Association of Gla-Rich Protein (GRP) with Inflammatory Markers in Critically Ill Patients: A Cross-Sectional Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Laboratory Parameters
- Disulfide level (-S-S-) = (Total thiol − Native thiol)/2
- Disulfide/Total Thiol Ratio (%) = [(-S-S-)/(Total thiol)] × 100
- Native Thiol/Total Thiol Ratio (%) = [(-SH)/(Total thiol)] × 100
- Disulfide/Native Thiol Ratio (%) = [(-S-S-)/(-SH)] × 100
- Thiol Oxidation-Reduction Ratio (TORR, %) = [Disulfide/Native thiol] × 100.
2.4. Measurements of Gla-Rich Protein (GRP)
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Segmen, F.; Aydemir, S.; Küçük, O.; Doğu, C.; Dokuyucu, R. Comparison of Oxidative Stress Markers with Clinical Data in Patients Requiring Anesthesia in an Intensive Care Unit. J. Clin. Med. 2024, 13, 6979. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Elajaili, H.; Lyttle, B.D.; Lewis, C.V.; Bardill, J.R.; Dee, N.; Seal, S.; Nozik, E.S.; Liechty, K.W.; Zgheib, C. Increased ROS and Persistent Pro-Inflammatory Responses in a Diabetic Wound Healing Model (db/db): Implications for Delayed Wound Healing. Int. J. Mol. Sci. 2025, 26, 4884. [Google Scholar] [CrossRef]
- Gupta, P.; Makkar, T.K.; Goel, L.; Pahuja, M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol. Res. 2022, 70, 725–741. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018, 9, 143–150. [Google Scholar] [CrossRef]
- Eygi, E.; Gul, R.; Aslan, M.; Tas, Z.A.; Dokuyucu, R. The Promising Effects of Erdosteine and Vitamin B in the Liver Ischemia/Reperfusion Model in Anesthetized Rats. Medicina 2024, 60, 783. [Google Scholar] [CrossRef]
- Eygi, E.; Kucuk, O.; Aydemir, S.; Atilgan, M.; Dokuyucu, R.; Erbas, O. Hydroxychloroquine Mitigates Cytokine Storm and Prevents Critical Illness Neuromyopathy in a Rat Sepsis Model. Medicina 2024, 60, 1791. [Google Scholar] [CrossRef]
- Silva, A.P.; Viegas, C.S.; Mendes, F.; Macedo, A.; Guilherme, P.; Tavares, N.; Dias, C.; Rato, F.; Santos, N.; Faisca, M.; et al. Gla-Rich Protein (GRP) as an Early and Novel Marker of Vascular Calcification and Kidney Dysfunction in Diabetic Patients with CKD: A Pilot Cross-Sectional Study. J. Clin. Med. 2020, 9, 635. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, J.; Duan, L.; Li, S. Role of emerging vitamin K-dependent proteins: Growth arrest-specific protein 6, Gla-rich protein and periostin (Review). Int. J. Mol. Med. 2021, 47, 2. [Google Scholar] [CrossRef]
- Marreiros, C.; Viegas, C.; Guedes, A.M.; Silva, A.P.; Aguas, A.C.; Faisca, M.; Schurgers, L.; Simes, D.C. Gla-Rich Protein Is Associated with Vascular Calcification, Inflammation, and Mineral Markers in Peritoneal Dialysis Patients. J. Clin. Med. 2024, 13, 7429. [Google Scholar] [CrossRef]
- Viegas, C.; Carreira, J.; Maia, T.M.; Macedo, A.L.; Matos, A.P.; Neves, J.; Simes, D. Gla Rich Protein (GRP) Mediates Vascular Smooth Muscle Cell (VSMC) Osteogenic Differentiation, Extracellular Vesicle (EV) Calcification Propensity, and Immunomodulatory Properties. Int. J. Mol. Sci. 2024, 25, 12406. [Google Scholar] [CrossRef]
