate specification, while PFMPs uniquely expressed Lhx6, a transcription factor that regulates interneuron specification. PFMPs also expressed transcripts for olfactory receptors. Unlike the other NPs, the GRP1 and GRP2 NPs upregulated expression of genes for proteins involved in immune function. The present work will serve as an important resource for investigators interested in further defining the transit amplifying progenitors of the mammalian SVZ. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Neurodevelopment)
17 pages, 326 KB  
Article
Cyclic, LCD, and Self-Dual Codes over the Non-Frobenius Ring GR(p2,m)[u]/⟨u2,pu
by Sami Alabiad and Alhanouf Ali Alhomaidhi
Mathematics 2025, 13(19), 3193; https://doi.org/10.3390/math13193193 - 5 Oct 2025
Viewed by 143
Abstract
Let p be a prime number and m be a positive integer. In this paper, we investigate cyclic codes of length n over the local non-Frobenius ring R=GR(p2,m)[u], where [...] Read more.
Let p be a prime number and m be a positive integer. In this paper, we investigate cyclic codes of length n over the local non-Frobenius ring R=GR(p2,m)[u], where u2=0 and pu=0. We first determine the algebraic structure of cyclic codes of arbitrary length n. For the case gcd(n,p)=1, we explicitly describe the generators of cyclic codes over R. Moreover, we establish necessary and sufficient conditions for the existence of self-dual and LCD codes, together with their enumeration. Several illustrative examples and tables are presented, highlighting the mass formula for cyclic self-orthogonal codes, cyclic LCD codes, and families of new cyclic codes that arise from our results. Full article
Show Figures

Figure 1

21 pages, 3498 KB  
Article
Effects of Replacing Fishmeal with Soybean Meal on Intestinal Histology, Antioxidation, Endoplasmic Reticulum Stress, Inflammation, Tight Junction, and Microbiota in Olive Flounder (Paralichthys olivaceus)
by Zhenxia Su, Yanjie Zhang, Chaoqing Wei, Fengxiang Zhang, Lei Wang, Yaxuan Li, Zhengqiu Zhang, Jianhe Xu, Zhiguo Dong and Hua Mu
Animals 2025, 15(19), 2895; https://doi.org/10.3390/ani15192895 - 3 Oct 2025
Viewed by 302
Abstract
A limited supply and price shortages of fishmeal with the expansion of aquaculture make it necessary to seek alternative protein sources. Soybean meal (SM) has been the widely preferred replacer for fishmeal in fish diets. Nevertheless, this substitution, especially when given at high [...] Read more.
A limited supply and price shortages of fishmeal with the expansion of aquaculture make it necessary to seek alternative protein sources. Soybean meal (SM) has been the widely preferred replacer for fishmeal in fish diets. Nevertheless, this substitution, especially when given at high doses, potentially shows adverse impact on fish intestinal health. This study aimed to investigate the effect of replacing fishmeal with SM on intestinal health in olive flounder (Paralichthys olivaceus). A 56-day feeding trial was conducted with 450 juvenile fish (initial weight: 6.32 ± 0.01 g) randomly allocated to five diets with graded SM replacement: 0% (FM), 12% (SM12), 24% (SM24), 36% (SM36), and 48% (SM48). The results demonstrated that concentrations of glucose, total triglyceride, and low-density lipoprotein cholesterol increased, whereas total protein and high-density lipoprotein cholesterol contents, and lysozyme activity decreased in serum with increasing dietary SM levels. Meanwhile, total antioxidant capacity and superoxide dismutase activity significantly decreased at replacement levels exceeding 24%, accompanied by elevated malondialdehyde concentration (p < 0.05). Compared with the FM group, the SM24, SM36, and SM48 groups showed significantly reduced VH and increased lamina propria width (p < 0.05). Increasing dietary SM levels upregulated expression of genes related to endoplasmic reticulum stress (ERS) (chop, perk, and grp78), inflammation (tnf-α and il-6), and apoptosis (bax, casp3, casp6, and casp9), while downregulated anti-inflammatory cytokines (il-10 and tgf-β1) and tight junction-related genes (zo-1, zo-2, claudin-5, ocln, muc-13, and muc-15) in the intestine (p < 0.05). There were significant differences in the abundances of intestinal microbiota at both the phylum and genus levels among the FM, SM24, and SM36 groups (p < 0.05), but the clusters and microbiota composition of the SM24 group were more similar to those of the FM group. In conclusion, replacing 24% of fishmeal with SM induced intestinal dysfunction through evoking ERS, inflammation, barrier disruption, and microbial dysbiosis in olive flounder. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

