Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = GE11 peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 471 KiB  
Article
The Clinical Significance and Potential of Complex Diagnosis for a Large Scar Area Following Myocardial Infarction
by Valentin Oleynikov, Lyudmila Salyamova, Nikolay Alimov, Natalia Donetskaya, Irina Avdeeva and Elena Averyanova
Diagnostics 2025, 15(13), 1611; https://doi.org/10.3390/diagnostics15131611 - 25 Jun 2025
Viewed by 431
Abstract
Background/Objectives: The aim of this study is to identify markers and develop a multifactorial model for characterizing extensive scar tissue after revascularization in patients with myocardial infarction (MI). Methods: A total of 123 patients with MI were examined. The patients underwent [...] Read more.
Background/Objectives: The aim of this study is to identify markers and develop a multifactorial model for characterizing extensive scar tissue after revascularization in patients with myocardial infarction (MI). Methods: A total of 123 patients with MI were examined. The patients underwent contrast-enhanced cardiac magnetic resonance imaging (MRI) with a 1.5 Tesla GE SIGNA Voyager (GE HealthCare, Chicago, IL, USA) on the 7th–10th days from the onset of the disease. At the first stage, we performed a comparative analysis and built a multifactorial model based on the examination results of 92 (75%) patients enrolled from April 2021 to October 2023. These patients formed the group used for model development, or the “modeling group”. The mass of the scar was calculated, including relative to the left ventricular (LV) myocardium mass (Mscar/LVMM, in %). Results: The first subgroup consisted of 36 (39%) patients with a large scar, denoted as “LS” (Mscar/LVMM > 20%). The second subgroup included 56 (61%) patients with a smaller scar, referred to as “SS” (Mscar/LVMM ≤ 20%). Logistic regression was used to identify independent factors affecting scar tissue size. A multifactorial model was created. This model predicts Mscar/LVMM > 20% on MRI. It uses readily available clinical parameters: high-sensitivity troponin I (HscTn I) and N-terminal pro B-type natriuretic peptide (NT-proBNP) levels, and LV relative wall thickness (RWT). We tested the multifactorial model on the “modeling group” (n = 31). The sensitivity was 63.6% and the specificity was 85.7%. Conclusions: These indicates the feasibility of its application in clinical practice. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Graphical abstract

