Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,871)

Search Parameters:
Keywords = GLS2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3288 KB  
Article
Bioluminescent ATP-Metry in Assessing the Impact of Various Microplastic Particles on Fungal, Bacterial, and Microalgal Cells
by Olga Senko, Nikolay Stepanov, Aysel Aslanli and Elena Efremenko
Microplastics 2025, 4(4), 72; https://doi.org/10.3390/microplastics4040072 - 3 Oct 2025
Abstract
The concentration of intracellular adenosine triphosphate (ATP) is one of the most important characteristics of the metabolic state of the cells of microorganisms and their viability. This indicator, monitored by bioluminescent ATP-metry, and accumulation of the suspension biomass in the medium were used [...] Read more.
The concentration of intracellular adenosine triphosphate (ATP) is one of the most important characteristics of the metabolic state of the cells of microorganisms and their viability. This indicator, monitored by bioluminescent ATP-metry, and accumulation of the suspension biomass in the medium were used to assess the effect of particles of different synthetic microplastics (MPs) (non-biodegradable and biodegradable) on the cells of yeast, filamentous fungi, bacteria and phototrophic microorganisms (microalgae and cyanobacteria) co-exposed with polymer samples in different environments and concentrations. It was found that the effect of MPs on microorganisms depends on the concentration of MPs (1–5 g/L), as well as on the initial concentration of cells (104 or 107 cells/mL) in the exposure medium with polymers. It was shown that the lack of a sufficient number of nutrition sources in the medium with MPs is not fatal for the cells. The study of the effect of MPs on the photobacteria Photobacterium phosphoreum, widely used as a bioindicator for assessing the ecotoxicity of various environments, demonstrated a correlation between the residual bioluminescence of these cells and the level of their intracellular ATP in media with biodegradable polycaprolactone and polylactide, which had an inhibitory effect on these cells. Marine representatives of phototrophic microorganisms showed the greatest sensitivity to the presence of MPs, which was confirmed by both a decrease in the level of intracellular ATP and the concentration of their biomass. Among the eight microorganisms studied, bacteria of the genus Pseudomonas turned out to be not only the most tolerant to the presence of the seven MP samples used in the work, but also actively growing in their presence. Full article
17 pages, 560 KB  
Article
Development of Fructooligosaccharide-Rich Sugarcane Juice by Enzymatic Method and Enhancement of Its Microbial Safety Using High-Pressure Processing
by Tanyawat Kaewsalud, Jessica Michelle Liony, Sitthidat Tongdonyod, Suphat Phongthai and Wannaporn Klangpetch
Foods 2025, 14(19), 3417; https://doi.org/10.3390/foods14193417 - 3 Oct 2025
Abstract
Sugarcane juice (SJ) is a naturally sweet beverage rich in sucrose but prone to microbial contamination, raising concerns among health-conscious consumers. This study aimed to develop a functional SJ enriched with fructooligosaccharides (FOS) using enzymatic treatment, followed by high-pressure processing (HPP) to enhance [...] Read more.
Sugarcane juice (SJ) is a naturally sweet beverage rich in sucrose but prone to microbial contamination, raising concerns among health-conscious consumers. This study aimed to develop a functional SJ enriched with fructooligosaccharides (FOS) using enzymatic treatment, followed by high-pressure processing (HPP) to enhance its safety and quality. The enzymatic conversion of sucrose to FOS was achieved using Pectinex® Ultra SP-L (commercial enzyme), with varying enzyme concentrations, temperatures and incubation times to identify the optimal conditions via response surface methodology (RSM). Under optimal conditions (1000 U/g enzyme concentration, 48 °C, 13 h), sucrose in raw SJ (124.33 g/L) decreased by 59.17 g/L, resulting in maximum reducing sugars (16.02 ± 0.58 g/L) and enhanced FOS yields, notably kestose (2.37 g/L) and nystose (9.35 g/L). After being treated with HPP at 600 MPa for 3 min, E. coli K12 and L. innocua were effectively inactivated by achieving > 5 log reduction, meeting USFDA standards. Furthermore, it was also observed that HPP could reduce yeast (6.56 × 102 CFU/mL). Meanwhile, mold, E. coli, and coliforms were not detected. Additionally, HPP maintained the juice’s physicochemical properties, outperforming thermal pasteurization (85 °C for 10 min) in quality preservation. This study highlights the potential of enzymatic treatment and HPP in improving SJ safety and functionality. Full article
Show Figures