28 pages, 379 KB  
Article
Completeness and Cocompleteness Transfer for Internal Group Objects with Geometric Obstructions
by Jian-Gang Tang, Nueraminaimu Maihemuti, Jia-Yin Peng, Yimamujiang Aisan and Ai-Li Song
Mathematics 2025, 13(19), 3155; https://doi.org/10.3390/math13193155 - 2 Oct 2025
Viewed by 179
Abstract
This work establishes definitive conditions for the inheritance of categorical completeness and cocompleteness by categories of internal group objects. We prove that while the completeness of Grp(C) follows unconditionally from the completeness of the base category C, cocompleteness requires [...] Read more.
This work establishes definitive conditions for the inheritance of categorical completeness and cocompleteness by categories of internal group objects. We prove that while the completeness of Grp(C) follows unconditionally from the completeness of the base category C, cocompleteness requires C to be regular, cocomplete, and admit a free group functor left adjoint to the forgetful functor. Explicit limit and colimit constructions are provided, with colimits realized via coequalizers of relations induced by group axioms over free group objects. Applications demonstrate cocompleteness in topological groups, ordered groups, and group sheaves, while Lie groups serve as counterexamples revealing necessary analytic constraints—particularly the impossibility of equipping free groups on non-discrete manifolds with smooth structures. Further results include the inheritance of regularity when the free group functor preserves finite products, the existence of internal hom-objects in locally Cartesian closed settings, monadicity for locally presentable C, and homotopical extensions where model structures on Grp(M) reflect those of M. This framework unifies classical category theory with geometric obstruction theory, resolving fundamental questions on exactness transfer and enabling new constructions in homotopical algebra and internal representation theory. Full article
18 pages, 1232 KB  
Review
The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans
by Sebastian Gawlak-Socka, Paulina Sokołowska, Gabriela Henrykowska, Edward Kowalczyk, Sebastian Kłosek and Anna Wiktorowska-Owczarek
Int. J. Mol. Sci. 2025, 26(19), 9620; https://doi.org/10.3390/ijms26199620 - 2 Oct 2025
Viewed by 269
Abstract
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced [...] Read more.
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced periodontitis in rodents, as well as chemical hypoxia, have consistently demonstrated the activation of unfolded protein response (UPR) pathways in periodontal cells. Key ER stress markers, including CHOP, GRP78, PERK, and ATF6, were upregulated in periodontal ligament cells, stem cells, and gingival epithelial cells under these conditions. While ER stress in periodontitis is primarily associated with detrimental outcomes such as apoptosis and inflammation, it may also have a physiological role in bone remodeling via the PERK-eIF2α-ATF4 axis. Importantly, several ER stress-modulating agents—such as oridonin, melatonin, and exosomes derived from M2 macrophages—have shown therapeutic potential by reducing stress marker expression and limiting periodontal damage. These findings suggest that targeting ER stress may offer a novel therapeutic strategy. Future human studies are essential to determine whether a combined approach targeting inflammation and ER stress could more effectively halt or reverse periodontal tissue destruction, while also assessing the long-term safety of ER stress modulation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 3250 KB  
Article
Development and Evaluation of Liposomal Celastrol-PROTACs for Treating Triple-Negative Breast Cancer
by Xuebin Li, Chaoqun Yu, Gongyi Zheng, Yanghong Li, Weiguo Cao and Fan Wang
Pharmaceuticals 2025, 18(9), 1381; https://doi.org/10.3390/ph18091381 - 16 Sep 2025
Viewed by 452
Abstract
Background: Based on our previous study, Celastrol-based proteolysis-targeting chimeras (Celastrol-PROTACs) were shown to induce apoptosis in 4T1 cells by selectively degrading GRP94 and CDK1/4 through the endogenous ubiquitin–proteasome system. However, their clinical translation is limited by poor solubility, low targeting [...] Read more.
Background: Based on our previous study, Celastrol-based proteolysis-targeting chimeras (Celastrol-PROTACs) were shown to induce apoptosis in 4T1 cells by selectively degrading GRP94 and CDK1/4 through the endogenous ubiquitin–proteasome system. However, their clinical translation is limited by poor solubility, low targeting efficiency, and liver and kidney toxicity. Methods: To address these limitations, we developed a pegylated liposomal formulation of Celastrol-PROTACs (Lip-Celastrol-PROTACs) and evaluated its therapeutic efficacy and safety profile. Results: The tumor volume of the mice in the Celastrol-PROTACs solution group (286 ± 79 mm3) was significantly larger than that of those in the Lip-Celastrol-PROTACs group (229 ± 49 mm3) on day 18 after intravenous administration (p < 0.01). This difference between the two groups was statistically significant (p < 0.01). Notably, the Celastrol-PROTACs group exhibited significantly greater weight loss compared to the Lip-Celastrol-PROTACs group (p < 0.001). In vivo toxicity assessments revealed that the levels of AST and BUN in the Celastrol-PROTACs group were 27.93 ± 4.88 U/L and 12.36 ± 1.33 μmol/L, respectively, whereas those in the Lip-Celastrol-PROTACs group were found to be 7.92 ± 0.94 U/L and 8.19 ± 0.67 μmol/L, respectively. These findings indicate a statistically significant difference between the two formulations (p < 0.01). Conclusions: Our research demonstrated that pegylated liposomes could improve the targeting efficiency and minimize the toxicity of PROTACs, thereby improving overall therapeutic efficacy. These findings indicated that Lip-Celastrol-PROTACs represent a promising strategy for future clinical applications. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

