Development of Fructooligosaccharide-Rich Sugarcane Juice by Enzymatic Method and Enhancement of Its Microbial Safety Using High-Pressure Processing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. SJ Preparation and Quality Assessment
2.3. FOS Production and Optimization
2.4. High-Pressure Processing and Thermal Pasteurization of SJ
2.5. Analytical Method
2.5.1. Enzymatic Assay
2.5.2. Microbial Analysis
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Properties Analysis
3.2. Optimization of Enzymatic Treatments by CCD
3.3. Effects of HPP on Microbial Inactivation and Physicochemical Properties
3.4. Microbial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
CCD | Central Composite Design |
DNS | 3,4-dinitrosalicylic acid |
FOS | Fructooligosaccharides |
FFase | β-Fructofuranosidase |
FTase | Fructosyltransferase |
HPLC | High Performance Liquid Chromatography |
HPP | High-Pressure Processing |
PDA | Potato Dextrose Agar |
PET | Polyethylene Terephthalate |
RID | Reactive Index Detectors |
RSM | Response Surface Methodology |
SJ | Sugarcane Juice |
TSS | Total Soluble Solids |
YPD | Yeast Peptone Dextrose |
References
- Chauhan, O.; Ravi, N.; Roopa, N.; Kumar, S.; Raju, P. High pressure, temperature and time-dependent effects on enzymatic and microbial properties of fresh sugarcane juice. J. Food Sci. Technol. 2017, 54, 4135–4138. [Google Scholar] [CrossRef]
- Rippe, J.; Angelopoulos, T. Relationship between added sugars consumption and chronic disease risk factors: Current understanding. Nutrients 2016, 8, 697. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, P.; Chen, M.; Luo, Y.; Prabhakar, M.; Zheng, H.; He, Y.; Qi, Q.; Long, H.; Zhang, Y. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Sci. Rep. 2017, 7, 11789. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Deng, T.; Cao, W.; Shen, F.; Wan, Y. From sucrose to fructo-oligosaccharides: Production and purification of fructo-oligosaccharides by an integrated enzymatic catalysis and membrane separation process. Sep. Purif. Technol. 2022, 288, 120678. [Google Scholar] [CrossRef]
- Cywińska-Antonik, M.; Chen, Z.; Groele, B.; Marszałek, K. Application of emerging techniques in reduction of the sugar content of fruit juice: Current challenges and future perspectives. Foods 2023, 12, 1181. [Google Scholar] [CrossRef]
- Gonçalves, D.A.; Alves, V.D.; Teixeira, J.A.; Nobre, C. Development of a functional prebiotic strawberry preparation by in situ enzymatic conversion of sucrose into fructo-oligosaccharides. Food Res. Int. 2023, 168, 112671. [Google Scholar] [CrossRef]
- Kamchonemenukool, S.; Buasum, W.; Weerawatanakorn, M.; Thongsook, T. Short-chain fructooligosaccharide synthesis from sugarcane syrup with commercial enzyme preparations and some physical and antioxidation properties of the syrup and syrup powder. Foods 2023, 12, 2895. [Google Scholar] [CrossRef]
- Sánchez-Martínez, M.J.; Soto-Jover, S.; Antolinos, V.; Martínez-Hernández, G.B.; López-Gómez, A. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale. Food Eng. Rev. 2020, 12, 149–172. [Google Scholar] [CrossRef]