Figure 1

27 pages, 2889 KB  
Article
In Vitro Plantlet Regeneration and Accumulation of Ginkgolic Acid in Leaf Biomass of Ginkgo biloba L.
by Yumei Xie, Keyuan Zheng, Yuan Chen, Jianxu Li, Juan Guo, Jianguo Cao and Mulan Zhu
Forests 2025, 16(10), 1539; https://doi.org/10.3390/f16101539 - 3 Oct 2025
Abstract
This study established an efficient in vitro regeneration system using stem nodes from root collar suckers as explants. Subsequently, regenerated shoots were used to establish an in vitro medicinal production protocol that achieved ginkgolic acid production. The self-developed Ginkgo biloba medium (GBM), first [...] Read more.
This study established an efficient in vitro regeneration system using stem nodes from root collar suckers as explants. Subsequently, regenerated shoots were used to establish an in vitro medicinal production protocol that achieved ginkgolic acid production. The self-developed Ginkgo biloba medium (GBM), first reported in this study, was pivotal to system establishment. The plantlet propagation system showed that the bases of stem nodes dipped in GBM with 2 mg·L−1 6-benzyladenine (BA) and 0.2 mg·L−1 1-naphthaleneacetic acid (NAA) achieved near-complete axillary bud induction (99.56%). Adventitious shoot induction reached 82.22% (3.5 shoots/explant) using GBM with 0.2 mg·L−1 BA, 0.02 mg·L−1 kinetin (Kin) and 0.2 g·L−1 proline (Pro). Maximum adventitious shoot elongation (92.22%, average 3.35 cm) was observed on GBM containing 0.1 mg·L−1 zeatin (ZT) and 0.01 mg·L−1 BA. After 3-week preculture with 15 mg·L−1 phloroglucinol (PG), treatment with 0.6 mg·L−1 indole-3-butyric acid (IBA) and 0.2% activated carbon (AC) yielded 96.67% rooting (6.19 roots/explant) and 85% acclimatization survival. For medicinal resource production, bud cluster induction at 94.44% (20.89 buds/explant) on GBM with 1 mg·L−1 BA, 0.03 mg·L−1 Kin, and 0.2 g·L−1 Pro. Leaf organs in GBM with 0.3 mg·L−1 BA, 0.01 mg·L−1 Kin, 0.01 mg·L−1 IBA, 0.3 g·L−1 Pro, and 0.01 mg·L−1 glutamine (Gln) accumulated 20.64 g fresh weight and 41.910 mg·g−1 DW ginkgolic acids, representing a 4.93-fold increase over mother plants. This system enables large-scale Ginkgo biloba L. propagation and provides an in vitro strategy for producing medicinal compounds in endangered plants. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
19 pages, 3638 KB  
Article
Glutaminase Reprogramming in Hepatocellular Carcinoma: Implications for Diagnosis, Prognosis, and Potential as a Novel Therapeutic Target
by Vincent Tambay, Valérie-Ann Raymond, Simon Turcotte and Marc Bilodeau
Int. J. Mol. Sci. 2025, 26(19), 9653; https://doi.org/10.3390/ijms26199653 - 3 Oct 2025
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, with a poor prognosis due to late diagnosis, limited curative therapies, and underlying liver disease. Glutamine metabolism, a crucial pathway in cancer, remains poorly understood in HCC, which develops in an already metabolically [...] Read more.
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, with a poor prognosis due to late diagnosis, limited curative therapies, and underlying liver disease. Glutamine metabolism, a crucial pathway in cancer, remains poorly understood in HCC, which develops in an already metabolically dynamic organ. This study aimed to characterize glutamine metabolism in HCC. Glutamine metabolism in HCC was explored through in vitro analysis of neoplastic characteristics, experimental hepatocarcinogenesis in C57BL/6 mice, and examination of liver samples from patients with HCC, cirrhosis, and non-diseased liver. The evaluation included metabolite abundance and mRNA/protein expressions. In mice, tumors exhibited hyperactive glutaminolysis compared to adjacent tissue. Notably, glutaminase expression shifted from the liver isoform (GLS2) in normal and cirrhotic livers to the kidney isoform (GLS1) in HCC. In samples from patients, HCC tumors showed overexpression of glutamine synthetase and GLS1 along with a loss of GLS2 expression, providing excellent discrimination of HCC lesions from cirrhotic and normal liver samples. Inhibiting GLS1 with CB-839 significantly impacted glutamine metabolism in HCC cells while showing limited activity on normal hepatocytes. HCC tumors show reprogramming of GLS2 to GLS1, with a concomitant increase in glutamine synthetase. These characteristics can discriminate HCC from cirrhotic and normal liver tissues. Overexpressed GLS1 and loss of GLS2 within tumors convey an unfavorable prognosis in patients with HCC. Pharmacological inhibition of GLS1 in HCC cells successfully harnesses glutamine metabolism, representing an attractive target for novel therapeutic approaches. Full article
(This article belongs to the Special Issue Targeting Cancer Metabolism: From Mechanism to Therapies)
Show Figures