13 pages, 1005 KB  
Article
Association of Gla-Rich Protein (GRP) with Inflammatory Markers in Critically Ill Patients: A Cross-Sectional Observational Study
by Elif Eygi, Sinem Bayrakçı, Onur Bayrakçı, Nazire Ates Ayhan, Ahmet Atlas, Metin Kilinc and Recep Dokuyucu
Metabolites 2025, 15(9), 611; https://doi.org/10.3390/metabo15090611 - 13 Sep 2025
Viewed by 425
Abstract
Objectives: Gla-rich protein (GRP), a vitamin K-dependent protein, has been increasingly recognized for its dual role in modulating inflammation and inhibiting pathological calcification. Despite its emerging importance in chronic conditions, limited evidence exists regarding its behavior during acute critical illness. This study aimed [...] Read more.
Objectives: Gla-rich protein (GRP), a vitamin K-dependent protein, has been increasingly recognized for its dual role in modulating inflammation and inhibiting pathological calcification. Despite its emerging importance in chronic conditions, limited evidence exists regarding its behavior during acute critical illness. This study aimed to investigate the association between GRP, systemic inflammatory markers, oxidative stress (via total thiol oxidation-reduction ratio, TORR), and calcium metabolism in critically ill patients. Materials and Methods: This cross-sectional observational study included 93 critically ill patients admitted to the intensive care unit (ICU) and 60 age- and sex-matched non-critically ill volunteers. Serum GRP levels were measured using ELISA. Other biomarkers including TORR, C-reactive protein (CRP), procalcitonin (PCT), white blood cell count (WBC), immature granulocytes (IGs), and serum calcium were also analyzed. Pearson’s correlation, multivariate linear regression, and ROC analysis were performed to assess the relationships among GRP and biochemical markers, as well as their capacity to differentiate ICU patients from controls. Results: GRP, TORR, CRP, PCT, WBC, IGs, and ferritin levels were significantly elevated in ICU patients compared to the control group, whereas serum calcium levels were markedly reduced (all p < 0.05). GRP levels demonstrated moderate positive correlations with WBC (r = 0.47), neutrophils (r = 0.51), TORR (r = 0.42), CRP (r = 0.30), and IGs (r = 0.46), and a strong negative correlation with calcium (r = −0.63). In multivariate regression, TORR, CRP, WBC, IGs, PCT, and calcium levels showed significant correlations with GRP levels in univariate analysis. ROC analysis revealed that CRP had the highest discriminatory power (AUC = 0.88; 95% CI: 0.82–0.94), followed by TORR (AUC = 0.79; 95% CI: 0.71–0.86), GRP (AUC = 0.76; 95% CI: 0.68–0.84), and IGs (AUC = 0.77; 95% CI: 0.69–0.85), for distinguishing ICU patients from non-critically ill individuals. Conclusions: Our findings demonstrated that GRP is significantly associated with systemic inflammation, oxidative stress, and calcium metabolism disturbances in critically ill patients. The combined evaluation of GRP and TORR may enhance the understanding of inflammatory and oxidative mechanisms in acute critical illness. Although this study did not assess patient outcomes, these biomarkers could serve as promising candidates for future prognostic research in ICU settings. Full article
(This article belongs to the Special Issue Metabolite Profiles in Inflammatory Diseases)
Show Figures