15 pages, 1304 KiB  
Article
Effects of Phytosterols on Growth Performance, Serum Indexes, and Fecal Microbiota in Finishing Pigs
by Renjie Xie, Zhenxing Guo, Haiqing Gan, Dexing Hou, Guang Chen, Chao Deng, Hongkun Li, Jiajie Ouyang, Qiyu Tian and Xingguo Huang
Animals 2025, 15(9), 1188; https://doi.org/10.3390/ani15091188 - 22 Apr 2025
Viewed by 574
Abstract
Phytosterols (PSs) are widely present in plants, particularly abundant in plant oils and seeds. PSs are reported to have various biological activities, such as lowering cholesterol, alongside antioxidant and antibacterial activities. This research examined the effects of PSs in finishing pigs, including growth [...] Read more.
Phytosterols (PSs) are widely present in plants, particularly abundant in plant oils and seeds. PSs are reported to have various biological activities, such as lowering cholesterol, alongside antioxidant and antibacterial activities. This research examined the effects of PSs in finishing pigs, including growth performance, serum biochemistry, and fecal bacteria. Two treatment groups (each treatment group consisted of five biological replicates, and each replicate comprised five pigs housed communally) were randomly assigned to the fifty finishing pigs (equally divided by sex) of “Duroc × Landrace × Yorkshire” three-way cross with 79.76 ± 1.29 (kg) body weight. The control group (CON) was given basic food, while the experimental group was given basic food containing 300 mg PS/kg (PS). Dietary PS supplementation markedly raised the levels of average daily feed intake (ADFI) and apparent digestibility of dry matter (DM), crude protein (CP), ether extract (EE), and gross energy (GE) in comparison to the CON (p < 0.05). Additionally, PSs also significantly boosted the concentrations of high-density lipoprotein cholesterol (HDL-C), total protein (TP), catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), immunoglobulin G (IgG), motilin (MTL), and glucagon-like peptide-1 (GLP-1) (p < 0.05), and lowered the lactate dehydrogenase (LDH) level (p < 0.05). Both at the phyla and genus levels, the relative abundance of Firmicutes and Streptococcus increased significantly, and the relative abundance of Acinetobacter decreased significantly when adding phytosterols (p < 0.05). Overall, phytosterols dietary supplementation promotes immunity and antioxidant capacity in finishing pigs and boosts growth performance by improving nutrient digestibility. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 2101 KiB  
Article
Radiocobalt-Labeling of a Polypyridylamine Chelate Conjugated to GE11 for EGFR-Targeted Theranostics
by Lorraine Gaenaelle Gé, Mathias Bogetoft Danielsen, Aaraby Yoheswaran Nielsen, Mathias Lander Skavenborg, Niels Langkjær, Helge Thisgaard and Christine J. McKenzie
Molecules 2025, 30(2), 212; https://doi.org/10.3390/molecules30020212 - 7 Jan 2025
Cited by 1 | Viewed by 1849
Abstract
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter [...] Read more.
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (58mCo) and the Positron Emission Tomography-isotope cobalt-55 (55Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN). This chelator is suitable for binding Co2+ and Co3+. With cobalt-57 (57Co) serving as a surrogate radionuclide for 55/58mCo, the novel GE11-TZTPEN construct was successfully radiolabeled with a high radiochemical yield (99%) and purity (>99%). [57Co]Co-TZTPEN-GE11 showed high stability in PBS (pH 5) and specific uptake in EGFR-positive cell lines. Disappointingly, no tumor uptake was observed in EGFR-positive tumor-bearing mice, with most activity being accumulated predominantly in the liver, gall bladder, kidneys, and spleen. Some bone uptake was also observed, suggesting in vivo dissociation of 57Co from the complex. In conclusion, [57Co]Co-TZTPEN-GE11 shows poor pharmacokinetics in a mouse model and is, therefore, not deemed suitable as a targeting radiopharmaceutical for EGFR. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

14 pages, 1944 KiB  
Article
Effects of Fructus Aurantii Extract on Growth Performance, Nutrient Apparent Digestibility, Serum Parameters, and Fecal Microbiota in Finishing Pigs
by Haiqing Gan, Qian Lin, Yecheng Xiao, Qiyu Tian, Chao Deng, Renjie Xie, Hongkun Li, Jiajie Ouyang, Xingguo Huang, Yang Shan and Fengming Chen
Animals 2024, 14(24), 3646; https://doi.org/10.3390/ani14243646 - 17 Dec 2024
Viewed by 935
Abstract
This study investigated the effects of Fructus Aurantii extract (FAE) on growth performance, nutrient apparent digestibility, serum parameters, fecal microbial composition, and short-chain fatty acids (SCFAs) in finishing pigs. In total, 75 Duroc × Landrace × Yorkshire pigs (equally divided by sex), with [...] Read more.
This study investigated the effects of Fructus Aurantii extract (FAE) on growth performance, nutrient apparent digestibility, serum parameters, fecal microbial composition, and short-chain fatty acids (SCFAs) in finishing pigs. In total, 75 Duroc × Landrace × Yorkshire pigs (equally divided by sex), with an initial body weight of 79.49 ± 4.27 kg, were randomly assigned to three treatment groups. The pigs were fed either a basic diet (CON) or a basal diet supplemented with 500 mg/kg of FAE (FAE500) and 1000 mg/kg of FAE (FAE1000). The FAE1000 group exhibited a significantly higher final body weight (FBW) (p < 0.05), and the average daily feed intake (ADFI) showed an increasing tendency in the FAE500 and FAE1000 groups (p = 0.056) compared to the CON group. Additionally, the inclusion of FAE resulted in the significantly higher apparent digestibility of crude ash (Ash), gross energy (GE), and crude protein (CP) (p < 0.05), with a tendency to the increased digestibility of dry matter (DM) (p = 0.053). Dietary FAE supplementation led to elevated serum levels of reduced glutathione (GSH) and decreased levels of serum L-lactic dehydrogenase (LDH), along with a tendency to increase serum glucose (GLU) levels (p = 0.084). The FAE500 group demonstrated higher serum concentrations of motilin (MTL) and gastrin (GAS) (p < 0.05), and a tendency for reduced serum glucagon-like peptide-1 (GLP-1) level (p = 0.055) compared to the CON group. Furthermore, alpha diversity analysis revealed that the FAE500 group significantly increased the Chao 1 and Observed_species indexes (p < 0.05). Similarly, beta diversity analysis indicated that FAE feeding altered the fecal microbial structure (p = 0.083). Notably, compared with the control group, CF231, Pediococcus, and Mogibacterium displayed higher relative abundance in the feces of the FAE500 group, whereas Tenericutes showed a reduction in relative abundance (p < 0.05). Additionally, the relative abundance of Tenericute was negatively correlated with the digestibility of DM, GE, Ash, and CP (p < 0.05). Serum MTL and GAS levels correlated positively with the Coprococcus, Dorea, Pediococcus, and Mogibacterium relative abundances (p < 0.05). Collectively, dietary FAE supplementation could enhance growth performance by boosting beneficial bacteria in feces, stimulating gastrointestinal hormone secretion, and improving nutrient digestibility. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