- Seğmen, F.; Aydemir, S.; Küçük, O.; Dokuyucu, R. The Roles of Vitamin D Levels, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), and Inflammatory Markers in Predicting Mortality in Intensive Care Patients: A New Biomarker Link? Metabolites 2024, 14, 620. [Google Scholar] [CrossRef] [PubMed]
- Pestana, R.M.C.; Silvino, J.P.P.; Oliveira, A.N.; Soares, C.E.; Sabino, A.P.; Simoes, R.; Gomes, K.B. New Cardiovascular Biomarkers in Breast Cancer Patients Undergoing Doxorubicin-Based Chemotherapy. Arq. Bras. Cardiol. 2023, 120, e20230167. [Google Scholar] [CrossRef] [PubMed]
- Nikolajevic, J.; Sabovic, M. Inflammatory, Metabolic, and Coagulation Effects on Medial Arterial Calcification in Patients with Peripheral Arterial Disease. Int. J. Mol. Sci. 2023, 24, 3132. [Google Scholar] [CrossRef] [PubMed]
- Zengwei, C.; Shiyi, G.; Pinfang, K.; Dasheng, G.; Jun, W.; Sigan, H. Associations of Gla-rich protein and interleukin-1beta with coronary artery calcification risk in patients with suspected coronary artery disease. Front. Endocrinol. 2025, 16, 1504346. [Google Scholar] [CrossRef]
- Galunska, B.; Yotov, Y.; Nikolova, M.; Angelov, A. Extrahepatic Vitamin K-Dependent Gla-Proteins-Potential Cardiometabolic Biomarkers. Int. J. Mol. Sci. 2024, 25, 3517. [Google Scholar] [CrossRef]
- Kemp, J.A.; Alvarenga, L.; Cardozo, L.; Dai, L.; Stenvinkel, P.; Shiels, P.G.; Hackeng, T.M.; Schurgers, L.J.; Mafra, D. Dysbiosis in Patients with Chronic Kidney Disease: Let Us Talk About Vitamin K. Curr. Nutr. Rep. 2022, 11, 765–779. [Google Scholar] [CrossRef]
- Viegas, C.S.B.; Santos, L.; Macedo, A.L.; Matos, A.A.; Silva, A.P.; Neves, P.L.; Staes, A.; Gevaert, K.; Morais, R.; Vermeer, C.; et al. Chronic Kidney Disease Circulating Calciprotein Particles and Extracellular Vesicles Promote Vascular Calcification: A Role for GRP (Gla-Rich Protein). Arter. Thromb. Vasc. Biol. 2018, 38, 575–587. [Google Scholar] [CrossRef]
- Soares Pinheiro, F.G.M.; Santana Santos, E.; Barreto, I.D.C.; Weiss, C.; Vaez, A.C.; Oliveira, J.C.; Melo, M.S.; Silva, F.A. Mortality Predictors and Associated Factors in Patients in the Intensive Care Unit: A Cross-Sectional Study. Crit. Care Res. Pr. 2020, 2020, 1483827. [Google Scholar] [CrossRef]
- Polat, Y.H.; Erten, S.; Kor, A.; Dogan, I.; Maras, Y.; Kucuksahin, O.; Ustuner, G.Y.; Erel, O. Evaluation of thiol/disulfide homeostasis in rheumatoid arthritis and disease activity. Clin. Biochem. 2023, 111, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Efiong, E.E.; Maedler, K.; Effa, E.; Osuagwu, U.L.; Peters, E.; Ikebiuro, J.O.; Soremekun, C.; Ihediwa, U.; Niu, J.; Fuchs, M.; et al. Decoding diabetic kidney disease: A comprehensive review of interconnected pathways, molecular mediators, and therapeutic insights. Diabetol. Metab. Syndr. 2025, 17, 192. [Google Scholar] [CrossRef] [PubMed]