- Badoei-Dalfard, A.; Karami, Z. Screening and isolation of an organic solvent tolerant-protease from Bacillus sp. JER02: Activity optimization by response surface methodology. J. Mol. Catal. B Enzym. 2013, 89, 15–23. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.M.; Rocheto, A.C.; Gallo, F.A.; Petrus, R.R. The shelf life of standardized sugarcane juice stored under refrigeration. Food Sci. Technol. 2019, 40, 95–101. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Somasundram, C. Effects of thermal and non-thermal processing on phenolic compounds, antioxidant activity and sensory attributes of chokanan mango (Mangifera indica L.) juice. Food Bioprocess Technol. 2015, 8, 2256–2267. [Google Scholar] [CrossRef]
- Huang, H.-W.; Chang, Y.H.; Wang, C.-Y. High pressure pasteurization of sugarcane juice: Evaluation of microbiological shelf life and quality evolution during refrigerated storage. Food Bioprocess Technol. 2015, 8, 2483–2494. [Google Scholar] [CrossRef]
- Miller, W.J.; Torres-Ruedas, K.; Waxman, S.M.; Allen, D.; Turman, J.; Bartholomew, A.J. Using a handheld refractometer in remote environments to measure the refractive indices of a variety of solutions: Sucrose, coffee, methanol/water, and 2-propanol/water. J. Chem. Educ. 2021, 98, 2730–2734. [Google Scholar] [CrossRef]
- Martínez-Flores, H.E.; Garnica-Romo, M.G.; Bermúdez-Aguirre, D.; Pokhrel, P.R.; Barbosa-Cánovas, G.V. Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage. Food Chem. 2015, 172, 650–656. [Google Scholar] [CrossRef]
- Yuan, L.; Cheng, F.; Yi, J.; Cai, S.; Liao, X.; Lao, F.; Zhou, L. Effect of high-pressure processing and thermal treatments on color and in vitro bioaccessibility of anthocyanin and antioxidants in cloudy pomegranate juice. Food Chem. 2022, 373, 131397. [Google Scholar] [CrossRef]
- Nayak, P.K.; Rayaguru, K.; Radha Krishnan, K. Quality comparison of elephant apple juices after high-pressure processing and thermal treatment. J. Sci. Food Agric. 2017, 97, 1404–1411. [Google Scholar] [CrossRef]
- Chumjitchuen, N.; Shiekh, K.A.; Jafari, S.; Pitaksa, A.; Sirikantaramas, S.; Assatarakul, K. Enzyme-assisted hydrolysis and microencapsulation for production of functional food with dietary fructooligosaccharides from Nam Dok Mai mango (Mangifera indica L.). LWT 2024, 199, 116020. [Google Scholar] [CrossRef]
- McCleary, B.V.; McGeough, P. A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1,4-β-xylanase. Appl. Biochem. Biotechnol. 2015, 177, 1152–1163. [Google Scholar] [CrossRef]
- Kaewsalud, T.; Yakul, K.; Jantanasakulwong, K.; Tapingkae, W.; Watanabe, M.; Chaiyaso, T. Biochemical characterization and application of thermostable-alkaline keratinase from Bacillus halodurans SW-X to valorize chicken feather wastes. Waste Biomass Valorization 2021, 12, 3951–3964. [Google Scholar] [CrossRef]
- Kieling, D.D.; Barbosa-Cánovas, G.V.; Prudencio, S.H. Effects of high pressure processing on the physicochemical and microbiological parameters, bioactive compounds, and antioxidant activity of a lemongrass-lime mixed beverage. J. Food Sci. Technol. 2019, 56, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Mandha, J.; Shumoy, H.; Matemu, A.O.; Raes, K. Characterization of fruit juices and effect of pasteurization and storage conditions on their microbial, physicochemical, and nutritional quality. Food Biosci. 2023, 51, 102335. [Google Scholar] [CrossRef]