Figure 1

15 pages, 1062 KB  
Systematic Review
Effect of Transcatheter Aortic Valve Implantation on Non-Invasive Myocardial Work Parameters: A Systematic Review and Meta-Analysis
by Isabella Leo, Federico Sicilia, Jolanda Sabatino, Angelica Cersosimo, Nicole Carabetta, Antonio Strangio, Giuseppe Panuccio, Giovanni Canino, Jessica Ielapi, Nadia Salerno, Sabato Sorrentino, Daniele Torella and Salvatore De Rosa
J. Clin. Med. 2025, 14(19), 6997; https://doi.org/10.3390/jcm14196997 - 2 Oct 2025
Abstract
Background/Objectives: Aortic stenosis (AS) leads to progressive left ventricular (LV) pressure overload, adverse myocardial remodeling, and eventual functional decline. While traditional parameters such as left ventricular ejection fraction (LVEF) may remain preserved until advanced stages, they are insufficiently sensitive to early dysfunction. [...] Read more.
Background/Objectives: Aortic stenosis (AS) leads to progressive left ventricular (LV) pressure overload, adverse myocardial remodeling, and eventual functional decline. While traditional parameters such as left ventricular ejection fraction (LVEF) may remain preserved until advanced stages, they are insufficiently sensitive to early dysfunction. Global longitudinal strain (GLS) offers improved detection but remains load-dependent. In contrast, non-invasive myocardial work (MW)—derived from pressure-strain loops—offers a more load-independent assessment of myocardial function. This systematic review and meta-analysis aimed to evaluate the effects of transcatheter aortic valve implantation (TAVI) on MW indices in patients with severe AS. Methods: We performed a systematic review and meta-analysis of studies reporting non-invasive myocardial work parameters before and after TAVI (PROSPERO ID: CRD420250517138). Databases were searched through 31 March 2025. Pooled mean differences in global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE) were calculated using random-effects models. Sensitivity analyses and meta-regression were conducted to explore heterogeneity and the influence of baseline characteristics. Results: Eleven studies encompassing 1493 patients were included. TAVI was associated with a significant reduction in GWI (−236.67 mmHg% [95% CI: −373.82 to −99.52]; I2 = 97.0%; p = 0.002) and GCW (−243.71 mmHg% [95% CI: −407.38 to −80.03]; I2 = 97.4%; p = 0.006). No significant changes were observed in GWW or GWE. Meta-regression showed age and baseline LVEF significantly influenced GWE changes, but not other parameters. Conclusions: TAVI leads to a significant reduction in GWI and GCW, reflecting decreased myocardial workload and afterload relief. These findings support the utility of MW indices as valuable tools for assessing myocardial adaptation post-TAVI and potentially guiding clinical decision-making. Full article
(This article belongs to the Special Issue Cardiac Imaging: Current Applications and Future Perspectives)
14 pages, 2100 KB  
Article
Recovery of Copper from Pregnant Leach Solutions of Copper Concentrate Using Aluminum Shavings
by Oscar Joaquín Solís Marcial, Alfonso Nájera-Bastida, Orlando Soriano-Vargas, José Pablo Ruelas Leyva, Alfonso Talavera-López, Horacio Inchaurregui and Roberto Zárate Gutiérrez
Minerals 2025, 15(10), 1048; https://doi.org/10.3390/min15101048 - 2 Oct 2025
Abstract
Copper is one of the most used metals today due to its wide range of applications. Traditionally, this metal has been primarily extracted through pyrometallurgical methods, which presents several environmental and energy-related drawbacks. An alternative is hydrometallurgy, which has achieved acceptable copper extraction [...] Read more.
Copper is one of the most used metals today due to its wide range of applications. Traditionally, this metal has been primarily extracted through pyrometallurgical methods, which presents several environmental and energy-related drawbacks. An alternative is hydrometallurgy, which has achieved acceptable copper extraction rates. However, this process has not found widespread industrial application due to operational challenges and the complexity associated with the selective recovery of copper ions from the Pregnant Leach Solution (PLS), especially due to the coexistence of copper and iron ions, complicating the efficient separation of both metals. In this work, the use of aluminum shavings as a cementation agent is proposed, analyzing variables such as the initial shaving concentration (2.5, 5, 10, 15, and 20 g/L), the agitation speed (0, 200, and 400 rpm), and a temperature of 20, 30, and 40 °C. The results demonstrated selective copper cementation, achieving a 100% recovery in 30 min under stirring conditions of 400 rpm. The analysis performed using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) revealed the formation of solid phases such as metallic copper (Cu), aluminum hydroxide [Al(OH)3], and elemental sulfur (S). Additionally, it was observed that the iron ion concentration remained constant throughout the experiment, indicating a high selectivity in the process. The kinetic analysis revealed that the reaction follows a first-order model without stirring. An activation energy of 62.6 kJ/mol was determined within the experimental temperature range of 20–40 °C, confirming that the process fits the chemical reaction model. These findings provide a deeper understanding of the system’s behavior, highlighting its feasibility and potential for industrial-scale applications. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 1596 KB  
Article
Impact on the Rheological Properties and Amino Acid Compositions of the Industrial Evaporation of Waste Vinasse in the Production of Nutritional Supplements for Livestock
by Nayeli Gutiérrez-Casiano, Cesar Antonio Ortíz-Sánchez, Karla Díaz-Castellanos, Luis Antonio Velázquez-Herrera, Solmaría Mandi Pérez-Guzmán and Eduardo Hernández-Aguilar
Waste 2025, 3(4), 34; https://doi.org/10.3390/waste3040034 - 2 Oct 2025
Abstract
Vinasse a byproduct of ethanol manufacturing, is a challenge for ethanol producers which possesses a high organic content that presents a considerable environmental threat. This complicates its management and treatment utilizing standard technologies like anaerobic digestion. This residue contains a substantial quantity of [...] Read more.
Vinasse a byproduct of ethanol manufacturing, is a challenge for ethanol producers which possesses a high organic content that presents a considerable environmental threat. This complicates its management and treatment utilizing standard technologies like anaerobic digestion. This residue contains a substantial quantity of dead and lysed yeast cells, which can function as a protein source for livestock’s nutritional needs. The application of multi-effect evaporation enhances the characteristics of this residue by increasing protein concentration, reducing volume, and minimizing water content. This study examines the impact of the five-effect evaporation procedure on vinasse waste, focusing on its rheological properties and the concentrations of proteins, amino acids, RNA, and DNA. This study aims to assess the thermal impacts linked to the evaporation process. The findings of the one-way statistical analysis demonstrate that the five evaporation effects are relevant in the utilization of waste as feed for livestock. The substance has a viscosity of 0.933 Pa s, comprising 6.3 g/100 g of crude protein, 4.08 g/100 g of amino acids, 0.1158 g/L of DNA, and 0.1031 g/L of RNA. Full article
Show Figures