18 pages, 6646 KiB  
Article
Pathogenic Mechanisms of Collagen TypeⅦA1 (COL7A1) and Transporter Protein Transport and Golgi Organization 1 (TANGO1) in Rheumatoid Arthritis: A New Therapeutic Target
by Debolina Chakraborty, Prachi Agnihotri, Lovely Joshi, Mohd Saquib, Swati Malik, Uma Kumar and Sagarika Biswas
Immuno 2024, 4(4), 461-478; https://doi.org/10.3390/immuno4040029 - 6 Nov 2024
Cited by 1 | Viewed by 1746
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder causing chronic inflammation primarily due to collagen regulation and transport imbalances. Collagen VII A1(COL7A1), a major component of anchoring fibrils, regulates inflammation via interacting with its transporter protein Transport and Golgi organization 2 homologs (TANGO1). The [...] Read more.
Rheumatoid arthritis (RA) is an autoimmune disorder causing chronic inflammation primarily due to collagen regulation and transport imbalances. Collagen VII A1(COL7A1), a major component of anchoring fibrils, regulates inflammation via interacting with its transporter protein Transport and Golgi organization 2 homologs (TANGO1). The study revealed a significant increase in COL7A1 levels in both the plasma and PBMCs of RA patients. Additionally, a positive correlation between COL7A1 and ACCPA (anti-cyclic citrullinated peptide antibody) levels was observed among RA patients. TANGO1 mRNA expression was also found to be elevated in PBMCs. The knockdown of COL7A1 in RA synoviocytes using siRNA affected the expression of TANGO1 and inflammatory genes. Western blot analysis showed that COL7A1 si-RNA in TNF-α-induced SW982 cells reduced the expression of COL7A1, TANGO1, and NF-kBp65. The mRNA expression of inflammatory genes TNF-α, NF-kB p65, and IL-6 simultaneously decreased after the knockdown of COL7A1, as measured by qRT-PCR. An in silico analysis found 20 common interacting proteins of COL7A1 and TANGO1, with pathway enrichment analysis linking them to antigen presentation, class I and II MHC, and adaptive immunity pathways in RA. Among the common proteins, The DisGeNET database depicted that COL1A1, MIA3, SERPINH1, and GORASP1 are directly linked to RA. The molecular docking analysis of COL7A1 and TANGO1 revealed strong interaction with a −1013.4 energy-weighted score. Common RA-used drugs such as Adalimumab, Golimumab, and Infliximab were found to inhibit the interaction between COL7A1 and TANGO1, which can further impede the transport of COL7A1 from ER exit sites, indicating COL7A1 and TANGO1 as potential therapeutic targets to diminish RA progression. Full article
Show Figures