- Gonçalves, D.A.; Teixeira, J.A.; Nobre, C. Assessment of enzymatic complexes for the in situ production of prebiotic fructo-oligosaccharides in a strawberry preparation for dairy industry applications. Future Foods 2024, 9, 100387. [Google Scholar] [CrossRef]
- Tongdonyod, S.; Thikham, S.; Kittiwachana, S.; Wichaphon, J.; Klangpetch, W. Optimization of pulsed electric fields combined with mild heat treatment on microbial inactivation of tender coconut water and evaluation of quality attributes during storage. Innov. Food Sci. Emerg. Technol. 2023, 90, 103507. [Google Scholar] [CrossRef]
- de Souza, A.C.; Simões, L.A.; Schwan, R.F.; Dias, D.R. Enumerating Yeast in Foods and Water Using the Spread Plating Technique. In Methods and Protocols in Food Science; Springer: Berlin/Heidelberg, Germany, 2021; pp. 93–110. [Google Scholar] [CrossRef]
- Alam, A.; Shaheen, S.; Ashfaq, M.; All, M.; Watto, J.I.; Anjum, M.A.; Khan, F.; Maqsood, S.; Sajjad, M. Microbial examination of mould and yeast in fruit juices. Pak. J. Agric. Sci. 2019, 56, 715–721. [Google Scholar] [CrossRef]
- Bird, P.; Bastin, B.; Klass, N.; Crowley, E.; Agin, J.; Goins, D.; Bakken, H.; Lingle, C.; Schumacher, A.; Collaborators. Evaluation of the 3M™ Petrifilm™ rapid E. coli/coliform count plate for the enumeration of E. coli and coliforms: Collaborative study, first action: 2018.13. J. AOAC Int. 2020, 103, 513–522. [Google Scholar] [CrossRef]
- Yingkamhaeng, N.; Vanichsriratana, W. Current Situation and Trends in Thailand’s Sugarcane Sector. Sugar Tech 2024, 26, 1088–1095. [Google Scholar] [CrossRef]
- Drewnowski, A.; Tappy, L.; Forde, C.G.; McCrickerd, K.; Tee, E.S.; Chan, P.; Amin, L.; Trinidad, T.P.; Amarra, M.S. Sugars and sweeteners: Science, innovations, and consumer guidance for Asia. Asia Pac. J. Clin. Nutr. 2019, 28, 645–663. [Google Scholar] [CrossRef]
- Shrapnel, W. Trends in sugar-sweetened beverages: Are public health and the market aligned or in conflict? Nutrients 2015, 7, 8189–8198. [Google Scholar] [CrossRef]
- Alatorre-Santamaría, S.; Cruz-Guerrero, A.; Guzmán-Rodríguez, F. Fructooligosaccharides (FOS). In Handbook of Food Bioactive Ingredients: Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1271–1300. [Google Scholar] [CrossRef]
- Njume, A.C.; Naomasa, Y.; Shinzato, Y.; Mitsuoka, M.; Taira, E. Laboratory analysis of soluble solids content in sugarcane juice from direct and shredded extraction methods using NIR spectrometer. J. Food Compos. Anal. 2025, 138, 107009. [Google Scholar] [CrossRef]
- Issa-Zacharia, A.; Rwabunywenge, S.P. Evaluation of bacteriological quality and safety of sugarcane juice locally processed and vended in Dar es Salaam City, Tanzania. J. Food Saf. Hyg. 2023, 9, 282–298. [Google Scholar] [CrossRef]
- Bomdespacho, L.d.Q.; Silva, B.T.R.d.; Lapa-Guimaraes, J.; Ditchfield, C.; Petrus, R.R. Cultivar affects the color change kinetics of sugarcane juice. Food Sci. Technol. 2018, 38, 96–102. [Google Scholar] [CrossRef]