Figure 1

19 pages, 4596 KB  
Article
Neuroprotective Effects of Low-Dose Graphenic Materials on SN4741 Embryonic Stem Cells Against ER Stress and MPTP-Induced Oxidative Stress
by David Vallejo Perez, Monica Navarro, Beatriz Segura-Segura, Rune Wendelbo, Sara Bandrés-Ciga, Miguel A. Arraez, Cinta Arraez and Noela Rodriguez-Losada
Int. J. Mol. Sci. 2025, 26(18), 8821; https://doi.org/10.3390/ijms26188821 - 10 Sep 2025
Viewed by 369
Abstract
In this study, we explore the neuroprotective and modulatory potential of graphenic materials (GMs) in terms of the maturation of dopaminergic neurons and their capacity to counteract the cellular stress induced by toxins such as MPP+ (1-methyl-4-phenylpyridinium) and Tunicamycin. We found that [...] Read more.
In this study, we explore the neuroprotective and modulatory potential of graphenic materials (GMs) in terms of the maturation of dopaminergic neurons and their capacity to counteract the cellular stress induced by toxins such as MPP+ (1-methyl-4-phenylpyridinium) and Tunicamycin. We found that GMs promote significant morphological changes in neuronal cells after prolonged exposure, enhancing both differentiation and cellular adhesion. Through structural analysis, we unveiled a complex organization of GMs and a marked upregulation of tyrosine hydroxylase (TH), a key marker of mature dopaminergic neurons. Under oxidative stress induced by MPP+, GMs significantly reduced the release of lactate dehydrogenase (LDH), indicating protection against mitochondrial damage. Moreover, GMs substantially decreased the levels of α-synuclein (α-Syn), a protein closely associated with neurodegenerative disorders such as Parkinson’s disease. Notably, partially reduced graphene oxide (PRGO) and fully reduced graphene oxide (FRGO) films were particularly effective at reducing α-Syn-associated toxicity compared to positive controls. Under conditions of endoplasmic reticulum (ER) stress triggered by Tunicamycin, GMs—especially PRGO microflakes—modulated the unfolded protein response (UPR) pathway. This effect was evidenced by the increased expression of BIP/GRP78 and the decreased phosphorylation of stress sensors such as PERK and eIF2α; this suggests that a protective role is played against ER stress. Additionally, GMs enhanced the synthesis of Torsin 1A, a chaperone protein involved in correcting protein folding defects, with PRGO microflakes showing up to a fivefold increase relative to the controls. Through the cFos analysis, we further revealed a pre-adaptive cellular response in GM-treated cells exposed to MPP+, with PRGO microflakes inducing a significant twofold increase in cFos expression compared to the positive control, indicating partial protection against oxidative stress. In conclusion, these results underscore GMs’ capacity to modulate the critical cellular pathways involved in oxidative, mitochondrial, and ER stress responses, positioning them as promising candidates for future neuroprotective and therapeutic strategies. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