Figure 1

22 pages, 5485 KiB  
Article
Peptide-Conjugated Vascular Endothelial Extracellular Vesicles Encapsulating Vinorelbine for Lung Cancer Targeted Therapeutics
by Isha Gaurav, Abhimanyu Thakur, Kui Zhang, Sudha Thakur, Xin Hu, Zhijie Xu, Gaurav Kumar, Ravindran Jaganathan, Ashok Iyaswamy, Min Li, Ge Zhang and Zhijun Yang
Nanomaterials 2024, 14(20), 1669; https://doi.org/10.3390/nano14201669 - 17 Oct 2024
Cited by 3 | Viewed by 1729
Abstract
Lung cancer is one of the major cancer types and poses challenges in its treatment, including lack of specificity and harm to healthy cells. Nanoparticle-based drug delivery systems (NDDSs) show promise in overcoming these challenges. While conventional NDDSs have drawbacks, such as immune [...] Read more.
Lung cancer is one of the major cancer types and poses challenges in its treatment, including lack of specificity and harm to healthy cells. Nanoparticle-based drug delivery systems (NDDSs) show promise in overcoming these challenges. While conventional NDDSs have drawbacks, such as immune response and capture by the reticuloendothelial system (RES), extracellular vesicles (EVs) present a potential solution. EVs, which are naturally released from cells, can evade the RES without surface modification and with minimal toxicity to healthy cells. This makes them a promising candidate for developing a lung-cancer-targeting drug delivery system. EVs isolated from vascular endothelial cells, such as human umbilical endothelial-cell-derived EVs (HUVEC-EVs), have shown anti-angiogenic activity in a lung cancer mouse model; therefore, in this study, HUVEC-EVs were chosen as a carrier for drug delivery. To achieve lung-cancer-specific targeting, HUVEC-EVs were engineered to be decorated with GE11 peptides (GE11-HUVEC-EVs) via a postinsertional technique to target the epidermal growth factor receptor (EGFR) that is overexpressed on the surface of lung cancer cells. The GE11-HUVEC-EVs were loaded with vinorelbine (GE11-HUVEC-EVs-Vin), and then characterized and evaluated in in vitro and in vivo lung cancer models. Further, we examined the binding affinity of ABCB1, encoding P-glycoprotein, which plays a crucial role in chemoresistance via the efflux of the drug. Our results indicate that GE11-HUVEC-EVs-Vin effectively showed tumoricidal effects against cell and mouse models of lung cancer. Full article
Show Figures

Figure 1

15 pages, 4088 KiB  
Article
[68Ga]Ga-FAP-2286—Synthesis, Quality Control and Comparison with [18F]FDG PET/CT in a Patient with Suspected Cholangiocellular Carcinoma
by Anton Amadeus Hörmann, Gregor Schweighofer-Zwink, Gundula Rendl, Kristina Türk, Samuel Nadeje, Kristina Haas, Theresa Jung, Ursula Huber-Schönauer, Lukas Hehenwarter, Mohsen Beheshti and Christian Pirich
Pharmaceuticals 2024, 17(9), 1141; https://doi.org/10.3390/ph17091141 - 29 Aug 2024
Cited by 1 | Viewed by 2115
Abstract
[68Ga]Ga-FAP-2286 is a new peptide-based radiopharmaceutical for positron-emission tomography (PET) that targets fibroblast activation protein (FAP). This article describes in detail the automated synthesis of [68Ga]Ga-FAP-2286 using a commercially available synthesis tool that includes quality control for routine clinical [...] Read more.
[68Ga]Ga-FAP-2286 is a new peptide-based radiopharmaceutical for positron-emission tomography (PET) that targets fibroblast activation protein (FAP). This article describes in detail the automated synthesis of [68Ga]Ga-FAP-2286 using a commercially available synthesis tool that includes quality control for routine clinical applications. The synthesis was performed using a Scintomics GRP-3V module and a GMP grade 68Ge/68Ga generator. A minor alteration for transferring the eluate to the module was established, eliminating the need for new method programming. Five batches of [68Ga]Ga-FAP-2286 were tested to validate the synthesis. A stability analysis was conducted up to 3 h after production to determine the shelf-life of the finished product. The automated synthesis on the Scintomics GRP-3V synthesis module was found to be compliant with all quality control requirements. The shelf-life of the product was set to 2 h post-production based on the stability study. A patient suffering from cholangiocellular carcinoma that could not be clearly detected by conventional imaging, including a [18F]FDG-PET/CT, highlights the potential use of [68Ga]Ga-FAP-PET/CT. Full article
Show Figures