- Sebel, Y.; Aksoy, M.; An, I.; Celik, H. Evaluation of thiol/disulphide balance in patients with cutaneous leishmaniasis. Int. J. Clin. Pr. 2021, 75, e14087. [Google Scholar] [CrossRef] [PubMed]
- Kurtulus, B.; Atilgan, N.; Yilmaz, M.; Dokuyucu, R. Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. J. Clin. Med. 2024, 13, 5159. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Q.; Du, P.; Chen, X.; Zhang, Y. Roles of vitamin K-dependent protein in biomineralization (Review). Int. J. Mol. Med. 2023, 53, 6. [Google Scholar] [CrossRef]
- Zhelyazkova-Savova, M.D.; Yotov, Y.T.; Nikolova, M.N.; Nazifova-Tasinova, N.F.; Vankova, D.G.; Atanasov, A.A.; Galunska, B.T. Statins, vascular calcification, and vitamin K-dependent proteins: Is there a relation? Kaohsiung J. Med. Sci. 2021, 37, 624–631. [Google Scholar] [CrossRef]
- Ghosh, S.; Oldenburg, J.; Czogalla-Nitsche, K.J. The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes. Int. J. Mol. Sci. 2022, 23, 798. [Google Scholar] [CrossRef]
Parameters | Control (n = 60) | Patients (n = 93) | p-Value |
---|---|---|---|
Mean ± SD, n (%) | |||
Age (years) | 59.2 ± 21.4 | 63.1 ± 20.0 | 0.190 |
Gender | 0.260 | ||
- Male | 42 (70%) | 50 (53.8%) | |
- Female | 18 (30%) | 43 (46.2%) | |
Diabetes mellitus | 5 (8.3%) | 33 (35.5%) | <0.001 |
Hypertension | 6 (10%) | 39 (41.9%) | <0.001 |
Cardiovascular disease | 7 (11.7%) | 45 (48.4%) | <0.001 |
Chronic kidney disease (CKD) | 3 (5%) | 27 (29%) | <0.001 |
Respiratory system disease | 2 (3.3%) | 20 (21.5%) | <0.001 |
WBC (×103/µL) | 8.0 ± 4.7 | 12.6 ± 3.9 | <0.0001 |
Neutrophils (×103/µL) | 4.5 ± 2.0 | 9.2 ± 3.8 | <0.0001 |
Monocytes (×103/µL) | 0.5 ± 0.2 | 0.8 ± 0.4 | 0.010 |
Lymphocytes (×103/µL) | 2.5 ± 0.9 | 1.6 ± 0.7 | 0.020 |
MPV (fL) | 8.5 ± 1.1 | 10.2 ± 1.3 | 0.030 |
Red blood cells (RBC, ×106/µL) | 4.8 ± 0.5 | 4.2 ± 0.6 | 0.040 |
Hemoglobin (Hgb, g/dL) | 13.5 ± 1.2 | 11.3 ± 2.0 | <0.010 |
Ferritin (ng/mL) | 120 ± 70 | 540 ± 320 | <0.001 |
Procalcitonin (PCT, ng/mL) | 0.31 ± 0.41 | 4.46 ± 13.3 | 0.006 |
Calcium (Ca, mg/dL) | 9.43 ± 0.4 | 7.89 ± 0.6 | <0.0001 |
Gla-rich protein (GRP, ng/mL) | 3.85 ± 0.68 | 4.19 ± 1.1 | 0.020 |
Immature granulocytes (IGs, ×109/µL) | 0.03 ± 0.01 | 0.12 ± 0.06 | 0.001 |
TORR (%) | 116.5 ± 24.5 | 188.5 ± 180.9 | 0.030 |
CRP (mg/L) | 5.7 ± 15.5 | 104.2 ± 84.0 | <0.0001 |
WBC | Neut | Mon | Lym | MPV | Ferritin | PCT | Ca | GRP | IGs | TORR | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WBC | r | 1.00 | ||||||||||
p | 1.00 | |||||||||||
Neut | r | 0.78 | 1.00 | |||||||||
p | 0.001 | 1.00 | ||||||||||
Mon | r | 0.06 | −0.01 | 1.00 | ||||||||
p | 0.581 | 0.940 | 1.00 | |||||||||
Lym | r | 0.03 | −0.01 | −0.27 | 1.00 | |||||||
p | 0.769 | 0.913 | 0.015 | 1.00 | ||||||||
MPV | r | 0.40 | 0.31 | 0.38 | −0.18 | 1.00 | ||||||
p | 0.001 | 0.003 | 0.001 | 0.020 | 1.00 | |||||||
Ferritin | r | 0.43 | 0.46 | 0.25 | −0.21 | −0.05 | 1.00 | |||||
p | 0.001 | 0.001 | 0.002 | 0.010 | 0.728 | 1.00 | ||||||