26 pages, 3494 KB  
Article
Gastrin-Releasing Peptide Receptors Stimulate MAPK-Mediated Growth of Lung Cancer Cells by Transactivating HER4 in a Neuregulin-1, MAP Kinase-Dependent Manner Requiring Activation of the ROS-System
by Terry W. Moody, Irene Ramos-Alvarez, Tatiana Iordanskaia, Samuel A. Mantey and Robert T. Jensen
Biology 2025, 14(9), 1225; https://doi.org/10.3390/biology14091225 - 9 Sep 2025
Viewed by 564
Abstract
The bombesin (Bn) receptor family [Gastrin-releasing peptide (GRPR/BB2R) and Neuromedin B receptors (NMBR/BB1R)] are G-protein coupled receptors (GPCR’s) with potent growth effects on normal tissues/numerous cancers, often by transactivating the ErbB receptor-tyrosine kinase (RTK) family. Whereas GRPR stimulation transactivates ErbB RTKs EGFR, HER2, [...] Read more.
The bombesin (Bn) receptor family [Gastrin-releasing peptide (GRPR/BB2R) and Neuromedin B receptors (NMBR/BB1R)] are G-protein coupled receptors (GPCR’s) with potent growth effects on normal tissues/numerous cancers, often by transactivating the ErbB receptor-tyrosine kinase (RTK) family. Whereas GRPR stimulation transactivates ErbB RTKs EGFR, HER2, and HER3 in non-small cell lung-cancer (NSCLC) cells, its effects on HER4 are unknown. This study was designed to address this question. Of 12 NSCLC’s studied, 75% had HER4 mRNA expression and Western-Blotting. NCI-H522 and NCI-H661-cells had high levels of GRPR, HER4, and the HER4-ligand neuregulin (NRG1). Adding GRP to NCI-H522/NCI-H661-cells activated HER4, shown by its increased phosphorylation (P-HER4). The GRPR antagonists PD176252/BW2258U89 inhibited this increase. In NCI-H661-cells, GRP stimulated the formation of HER4-homodimers and HER2-HER4-heterodimers. Adding GRP to these NSCLC-cells increased P-ERK/P-AKT, which was inhibited by siRNA-HER4, PD176252, and ibrutinib, as well as N-acetylcysteine and Tiron, which reduce reactive-oxygen species (ROS). GRP increased secretion of NRG1 from NSCLC-cells, and NRG1 increased P-HER4 and P-ERK, which were impaired by ibrutinib. GRP and NRG1 stimulated proliferation of NSCLC-cells, which was inhibited by PD176252, siRNA-HER4, or ibrutinib and which was mediated by MAPK, not AKT/PI3K, activation. These results show GRPR activation results in HER4 transactivation in a ROS-dependent manner, which stimulates NSCLC-growth through a MAPK-mediated mechanism. Full article
Show Figures

Graphical abstract

17 pages, 4777 KB  
Article
Epigallocatechin Gallate Ameliorates Granulosa Cell Developmental via the Eukaryotic Initiation Factor 2 Alpha/Activating Transcription Factor 4 Pathway in Hyperthyroid Female Rats
by Ying Sun, Mingqi Wu, Haoyuan Feng, Yilin Yao, Rui Chen, Yanzhou Yang and Cheng Zhang
Antioxidants 2025, 14(9), 1092; https://doi.org/10.3390/antiox14091092 - 6 Sep 2025
Viewed by 1670
Abstract
Follicular development is recognized as a highly complex biological process regulated by multiple factors. Thyroid hormone (TH) is considered one of the key regulators of female reproduction, and its dysregulation can significantly impair follicular development. Epigallocatechin gallate (EGCG), the main active component of [...] Read more.
Follicular development is recognized as a highly complex biological process regulated by multiple factors. Thyroid hormone (TH) is considered one of the key regulators of female reproduction, and its dysregulation can significantly impair follicular development. Epigallocatechin gallate (EGCG), the main active component of green tea, possesses strong antioxidant properties. Numerous studies have demonstrated that EGCG positively influences reproductive function in both humans and animals. However, whether EGCG directly affects follicular development under conditions of TH dysregulation remains poorly understood. The primary objective of this study was to investigate the impact of hyperthyroidism on ovarian development, examine whether EGCG could mitigate the adverse effects of TH dysregulation, and elucidate the underlying molecular mechanisms. In the T4-induced hyperthyroidism rat model, ovarian tissues were serially sectioned for Hematoxylin-Eosin (HE) and Masson’s trichrome staining to assess morphological changes, and follicle numbers were quantified at each developmental stage. Granulosa cell (GC) viability, proliferation, and apoptosis induced by T3 were evaluated using CCK8, EdU, and TUNEL assays, respectively. Antioxidant enzyme activity was measured, and the expression levels of related proteins were analyzed via Western blotting. Results showed that hyperthyroidism altered ovarian structure, significantly increasing the number of atretic follicles. Levels of antioxidant enzymes, including Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-PX), and Catalase (CAT), were markedly decreased, whereas the lipid peroxidation product malondialdehyde (MDA) was significantly elevated. Furthermore, all ERS-related proteins, phosphorylated Eukaryotic Initiation Factor 2 Alpha (p-eIF2α), Activating Transcription Factor 4 (ATF4), C/EBP homologous protein (CHOP), and Caspase-3, were upregulated, accompanied by decreased glucose-regulated protein 78 (GRP78) expression. Treatment with EGCG alleviated these detrimental effects of hyperthyroidism. At the cellular level, high concentrations of T3 reduced GC viability and proliferation while increasing apoptosis. Reactive oxygen species levels were elevated, and GRP78 expression was decreased. Notably, all T3-induced effects were reversed by EGCG treatment. In summary, this study demonstrates that hyperthyroidism induces oxidative stress in GCs, which triggers endoplasmic reticulum stress via the eIF2α/ATF4 pathway and leads to apoptosis. EGCG mitigates apoptosis by enhancing antioxidant capacity, thereby preserving ovarian function. These findings establish EGCG as a protective agent for maintaining ovarian health and fertility. Full article
Show Figures