- Astolfi-Filho, Z.; Telis, V.R.N.; de Oliveira, E.B.; dos Reis Coimbra, J.S.; Telis-Romero, J. Rheology and fluid dynamics properties of sugarcane juice. Biochem. Eng. J. 2010, 53, 260–265. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Styevkó, G.; Ta, L.P.; Tran, A.T.; Bujna, E.; Orbán, P.; Dam, M.S.; Nguyen, Q.D. Immobilization and some properties of commercial enzyme preparation for production of lactulose-based oligosaccharides. Food Bioprod. Process. 2017, 107, 97–103. [Google Scholar] [CrossRef]
- Kovács, Z.; Števek, J.; Fikar, M.; Czermak, P. Kinetic behavior of soluble Pectinex Ultra SP-L converting sucrose into fructo-oligosaccharides in batch and continuous fashion. Prog. Agric. Eng. Sci. 2020, 16, 81–97. [Google Scholar] [CrossRef]
- Patel, A.K.; Dong, C.-D.; Chen, C.-W.; Pandey, A.; Singhania, R.R. Production, purification, and application of microbial enzymes. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 25–57. [Google Scholar] [CrossRef]
- Anderson, M.J.; Whitcomb, P.J. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments; Productivity Press: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Kuby, S.A. A Study of Enzymes: Enzyme Catalysts, Kinetics, and Substrate Binding; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Mbira, C. Influence of substrate concentration on enzyme activity in bio catalysis. J. Chem. 2024, 3, 48–58. [Google Scholar] [CrossRef]
- Veljković, M.B.; Modi, A.; Petrov, A.I.; Ćorović, M.M.; Milivojević, A.D.; Banjanac, K.M.; Simović, M.B.; Bezbradica, D.I. Enzymatic synthesis of fructo-oligosaccharides using Pectinex® Ultra SP-L: A study of experimental conditions. Food Feed Res. 2021, 48, 201–211. [Google Scholar] [CrossRef]
- Akkarachaneeyakorn, S.; Suwakrai, A.; Pewngam, D. Optimization of reducing sugar production from enzymatic hydrolysis of banana peels using response surface methodology. Songklanakarin J. Sci. Technol. 2018, 40, 1. [Google Scholar] [CrossRef]
- Bouhnik, Y.; Raskine, L.; Simoneau, G.; Paineau, D.; Bornet, F. The capacity of short-chain fructo-oligosaccharides to stimulate faecal bifidobacteria: A dose-response relationship study in healthy humans. Nutr. J. 2006, 5, 8. [Google Scholar] [CrossRef]
- Tandon, D.; Haque, M.M.; Gote, M.; Jain, M.; Bhaduri, A.; Dubey, A.K.; Mande, S.S. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of f ructooligo s accharides (FOS) on human gut microflora. Sci. Rep. 2019, 9, 5473. [Google Scholar] [CrossRef] [PubMed]
- Rabie, M.A.; Soliman, A.Z.; Diaconeasa, Z.S.; Constantin, B. Effect of pasteurization and shelf life on the physicochemical properties of Physalis (Physalis peruviana L.) Juice. J. Food Process. Preserv. 2015, 39, 1051–1060. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Wang, Z.; He, Z.; Zeng, M.; Chen, J. Changes in harmful Maillard reaction products in low-temperature long-time pasteurization-treated milks reconstituted from whole-milk powders after different storage times. J. Food Compos. Anal. 2022, 106, 104280. [Google Scholar] [CrossRef]
- Vidigal, I.G.; Melo, M.P.; Da Rós, P.C.; Carvalho, A.K.; Alencar, S.M.; Ferreira, A.L. Rheological and Physical Properties Affected by the Thermal Processing of Fruit: A Bibliometric Analysis. Processes 2023, 11, 2874. [Google Scholar] [CrossRef]