PCT | r | −0.18 | −0.19 | −0.09 | 0.10 | −0.03 | −0.28 | 1.00 | ||||
p | 0.002 | 0.001 | 0.048 | 0.036 | 0.792 | 0.002 | 1.00 | |||||
Ca | r | 0.54 | 0.58 | 0.32 | 0.25 | 0.27 | −0.09 | −0.35 | 1.00 | |||
p | 0.001 | 0.001 | 0.002 | 0.014 | 0.002 | 0.061 | 0.001 | 1.00 | ||||
GRP | r | 0.47 | 0.51 | 0.29 | −0.31 | 0.25 | 0.30 | 0.34 | −0.63 | 1.00 | ||
p | 0.001 | 0.001 | 0.003 | 0.002 | 0.003 | 0.002 | 0.001 | 0.001 | 1.00 | |||
IGs | r | 0.48 | 0.44 | 0.27 | −0.30 | 0.26 | 0.33 | 0.36 | −0.65 | −0.46 | 1.00 | |
p | 0.010 | 0.020 | 0.004 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 1.00 | ||
TORR | r | 0.48 | 0.44 | 0.27 | −0.30 | 0.26 | 0.33 | 0.36 | −0.65 | −0.46 | 0.49 | 1.00 |
p | 0.010 | 0.020 | 0.004 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.010 | 1.00 |
Variable | B | St. Error | Beta | t | p-Value |
---|---|---|---|---|---|
GRP (ng/mL) | 0.85 | 0.25 | 0.42 | 3.40 | 0.001 |
TORR (%) | 0.12 | 0.05 | 0.33 | 2.45 | 0.015 |
CRP (mg/L) | 0.09 | 0.03 | 0.30 | 3.00 | 0.003 |
WBC (×103/µL) | 0.40 | 0.14 | 0.28 | 2.86 | 0.005 |
IGs (×109/µL) | 2.60 | 0.90 | 0.29 | 2.89 | 0.006 |
PCT (ng/L) | 0.07 | 0.02 | 0.26 | 2.70 | 0.008 |
Ca (mg/dL) | −0.65 | 0.18 | −0.35 | −3.61 | 0.001 |
Variable | AUC (95% CI) | Cut-Off | Sensitivity (%) | Specificity (%) | p-Value |
---|---|---|---|---|---|
GRP (ng/mL) | 0.76 (0.68–0.84) | >4.0 | 72 | 70 | 0.001 |
TORR (%) | 0.79 (0.71–0.86) | >160 | 75 | 73 | 0.001 |
CRP (mg/L) | 0.88 (0.82–0.94) | >30.0 | 85 | 80 | <0.001 |
WBC (×103/µL) | 0.81 (0.73–0.89) | >11.0 | 78 | 75 | <0.001 |
IGs (×109/µL) | 0.77 (0.69–0.85) | >0.10 | 74 | 75 | 0.001 |
PCT (ng/L) | 0.74 (0.65–0.83) | >0.5 | 70 | 68 | 0.004 |
Ca (mg/dL) | 0.71 (0.62–0.80) | <8.2 | 65 | 70 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eygi, E.; Bayrakçı, S.; Bayrakçı, O.; Ayhan, N.A.; Atlas, A.; Kilinc, M.; Dokuyucu, R. Association of Gla-Rich Protein (GRP) with Inflammatory Markers in Critically Ill Patients: A Cross-Sectional Observational Study. Metabolites 2025, 15, 611. https://doi.org/10.3390/metabo15090611
Eygi E, Bayrakçı S, Bayrakçı O, Ayhan NA, Atlas A, Kilinc M, Dokuyucu R. Association of Gla-Rich Protein (GRP) with Inflammatory Markers in Critically Ill Patients: A Cross-Sectional Observational Study. Metabolites. 2025; 15(9):611. https://doi.org/10.3390/metabo15090611
Chicago/Turabian StyleEygi, Elif, Sinem Bayrakçı, Onur Bayrakçı, Nazire Ates Ayhan, Ahmet Atlas, Metin Kilinc, and Recep Dokuyucu. 2025. "Association of Gla-Rich Protein (GRP) with Inflammatory Markers in Critically Ill Patients: A Cross-Sectional Observational Study" Metabolites 15, no. 9: 611. https://doi.org/10.3390/metabo15090611
APA StyleEygi, E., Bayrakçı, S., Bayrakçı, O., Ayhan, N. A., Atlas, A., Kilinc, M., & Dokuyucu, R. (2025). Association of Gla-Rich Protein (GRP) with Inflammatory Markers in Critically Ill Patients: A Cross-Sectional Observational Study. Metabolites, 15(9), 611. https://doi.org/10.3390/metabo15090611