Figure 1

12 pages, 1111 KB  
Article
Zinc Acetate Inhibits Hepatitis A Virus Replication: Possible Treatment for Patients with Type A Acute-on-Chronic Liver Failure
by Tatsuo Kanda, Reina Sasaki-Tanaka, Hiroyuki Abe, Takeshi Yokoo, Akira Sakamaki, Kazunao Hayashi, Hiroteru Kamimura, Atsunori Tsuchiya, Ryota Masuzaki, Hirofumi Kogure, Hiroaki Okamoto and Shuji Terai
Pathogens 2025, 14(9), 882; https://doi.org/10.3390/pathogens14090882 - 3 Sep 2025
Viewed by 652
Abstract
Hepatitis A virus (HAV) infection sometimes results in the occurrence of acute liver failure and acute-on-chronic liver failure (ACLF), which is often fatal, especially in patients with diabetes mellitus or elderly individuals. ACLF is observed in patients with cirrhosis who occasionally have zinc [...] Read more.
Hepatitis A virus (HAV) infection sometimes results in the occurrence of acute liver failure and acute-on-chronic liver failure (ACLF), which is often fatal, especially in patients with diabetes mellitus or elderly individuals. ACLF is observed in patients with cirrhosis who occasionally have zinc deficiency. However, effective drugs for hepatitis A are currently unavailable. Glucose-regulated protein 78 (GRP78) is an antiviral agent that has been reported to prevent HAV replication. The effects of zinc acetate on HAV HA11-1299 genotype IIIA replication and changes in GRP78 levels in human hepatocytes with or without HAV infection were examined. Zinc acetate inhibited HAV HA11-1299 genotype IIIA replication in both Huh7 and GL37 cells. Zinc acetate also inhibited HAV replication in both low- and high-glucose media. Zinc acetate increased the expression of GRP78, in response to HAV replication. The combination of zinc acetate with ribavirin led to greater suppression of both HAV HA11-1299 genotype IIIA and HAV HM175/18f genotype IB replication in Huh7 cells than that of ribavirin alone. In conclusion, zinc acetate inhibits HAV replication in accompany with the elevation of GRP78 expression without causing cellular toxicity. Zinc compounds may be useful for the treatment of ACLF caused by HAV infection. Full article
Show Figures