- Kunitake, M.; Ditchfield, C.; Silva, C.; Petrus, R. Effect of pasteurization temperature on stability of an acidified sugarcane juice beverage. Cienc. Agrotec. 2014, 38, 554–561. [Google Scholar] [CrossRef]
- Vega, R.; Zuniga-Hansen, M. The effect of processing conditions on the stability of fructooligosaccharides in acidic food products. Food Chem. 2015, 173, 784–789. [Google Scholar] [CrossRef]
- Almeida, F.D.L.; Gomes, W.F.; Cavalcante, R.S.; Tiwari, B.K.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.; Rodrigues, S. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Res. Int. 2017, 102, 282–290. [Google Scholar] [CrossRef]
- Leistner, L.; Gorris, L.G. Food preservation by hurdle technology. Trends Food Sci. Technol. 1995, 6, 41–46. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Wang, S.; Li, H.; Huang, W.; Liao, X. Inactivation of naturally occurring microbiota in cucumber juice by pressure treatment. Int. J. Food Microbiol. 2014, 174, 12–18. [Google Scholar] [CrossRef]
- Chai, C.; Lee, J.; Lee, Y.; Na, S.; Park, J. A combination of TiO2–UV photocatalysis and high hydrostatic pressure to inactivate Bacillus cereus in freshly squeezed Angelica keiskei juice. LWT 2014, 55, 104–109. [Google Scholar] [CrossRef]
- Raghubeer, E.V.; Phan, B.N.; Onuoha, E.; Diggins, S.; Aguilar, V.; Swanson, S.; Lee, A. The use of High-Pressure Processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. Int. J. Food Microbiol. 2020, 331, 108697. [Google Scholar] [CrossRef]
Independent Variable | Symbol | Levels | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||
Enzyme concentration (U/g substrate) | A | 250 | 500 | 750 | 1000 | 1250 |
Temperature (°C) | B | 40 | 45 | 50 | 55 | 60 |
Time (h) | C | 6 | 12 | 18 | 24 | 30 |
Attributes | Raw SJ |
---|---|
TSS (° Brix) | 21.5 ± 0.0 |
pH | 5.06 ± 0.03 |
L* | 33.11 ± 0.55 |
a* | −2.76 ± 0.05 |
b* | 7.65 ± 0.07 |
Viscosity (cP) | 5.25 ± 0.12 |
Std. Run | Enzyme Concentration (U/g substrate) | Temperature (°C) | Incubation Time (h) | Reducing Sugar (g/L) | |
---|---|---|---|---|---|
Predicted | Actual | ||||
1 | 500 | 45 | 12 | 9.01 | 9.21 |
2 | 1000 | 45 | 12 | 14.70 | 15.72 |
3 | 500 | 55 | 12 | 4.73 | 4.90 |
4 | 1000 | 55 | 12 | 13.51 | 12.19 |
5 | 500 | 45 | 24 | 12.96 | 13.44 |
6 | 1000 | 45 | 24 | 8.02 | 7.02 |
7 | 500 | 55 | 24 | 13.74 | 11.88 |
8 | 1000 | 55 | 24 | 11.89 | 10.85 |
9 | 250 | 50 | 18 | 10.80 | 10.89 |
10 | 1250 | 50 | 18 | 14.64 | 15.39 |
11 | 750 | 40 | 18 | 6.47 | 5.70 |
12 | 750 | 60 | 18 | 6.05 | 7.66 |
13 | 750 | 50 | 6 | 9.88 | 9.42 |
14 | 750 | 50 | 30 | 12.21 | 13.50 |
15 | 750 | 50 | 18 | 14.26 | 14.83 |
16 | 750 | 50 | 18 | 14.26 | 15.24 |
17 | 750 | 50 | 18 | 14.26 | 15.24 |
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 175.95 | 9 | 19.55 | 8.54 | 0.0050 * | significant |
A | 14.74 | 1 | 14.74 | 6.43 | 0.0389 * | |
B | 0.17 | 1 | 0.17 | 0.0752 | 0.7918 | |
C | 5.43 | 1 | 5.43 | 2.37 | 0.1675 | |
A2 | 2.86 | 1 | 2.86 | 2.07 | 0.3003 | |
B2 | 77.43 | 1 | 77.43 | 24.66 | 0.0007 * | |
C2 | 12.52 | 1 | 12.52 | 5.58 | 0.0520 | |
AB | 4.75 | 1 | 4.75 | 1.25 | 0.1931 | |
AC | 56.48 | 1 | 56.48 | 33.81 | 0.0016 * | |
BC | 12.78 | 1 | 12.78 | 5.47 | 0.0501 | |