Graphical abstract

12 pages, 2777 KiB  
Article
Cardiac Magnetic Resonance Imaging Based Ischemic Injury Pattern in Patients with Acute Myocardial Infarction Sensu Left Ventricular Global Systolic Function
by Lyudmila Salyamova, Valentin Oleynikov, Natalia Donetskaya, Alexander Vdovkin, Angelina Chernova and Irina Avdeeva
Diagnostics 2024, 14(6), 588; https://doi.org/10.3390/diagnostics14060588 - 11 Mar 2024
Viewed by 1560
Abstract
The purpose of the study was to identify factors characterizing a decrease in LV global systolic function in patients with ST-segment elevation myocardial infarction (STEMI) after revascularization using cardiac magnetic resonance imaging (MRI)-based ischemic injury pattern and laboratory parameters sensu left ventricular global [...] Read more.
The purpose of the study was to identify factors characterizing a decrease in LV global systolic function in patients with ST-segment elevation myocardial infarction (STEMI) after revascularization using cardiac magnetic resonance imaging (MRI)-based ischemic injury pattern and laboratory parameters sensu left ventricular global systolic function. A total of 109 STEMI patients were examined. The patients underwent contrast-enhanced cardiac MRI with a 1.5 Tesla GE SIGNA Voyager (GE HealthCare, Chicago, IL, USA) on the 7th–10th days from the onset of the disease. According to cardiac MRI analysis, the patients were divided into the following groups with regard to left ventricular ejection fraction (LVEF) values: Group 1—patients with LVEF ≥ 50%; group 2—patients with mildly reduced LVEF 40–49%; group 3—patients with low LVEF < 40%. A predominance of most parameters of the ischemic injury pattern was noted in patients with mildly reduced and low LVEF versus patient group with LVEF ≥ 50%. Some risk factors for a decrease in LVEF < 50% systolic function in STEMI patients after revascularization were revealed: male gender; time from the onset of the anginal attack to revascularization; coronary artery status; several LV parameters; ischemic injury characteristics; natriuretic peptide and troponin I levels. Full article
(This article belongs to the Special Issue Advanced MRI in Clinical Diagnosis)
Show Figures