Figure 1

7 pages, 207 KB  
Brief Report
Cypress Pollen-Peach Cross-Reactivity: The Emerging Role of Pru p 7 as a Marker of Severe Allergic Phenotypes
by Mara De Amici, Claudio Tirelli, Fiorella Barocci, Alessia Marseglia, Giorgia Testa, Gian L. Marseglia and Amelia Licari
Biologics 2025, 5(3), 26; https://doi.org/10.3390/biologics5030026 - 3 Sep 2025
Viewed by 575
Abstract
Background: The peach allergen Pru p 7, a member of the Gibberellin-Regulated Protein (GRP) family, has emerged as a key marker of severe fruit-induced allergies. It is hypothesized to mediate cross-reactivity between fruit allergens and cypress pollen. Given the increasing prevalence of food [...] Read more.
Background: The peach allergen Pru p 7, a member of the Gibberellin-Regulated Protein (GRP) family, has emerged as a key marker of severe fruit-induced allergies. It is hypothesized to mediate cross-reactivity between fruit allergens and cypress pollen. Given the increasing prevalence of food allergies and the complex patterns of cross-sensitization, the role of Pru p 7 in clinical allergy diagnostics warrants further investigation. Objective: This study aims to characterize the sensitization profile to Pru p 7 in a cohort of patients with suspected fruit allergy and to assess its relationship with cypress pollen allergy, particularly to Cup s 7, a homologous GRP from Cupressus sempervirens. Methods: A retrospective analysis was conducted on 20 patients evaluated at the Allergy Unit of the Fondazione IRCCS Policlinico San Matteo. Specific IgE (sIgE) levels to peach extract, Pru p 7, and Cup a 1 (cypress extract) were assessed using the ImmunoCAP® system (Thermo Fisher Scientific Inc., Waltham, MA, USA). Statistical associations between sensitizations were evaluated using chi-square tests and Spearman’s correlation. Results: Sensitization to peach extract, Pru p 7, and cypress pollen was detected in 38%, 30%, and 45% of patients, respectively. Significant associations were observed between peach and cypress (χ2 = 8.80, p = 0.003), peach and Pru p 7 (χ2 = 8.23, p = 0.004), and cypress and Pru p 7 (χ2 = 6.55, p = 0.01). Notably, all patients sensitized to Pru p 7 also tested positive for both peach and cypress allergens, supporting the hypothesis of pollen–food cross-reactivity. Conclusions: Pru p 7 is a clinically relevant allergen that may account for severe allergic responses in patients not sensitized to classical peach allergens. Its cross-reactivity with Cupressaceae-derived GRPs, such as Cup s 7, highlights the importance of molecular diagnostics in evaluating food allergies, particularly in regions with significant exposure to cypress pollen. Full article
21 pages, 9432 KB  
Article
Exploring the Anticancer Potential of Proton Pump Inhibitors by Targeting GRP78 and V-ATPase: Molecular Docking, Molecular Dynamics, PCA, and MM-GBSA Calculations
by Abdo A. Elfiky, Kirolos R. Mansour, Yousef Mohamed, Yomna Kh. Abdelaziz and Ian A. Nicholls
Int. J. Mol. Sci. 2025, 26(17), 8170; https://doi.org/10.3390/ijms26178170 - 22 Aug 2025
Viewed by 719
Abstract
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted [...] Read more.
Cancer cells can adapt to their surrounding microenvironment by upregulating glucose-regulated protein 78 kDa (GRP78) and vacuolar-type ATPase (V-ATPase) proteins to increase their proliferation and resilience to anticancer therapy. Therefore, targeting these proteins can obstruct cancer progression. A comprehensive computational study was conducted to investigate the inhibitory potential of four proton pump inhibitors (PPIs), dexlasnoprazole (DEX), esomeprazole (ESO), pantoprazole (PAN), and rabeprazole (RAB), against GRP78 and V-ATPase. Molecular docking revealed high-affinity scores for PPIs against both proteins. Moreover, molecular dynamics showed favorable root mean square deviation values for GRP78 and V-ATPase complexes, whereas root mean square fluctuations were high at the substrate-binding subdomains of GRP78 complexes and the α-helices of V-ATPase. Meanwhile, the radius of gyration and the surface-accessible surface area of the complexes were not significantly affected by ligand binding. Trajectory projections of the first two principal components showed similar motions of GRP78 structures and the fluctuating nature of V-ATPase structures, while the free-energy landscape revealed the thermodynamically favored GRP78-RAB and V-ATPase-DEX conformations. Furthermore, the binding free energy was −16.59 and −18.97 kcal/mol for GRP78-RAB and V-ATPase-DEX, respectively, indicating their stability. According to our findings, RAB and DEX are promising candidates for GRP78 and V-ATPase inhibition experiments, respectively. Full article
(This article belongs to the Special Issue Benchmarking of Modeling and Informatic Methods in Molecular Sciences)
Show Figures