Figure 1

9 pages, 1207 KB  
Article
Hypertrabeculation in Olympic Athletes: Advanced LV Function Analysis by CMR
by Alessandro Spinelli, Sara Monosilio, Giuseppe Di Gioia, Gianni Pedrizzetti, Giovanni Tonti, Cosimo Damiano Daniello, Maria Rosaria Squeo, Antonio Pelliccia and Viviana Maestrini
J. Cardiovasc. Dev. Dis. 2025, 12(10), 388; https://doi.org/10.3390/jcdd12100388 - 2 Oct 2025
Abstract
Left ventricular (LV) hypertrabeculation is increasingly recognized as a phenotype that may reflect physiological adaptation, particularly in athletes exposed to chronic overload, although its functional relevance remains uncertain. This study evaluated the prevalence of excessive trabeculation and its physiological correlation with LV remodeling. [...] Read more.
Left ventricular (LV) hypertrabeculation is increasingly recognized as a phenotype that may reflect physiological adaptation, particularly in athletes exposed to chronic overload, although its functional relevance remains uncertain. This study evaluated the prevalence of excessive trabeculation and its physiological correlation with LV remodeling. We conducted a single-center, cross-sectional study involving 320 Olympic-level athletes without cardiovascular disease. All underwent cardiac magnetic resonance (CMR). Hypertrabeculation was defined by the Petersen criteria. Athletes meeting these criteria were classified as hypertrabeculated and compared with non-hypertrabeculated matched for age, sex, and sport category. LV morphology, function, strain parameters, and hemodynamic forces (HDFs) were analyzed. Hypertrabeculation was identified in 9% of the cohort. No significant differences were observed between groups for training exposure (p = 0.262), body surface area (p = 0.762), LV volumes (end-diastolic volume indexed p = 0.397 end-systolic volume indexed p = 0.118), ejection fraction (p = 0.101), mass (p = 0.919), sphericity index (p = 0.419), myocardial wall thickness (p = 0.394), tissue characterization (T1 mapping p = 0.366, T2 mapping p = 0.833), global longitudinal strain (GLS p = 0.898), global circumferential strain (GCS p = 0.219), or HDFs. All values were within the normal range. In our cohort, LV hypertrabeculation, evaluated by CMR, was relatively common but not associated with structural or functional abnormalities, supporting its interpretation as a benign variant in asymptomatic athletes with normal cardiac function. Full article
(This article belongs to the Special Issue The Present and Future of Sports Cardiology and Exercise, 2nd Edition)
Show Figures