Figure 1

8 pages, 1292 KiB  
Communication
Optimization of Automated Radiosynthesis of Gallium-68-Labeled PSMA11 with Two [68Ge]Ge/[68Ga]Ga Generators: Fractional Elution or Prepurification?
by Flore Durieux, Bérengère Dekyndt, Jean-François Legrand, Antoine Rogeau, Emmanuel Malek, Franck Semah and Pascal Odou
Pharmaceuticals 2023, 16(11), 1544; https://doi.org/10.3390/ph16111544 - 1 Nov 2023
Cited by 3 | Viewed by 1748
Abstract
Prostate cancer is one of the most common forms of cancer in men. An imaging technique for its diagnosis is [68Ga]-prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) positron emission tomography (PET). To address the increasing demand for [68Ga]-labeled peptides and [...] Read more.
Prostate cancer is one of the most common forms of cancer in men. An imaging technique for its diagnosis is [68Ga]-prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) positron emission tomography (PET). To address the increasing demand for [68Ga]-labeled peptides and reduce the cost of radiosynthesis, it is therefore necessary to optimize the elution process of [68Ge]Ge/[68Ga]Ga generators. This study aims to identify the most effective approach for optimizing radiosynthesis using double elution in parallel of two [68Ge]Ge/[68Ga]Ga generators. Two methods have been tested: one using prepurification, and the other using fractionated elution. Five synthesis sequences were conducted using each method. The mean labeling yields for double elution with prepurification were 45.8 ± 29.4 (mean ± standard deviation) and none met the required criteria. The mean labeling yields for the fractionated double elution were 97.5 ± 1.9 (mean ± standard deviation) meeting the criteria, significantly superior to the prepurification method (p = 0.012), and similar to those of simple elution. This study showed that fractionated double elution from [68Ge]Ge/[68Ga]Ga generators produced a significantly higher labeling yield than double elution with prepurification, resulting in a larger activity recovered via radiosynthesis, thereby allowing more diagnostic tests to be performed. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Figure 1

19 pages, 4519 KiB  
Article
Aquatic Peptide: The Potential Anti-Cancer and Anti-Microbial Activity of GE18 Derived from Pathogenic Fungus Aphanomyces invadans
by Manikandan Velayutham, P. Snega Priya, Purabi Sarkar, Raghul Murugan, Bader O. Almutairi, Selvaraj Arokiyaraj, Zulhisyam Abdul Kari, Guillermo Tellez-Isaias, Ajay Guru and Jesu Arockiaraj
Molecules 2023, 28(18), 6746; https://doi.org/10.3390/molecules28186746 - 21 Sep 2023
Cited by 3 | Viewed by 2761
Abstract
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a [...] Read more.
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule. Full article
Show Figures