Residual | 16.03 | 7 | 2.29 | |||
Lack of Fit | 14.46 | 5 | 2.89 | 3.67 | 0.2277 | not significant |
Pure Error | 1.57 | 2 | 0.79 | |||
Cor Total | 191.98 | 16 | ||||
R-Squared | 0.9165 | |||||
Adj R-Squared | 0.8091 | |||||
Pred R-Squared | 0.3720 |
HPP Treatment | Log Reduction (Log CFU/mL) | |
---|---|---|
600 MPa for 3 min | E. coli K12 | L. innocua |
5.80 ± 0.17 | 5.44 ± 0.16 |
Raw SJ | Non-Treated SJ | HPP-Treated SJ | TP-Treated SJ | |
---|---|---|---|---|
Physicochemical properties | ||||
TSS (° Brix) | 21.5 ± 0.0 d | 22.5 ± 0.0 c | 23.0 ± 0.0 b | 25.3 ± 0.2 a |
pH | 5.06 ± 0.03 a | 5.00 ± 0.00 b | 5.01 ± 0.01 b | 5.04 ± 0.01 a |
L* | 33.11 ± 0.55 a | 29.31 ± 0.05 d | 29.58 ± 0.09 c | 30.91 ± 0.09 d |
a* | −2.76 ± 0.05 a | −0.96 ± 0.06 c | −1.06 ± 0.03 c | −1.45 ± 0.03 b |
b* | 7.65 ± 0.07 a | 4.47 ± 0.23 c | 4.65 ± 0.05 c | 5.62 ± 0.03 b |
Viscosity (cP) | 5.25 ± 0.12 b | 5.32 ± 0.13 b | 5.08 ± 0.22 b | 5.96 ± 0.09 a |
Sugar concentration (g/L) | ||||
Sucrose | 124.33 ± 7.58 c | 64.25 ± 0.94 b | 64.03 ± 1.85 b | 73.08 ± 1.56 a |
Glucose | 11.86 ± 2.92 d | 31.04 ± 0.90 b | 29.34 ± 0.13 c | 39.09 ± 1.16 a |
Fructose | 6.52 ± 0.72 d | 17.07 ± 0.48 b | 16.27 ± 0.35 c | 18.55 ± 0.30 a |
Kestose/Sucrose ratio | - | 0.045 ± 0.01 a | 0.038 ± 0.00 ab | 0.034 ± 0.00 b |
Nystose/Sucrose ratio | - | 0.264 ± 0.01 a | 0.222 ± 0.01 a | 0.246 ± 0.02 a |
Microbial Type | Microbial Load (CFU/mL) | Thai Community Product Standard | ||
---|---|---|---|---|
Non-Treated SJ | HPP-Treated SJ | TP-Treated SJ | ||
Yeast | 2.20 × 104 ± 0.61 × 104 | 6.56 × 102 ± 1.26 × 102 | ND | Raw: <1 × 104 CFU/mL of sample Pasteurized: <1 × 103 CFU/mL of sample |
Mold | ND | ND | ND | Raw: <500 CFU/mL of sample Pasteurized: <100 CFU/mL of sample |
E. coli | ND | ND | ND | Raw: <2.2 CFU/100 mL sample Pasteurized: Not specified |
Coliforms | ND | ND | ND | Raw: Not specified Pasteurized: <2.2 CFU/100 mL sample |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewsalud, T.; Liony, J.M.; Tongdonyod, S.; Phongthai, S.; Klangpetch, W. Development of Fructooligosaccharide-Rich Sugarcane Juice by Enzymatic Method and Enhancement of Its Microbial Safety Using High-Pressure Processing. Foods 2025, 14, 3417. https://doi.org/10.3390/foods14193417
Kaewsalud T, Liony JM, Tongdonyod S, Phongthai S, Klangpetch W. Development of Fructooligosaccharide-Rich Sugarcane Juice by Enzymatic Method and Enhancement of Its Microbial Safety Using High-Pressure Processing. Foods. 2025; 14(19):3417. https://doi.org/10.3390/foods14193417
Chicago/Turabian StyleKaewsalud, Tanyawat, Jessica Michelle Liony, Sitthidat Tongdonyod, Suphat Phongthai, and Wannaporn Klangpetch. 2025. "Development of Fructooligosaccharide-Rich Sugarcane Juice by Enzymatic Method and Enhancement of Its Microbial Safety Using High-Pressure Processing" Foods 14, no. 19: 3417. https://doi.org/10.3390/foods14193417
APA StyleKaewsalud, T., Liony, J. M., Tongdonyod, S., Phongthai, S., & Klangpetch, W. (2025). Development of Fructooligosaccharide-Rich Sugarcane Juice by Enzymatic Method and Enhancement of Its Microbial Safety Using High-Pressure Processing. Foods, 14(19), 3417. https://doi.org/10.3390/foods14193417