Figure 1

12 pages, 549 KB  
Article
Is the Development of Hypo-Gammaglobulinemia Associated with Better Treatment Response in Patients with Rheumatoid Arthritis Using Rituximab?
by Emine Gozde Aydemir Guloksuz, Serdar Sezer, Didem Sahin Eroglu, Sevgi Colak, Ayse Bahar Kelesoglu Dincer, Mucteba Enes Yayla, Emine Uslu, Mehmet Levent Yuksel, Recep Yilmaz, Elif Sinem Ates, Tahsin Murat Turgay, Gulay Kinikli and Askin Ates
J. Clin. Med. 2025, 14(19), 6967; https://doi.org/10.3390/jcm14196967 - 1 Oct 2025
Abstract
Objectives: To determine the frequency of development of hypogammaglobulinemia in rheumatoid arthritis (RA) patients receiving rituximab (RTX) and to examine the relation between the development of hypogammaglobulinemia and RTX treatment response. Methods: The data of 165 RA patients who applied to [...] Read more.
Objectives: To determine the frequency of development of hypogammaglobulinemia in rheumatoid arthritis (RA) patients receiving rituximab (RTX) and to examine the relation between the development of hypogammaglobulinemia and RTX treatment response. Methods: The data of 165 RA patients who applied to our outpatient clinic between January 2010 and June 2021, and who received at least 2 courses of RTX with an interval of 6 months, were retrospectively evaluated. The demographic, clinical, and laboratory data, as well as treatment characteristics, were collected. Results: Of 165 patients, 35 (21.2%) developed hypogammaglobulinemia. In the multivariable analysis examining the risk factors for the development of hypogammaglobulinemia in RA patients receiving RTX, it was determined that having pre-treatment IgG value below 10.5 g/l (OR= 4.24 (95% CI 1.69–10.66) and the increase in the number of RTX courses (OR= 1.1 (95% CI 1.01–1.22) were independently associated risk factors. During their follow-up, patients who developed hypogammaglobulinemia and those who did not were compared. No difference was observed between DAS28-ESR levels, but CRP levels were significantly lower in the group that developed hypogammaglobulinemia. Conclusions: In this study, there was no difference in DAS28-ESR levels between patients with and without hypogammaglobulinemia, although a difference was observed in acute phase reactants, which are more objective parameters. This may be due to subjective parameters in DAS28-ESR scoring or other concomitant conditions such as fibromyalgia. Therefore, additional objective findings or methods may guide the evaluation of treatment response. Full article
(This article belongs to the Special Issue Advances in Clinical Rheumatology)
Show Figures