Figure 1

13 pages, 2445 KB  
Article
A Novel Small-Molecule GRP94 Modulator Increases PCSK9 Secretion and Promotes LDLR Degradation
by Wenjing Yan, Yongwang Zhong and Shengyun Fang
Life 2025, 15(8), 1321; https://doi.org/10.3390/life15081321 - 20 Aug 2025
Viewed by 817
Abstract
The endoplasmic reticulum (ER) maintains protein homeostasis through chaperone-mediated folding and ER-associated degradation (ERAD). Disruption of this quality control, particularly involving the ER chaperone GRP94, contributes to diseases such as hypercholesterolemia, cancer, and immune disorders, where defective GRP94-dependent folding and the trafficking of [...] Read more.
The endoplasmic reticulum (ER) maintains protein homeostasis through chaperone-mediated folding and ER-associated degradation (ERAD). Disruption of this quality control, particularly involving the ER chaperone GRP94, contributes to diseases such as hypercholesterolemia, cancer, and immune disorders, where defective GRP94-dependent folding and the trafficking of client proteins like PCSK9, integrins, and Toll-like receptors drive pathology. Here, we characterize NSC637153 (cp153), a small molecule identified in a drGFP-based ERAD dislocation screen, as a selective probe of GRP94-dependent processes. cp153 inhibits the dislocation of ERAD substrates, preferentially affecting luminal clients, increases PCSK9 secretion, and promotes LDLR degradation. Unlike ATP-competitive HSP90 inhibitors, cp153 does not induce HSP70 or destabilize AKT, suggesting that it perturbs GRP94 function by interfering with client interaction or folding. The identification of cp153 provides a useful tool to for probing GRP94’s role in protein folding, trafficking, ER quality control, and disease-relevant signaling pathways, and supports the development of client-selective GRP94-targeted therapies. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

21 pages, 5020 KB  
Article
Divergent Hepatic and Adipose Tissue Effects of Kupffer Cell Depletion in a Male Rat Model of Metabolic-Associated Steatohepatitis
by Morena Wiszniewski, Diego Mori, Silvia I. Sanchez Puch, Camila Martinez Calejman, Cora B. Cymeryng and Esteban M. Repetto
Biology 2025, 14(8), 1058; https://doi.org/10.3390/biology14081058 - 15 Aug 2025
Cited by 1 | Viewed by 854
Abstract
Kupffer cells (KCs) play a pivotal role in the progression of metabolic-associated steatohepatitis (MASH). This study evaluated the impact of short-term KC depletion induced by gadolinium chloride (GdCl3) in a rat model of MASH. The intervention with GdCl3 effectively reduced [...] Read more.
Kupffer cells (KCs) play a pivotal role in the progression of metabolic-associated steatohepatitis (MASH). This study evaluated the impact of short-term KC depletion induced by gadolinium chloride (GdCl3) in a rat model of MASH. The intervention with GdCl3 effectively reduced KC markers CD68 and Clec4f, together with pro-inflammatory cytokines (IL-1β, TNFα, NOS2), without affecting anti-inflammatory markers (IL-10, MRC1). Histologically, GdCl3 reduced hepatocyte ballooning and NAS despite persistent steatosis. KC depletion was associated with decreased oxidative stress markers (TBARS, 3-nitrotyrosine) and antioxidant enzyme activity (SOD, catalase). Additionally, markers of endoplasmic reticulum stress (ATF4, GRP78, CHOP, P58IPK) and apoptosis (BAX/BCL2 ratio, cleaved caspase-3) were diminished. Despite these improvements, GdCl3 had no effect on lipid or glucose metabolism in the liver, associated with persistent elevation of PTP1B expression induced by SRD intake. KC depletion, however, increased FGF21 expression. GdCl3 treatment improved systemic insulin sensitivity and reduced fasting glucose and NEFA serum levels. In white adipose tissue, the treatment decreased adipocyte size, restored insulin signaling, and inhibited lipolysis (ATGL expression) without altering macrophage infiltration (IBA) or thermogenic protein levels (UCP1) in SRD rats. These findings suggest that KC depletion modulates liver-to-adipose tissue crosstalk, potentially through FGF21 signaling, contributing to improved systemic metabolic homeostasis of SRD animals. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Liver Diseases)
Show Figures

Figure 1

Back to TopTop