Figure 1

19 pages, 3394 KB  
Article
Monitoring Strawberry Plants’ Growth in Soil Amended with Biochar
by Ilaria Orlandella, Kyra Nancie Smith, Elena Belcore, Renato Ferrero, Marco Piras and Silvia Fiore
AgriEngineering 2025, 7(10), 324; https://doi.org/10.3390/agriengineering7100324 - 1 Oct 2025
Abstract
This study evaluated the impact of biochar on the growth of strawberry plants, combining visual and proximal sensing monitoring. The plants were rooted in soil enriched with biochar, derived from pyrolysis of soft wood at 550 °C and applied in two doses (2 [...] Read more.
This study evaluated the impact of biochar on the growth of strawberry plants, combining visual and proximal sensing monitoring. The plants were rooted in soil enriched with biochar, derived from pyrolysis of soft wood at 550 °C and applied in two doses (2 and 15 g/L), and after physical activation with CO2 at 900 °C; there was also a treatment with no biochar (unaltered). Visual monitoring was based on data logging twice per week of plants’ height and number of flowers and ripe fruits. Proximal sensing monitoring involved a system including a low-cost multispectral camera and a Raspberry Pi 4. The camera acquired nadiral images hourly in three spectral bands (550, 660, and 850 nm), allowing calculation of the normalized difference vegetation index (NDVI). After three months, control plants reached a height of 12.3 ± 0.4 cm, while those treated with biochar and activated biochar grew to 18.03 ± 1.0 cm and 17.93 ± 1.2 cm, respectively. NDVI values were 0.15 ± 0.11 for control plants, increasing to 0.26 ± 0.03 (+78%) with biochar and to 0.28 ± 0.03 (+90%) with activated biochar. In conclusion, biochar application was beneficial for strawberry plants’ growth according to both visual and proximal-sensed measures. Further research is needed to optimize the integration of visual and proximal sensing monitoring, also enhancing the measured parameters. Full article
Show Figures

Figure 1

14 pages, 579 KB  
Article
Non-Invasive Myocardial Work Detects Extensive Coronary Disease in Orthotopic Heart Transplant Patients
by Rebeca Manrique Antón, Marina Pascual Izco, Agnés Díaz Dorronsoro, Ana Ezponda, Fátima de la Torre Carazo, Nahikari Salteráin, Leticia Jimeno-San Martín, Nerea Martín-Calvo, Áurea Manrique Antón, María Josefa Iribarren, Gorka Bastarrika and Gregorio Rábago
Med. Sci. 2025, 13(4), 212; https://doi.org/10.3390/medsci13040212 - 1 Oct 2025
Abstract
Background/Objectives: Cardiac allograft vasculopathy (CAV) remains a prevalent and serious long-term complication following orthotopic heart transplantation (OHT), contributing substantially to graft failure and patient mortality. Given the adverse prognostic impact of extensive coronary artery involvement, this study investigates whether myocardial work (MW) indices [...] Read more.
Background/Objectives: Cardiac allograft vasculopathy (CAV) remains a prevalent and serious long-term complication following orthotopic heart transplantation (OHT), contributing substantially to graft failure and patient mortality. Given the adverse prognostic impact of extensive coronary artery involvement, this study investigates whether myocardial work (MW) indices can serve as a non-invasive tool to detect OHT recipients with a high burden of coronary disease. Methods: In this prospective study, 55 OHT recipients underwent paired evaluations with coronary computed tomography angiography (CCTA) and transthoracic echocardiography (TTE) during routine follow-up. From the echocardiograms, global longitudinal strain (GLS) of the left ventricle (LV) and myocardial work (MW) indices were derived. Patients were classified into two groups according to CCTA findings: those without extensive coronary artery disease (disease affecting fewer than four coronary segments or none, OHT < 4) and those with extensive disease (disease of four or more coronary artery segments, OHT ≥ 4). Results: CCTA revealed extensive coronary disease in 38 OHT recipients, while 17 had involvement of fewer than four segments or none. Between-group comparisons showed significant differences in global wasted work (GWW, energy expended without generating forward flow) and global work efficiency (GWE, the percentage of constructive work relative to total work). Using the Youden Index, the optimal thresholds for identifying extensive disease were GWW > 88 mmHg% and GWE < 94%. Patients exceeding these thresholds had a markedly higher probability of having ≥ 4 affected segments, with ORs of 4.61 for pathological GWW and 3.68 for pathological GWE compared to those with normal values. Conclusions: GWW and GWE demonstrated the strongest performance for identifying OHT recipients with extensive coronary disease. If confirmed in larger cohorts, these indices could offer a practical, non-invasive approach for detecting extensive CAV. Full article
Show Figures

Figure 1

69 pages, 1993 KB  
Review
Glycyrrhizin (Glycyrrhizic Acid)—Pharmacological Applications and Associated Molecular Mechanisms
by Deepak Kumar Semwal, Ankit Kumar, Ruchi Badoni Semwal, Nand Kishor Dadhich, Ashutosh Chauhan and Vineet Kumar
Drugs Drug Candidates 2025, 4(4), 44; https://doi.org/10.3390/ddc4040044 - 30 Sep 2025
Abstract
Background/Objectives: Natural products, especially plant metabolites, play a crucial role in drug development and are widely used in medicine, cosmetics, and nutrition. The present review aims to provide a comprehensive overview of the pharmacological profile of Glycyrrhizin (GL), with a specific focus on [...] Read more.
Background/Objectives: Natural products, especially plant metabolites, play a crucial role in drug development and are widely used in medicine, cosmetics, and nutrition. The present review aims to provide a comprehensive overview of the pharmacological profile of Glycyrrhizin (GL), with a specific focus on its molecular targets. Methods: Scientific literature was thoroughly retrieved from reputable databases, including Scopus, Web of Science, and PubMed, up to 30 July 2025. The keywords “glycyrrhizin” and “glycyrrhizic acid” were used to identify relevant references, with a focus on pharmacological applications. Studies on synthetic analogs, non-English publications, non-pharmacological applications, and GL containing crude extracts were largely excluded. Results: Glycyrrhizin, the major bioactive constituent of Glycyrrhiza glabra, exhibits diverse pharmacological activities, including anti-inflammatory, antiviral, hepatoprotective, antitumor, neuroprotective, and immunomodulatory effects. These actions are primarily mediated through the inhibition of high-mobility group box 1 (HMGB1) and the modulation of key signaling pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and various cytokine networks. As a result of its therapeutic potential, GL-based formulations, including Stronger Neo-Minophagen C, and GL-rich extracts of G. glabra are commercially available as pharmaceutical preparations and food additives. Conclusions: Despite its therapeutic potential, the clinical application of GL is limited by poor oral bioavailability, metabolic variability, and adverse effects such as pseudoaldosteronism. Hence, careful consideration of pharmacokinetics and safety is essential for translating its therapeutic potential into clinical practice. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Graphical abstract

14 pages, 1570 KB  
Article
Response of Pearl Millet (Pennisetum glaucum [L.] R. Br.) Growth to Post-Emergence Water Stress
by Lazare Vourbouè Bazie, Inoussa Drabo, Koussao Some, Armel Rouamba and Pauline Bationo (Kando)
Agronomy 2025, 15(10), 2321; https://doi.org/10.3390/agronomy15102321 - 30 Sep 2025
Abstract
Pearl millet is primarily grown under rainfed conditions in Sub-Saharan Africa. Early droughts are prevalent in the Sahel region, where pearl millet is widely cultivated, and they severely impact pearl millet growth and productivity by affecting plant stand and reducing plant density in [...] Read more.
Pearl millet is primarily grown under rainfed conditions in Sub-Saharan Africa. Early droughts are prevalent in the Sahel region, where pearl millet is widely cultivated, and they severely impact pearl millet growth and productivity by affecting plant stand and reducing plant density in the field. Consequently, genetic improvement for early drought tolerance is a promising strategy to enhance productivity in these regions. This study aims to identify pearl millet lines that are tolerant to water stress at the seedling stage by assessing various water-stress-tolerance traits. Two hundred pearl millet inbred lines were screened for drought tolerance by inducing water stress with polyethylene glycol 6000 (PEG 6000) in the laboratory. The experiment was repeated in the greenhouse using pot screening. The experimental design was an alpha lattice with 10 entries × 20 blocks in two replications. Four treatments (0 g/L, 115 g/L, 235 g/L, 289 g/L) were applied in the laboratory: one control and three concentrations of PEG 6000. Control and stress were applied in the greenhouse. Data were collected on germination rate and growth parameters, including root and seedling length, leaf length and width, and chlorophyll content. Results revealed significant differences among the pearl millet inbred lines under both drought and well-watered conditions. The inbred lines IP-16403 and IP-18062 were the most tolerant in both the greenhouse and laboratory. Water stress significantly reduced plant growth, although an increase in root length was observed in some lines. The number of days to 50% emergence was positively and strongly correlated with survival time (+0.45), while leaf width was negatively correlated with survival time (−0.29) and water stress tolerance (−0.37). The drought-tolerant and drought-susceptible pearl millet inbred lines identified in this study provide valuable genetic resources for enhancing pearl millet productivity in arid and semi-arid environments, especially in the face of unpredictable climate variability. Full article
Show Figures

Figure 1

17 pages, 3387 KB  
Article
Comprehensive Investigation of Iron Salt Effects on Membrane Bioreactor from Perspective of Controlling Iron Leakage
by Qiaoying Wang, Bingbing Zhang, Jicheng Sun, Wenjia Zheng, Jie Zhang and Zhichao Wu
Membranes 2025, 15(10), 297; https://doi.org/10.3390/membranes15100297 - 30 Sep 2025
Abstract
Although adding iron salts can improve phosphorus removal in membrane bioreactor (MBR) processes, overdosing iron salts may result in excessive iron concentrations in the effluent and pose risks of surface water contamination. In this study, an optimized iron salt dosing method was proposed [...] Read more.
Although adding iron salts can improve phosphorus removal in membrane bioreactor (MBR) processes, overdosing iron salts may result in excessive iron concentrations in the effluent and pose risks of surface water contamination. In this study, an optimized iron salt dosing method was proposed to comprehensively investigate its effects on the performance of MBRs and the control of iron leakage. The results showed that batch dosing of solid iron salts (Fe2(SO4)3) into the influent or activated sludge maintained an effluent Fe3+ concentration below 1.0 mg/L and a total phosphorus (TP) concentration below 0.30 mg/L. Long-term operation of the MBR (under conditions of HRT = 4.3 h, SRT = 20 d, and MLSS = 12 g/L) showed that batch dosing of solid iron salts led to an increase in the effluent ammonia–nitrogen (NH3-N) concentration, and the nitrification effect was restored after supplementing the alkalinity. Iron salts increased the TP removal rate by approximately 40% while inhibiting the biological phosphorus removal capacity. The average Fe3+ concentration in the membrane effluent (0.23 ± 0.11 mg/L) met China’s Environmental Quality Standard for Surface Water (GB3838-2002). This study demonstrates that batch dosing of solid iron salts effectively controls iron concentration in the MBR effluent while preventing secondary pollution. The mechanisms of the impact of iron salts on MBR performance provide crucial theoretical and technical support for MBR process optimization. Full article
Show Figures

Figure 1

7 pages, 1183 KB  
Case Report
From Chronic Lymphocytic Leukemia to Plasmablastic Myeloma: Beyond the Usual Richter Transformation
by Mathias Castonguay, Marie-France Gagnon, Alexandre Le Nguyen, Rafik Terra, Sarah-Jeanne Pilon, Guylaine Lépine, Richard LeBlanc, Jean Roy, Sandra Cohen, Isabelle Fleury, Luigina Mollica, Olivier Veilleux and Jean-Sébastien Claveau
Curr. Oncol. 2025, 32(10), 550; https://doi.org/10.3390/curroncol32100550 - 30 Sep 2025
Abstract
Background: Richter transformation (RT) is defined as the histologic transformation of Chronic Lymphocytic Leukemia (CLL) to either diffuse large B-cell lymphoma or Hodgkin lymphoma. Transformation into lymphoproliferative neoplasms with plasmablastic differentiation is exceptionally rare and poorly characterized. Case Presentation: We present the first [...] Read more.
Background: Richter transformation (RT) is defined as the histologic transformation of Chronic Lymphocytic Leukemia (CLL) to either diffuse large B-cell lymphoma or Hodgkin lymphoma. Transformation into lymphoproliferative neoplasms with plasmablastic differentiation is exceptionally rare and poorly characterized. Case Presentation: We present the first case of a patient with CLL evolving into plasmablastic myeloma (PBM). A 62-year-old man with previously treated CLL developed thrombocytopenia and rapidly progressive acute kidney injury. Serum electrophoresis showed new IgA-λ protein (2.2 g/L) with λ and κ light chains at 3445.4 and 7.3 mg/L. Bone marrow examination showed extensive infiltration (>95%) by plasmablasts and mature plasma cells, with a consistent immunophenotype (CD38+, CD138+, MUM1+, CD19−, CD20−). In situ hybridization with EBER was negative. Mutation assessment by NGS demonstrated a TP53 mutation and FISH prob panel revealed a new del17p. Clonal relatedness was confirmed by shared IGHV somatic hypermutation using NGS. The patient was primary refractory to frontline myeloma therapy with Dara-VRd and succumbed rapidly to his disease. Discussion: This case illustrates an exceptionally rare form of RT. Recognition and incorporation in new classifications of plasmablastic RT as a distinct entity is critical, as its biology and resistance profile differ from classical RT. Full article
(This article belongs to the Special Issue 2nd Edition—Haematological Neoplasms: Diagnosis and Management)
Show Figures

Figure 1

Back to TopTop