Figure 1

18 pages, 1713 KiB  
Article
Effects of Quinine on the Glycaemic Response to, and Gastric Emptying of, a Mixed-Nutrient Drink in Females and Males
by Peyman Rezaie, Vida Bitarafan, Braden David Rose, Kylie Lange, Zinat Mohammadpour, Jens Frederik Rehfeld, Michael Horowitz and Christine Feinle-Bisset
Nutrients 2023, 15(16), 3584; https://doi.org/10.3390/nu15163584 - 15 Aug 2023
Cited by 6 | Viewed by 2399
Abstract
Intraduodenal quinine, in the dose of 600 mg, stimulates glucagon-like peptide-1 (GLP-1), cholecystokinin and insulin; slows gastric emptying (GE); and lowers post-meal glucose in men. Oral sensitivity to bitter substances may be greater in women than men. We, accordingly, evaluated the dose-related effects [...] Read more.
Intraduodenal quinine, in the dose of 600 mg, stimulates glucagon-like peptide-1 (GLP-1), cholecystokinin and insulin; slows gastric emptying (GE); and lowers post-meal glucose in men. Oral sensitivity to bitter substances may be greater in women than men. We, accordingly, evaluated the dose-related effects of quinine on GE, and the glycaemic responses to, a mixed-nutrient drink in females, and compared the effects of the higher dose with those in males. A total of 13 female and 13 male healthy volunteers received quinine-hydrochloride (600 mg (‘QHCl-600’) or 300 mg (‘QHCl-300’, females only) or control (‘C’), intraduodenally (10 mL bolus) 30 min before a drink (500 kcal, 74 g carbohydrates). Plasma glucose, insulin, C-peptide, GLP-1, glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin were measured at baseline, for 30 min after quinine alone, and then for 2 h post-drink. GE was measured by 13C-acetate breath-test. QHCl-600 alone stimulated insulin, C-peptide and GLP-1 secretion compared to C. Post-drink, QHCl-600 reduced plasma glucose, stimulated C-peptide and GLP-1, and increased the C-peptide/glucose ratio and oral disposition index, while cholecystokinin and GIP were less, in females and males. QHCl-600 also slowed GE compared to C in males and compared to QHCl-300 in females (p < 0.05). QHCl-300 reduced post-meal glucose concentrations and increased the C-peptide/glucose ratio, compared to C (p < 0.05). Magnitudes of glucose lowering and increase in C-peptide/glucose ratio by QHCl-600 were greater in females than males (p < 0.05). We conclude that quinine modulates glucoregulatory functions, associated with glucose lowering in healthy males and females. However, glucose lowering appears to be greater in females than males, without apparent differential effects on GI functions. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
A Trivalent HSV-2 gC2, gD2, gE2 Nucleoside-Modified mRNA-LNP Vaccine Provides Outstanding Protection in Mice against Genital and Non-Genital HSV-1 Infection, Comparable to the Same Antigens Derived from HSV-1
by Kevin P. Egan, Sita Awasthi, Giulia Tebaldi, Lauren M. Hook, Alexis M. Naughton, Bernard T. Fowler, Mitchell Beattie, Mohamad-Gabriel Alameh, Drew Weissman, Gary H. Cohen and Harvey M. Friedman
Viruses 2023, 15(7), 1483; https://doi.org/10.3390/v15071483 - 30 Jun 2023
Cited by 16 | Viewed by 5571
Abstract
HSV-1 disease is a significant public health burden causing orofacial, genital, cornea, and brain infection. We previously reported that a trivalent HSV-2 gC2, gD2, gE2 nucleoside-modified mRNA-lipid nanoparticle (LNP) vaccine provides excellent protection against vaginal HSV-1 infection in mice. Here, we evaluated whether [...] Read more.
HSV-1 disease is a significant public health burden causing orofacial, genital, cornea, and brain infection. We previously reported that a trivalent HSV-2 gC2, gD2, gE2 nucleoside-modified mRNA-lipid nanoparticle (LNP) vaccine provides excellent protection against vaginal HSV-1 infection in mice. Here, we evaluated whether this HSV-2 gC2, gD2, gE2 vaccine is as effective as a similar HSV-1 mRNA LNP vaccine containing gC1, gD1, and gE1 in the murine lip and genital infection models. Mice were immunized twice with a total mRNA dose of 1 or 10 µg. The two vaccines produced comparable HSV-1 neutralizing antibody titers, and surprisingly, the HSV-2 vaccine stimulated more potent CD8+ T-cell responses to gE1 peptides than the HSV-1 vaccine. Both vaccines provided complete protection from clinical disease in the lip model, while in the genital model, both vaccines prevented death and genital disease, but the HSV-1 vaccine reduced day two vaginal titers slightly better at the 1 µg dose. Both vaccines prevented HSV-1 DNA from reaching the trigeminal or dorsal root ganglia to a similar extent. We conclude that the trivalent HSV-2 mRNA vaccine provides outstanding protection against HSV-1 challenge at two sites and may serve as a universal prophylactic vaccine for HSV-1 and HSV-2. Full article
(This article belongs to the Special Issue Advances in HSV Research)
Show Figures

Graphical abstract

22 pages, 7429 KiB  
Article
Germanium Dioxide Nanoparticles Mitigate Biochemical and Molecular Changes Characterizing Alzheimer’s Disease in Rats
by Sara A. Abdel Gaber, Amal H. Hamza, Mohamed A. Tantawy, Eman A. Toraih and Hanaa H. Ahmed
Pharmaceutics 2023, 15(5), 1386; https://doi.org/10.3390/pharmaceutics15051386 - 30 Apr 2023
Cited by 5 | Viewed by 3038
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that jeopardizes the lives of diagnosed patients at late stages. This study aimed to assess, for the first time, the efficiency of germanium dioxide nanoparticles (GeO2NPs) in mitigating AD at the in vivo level [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder that jeopardizes the lives of diagnosed patients at late stages. This study aimed to assess, for the first time, the efficiency of germanium dioxide nanoparticles (GeO2NPs) in mitigating AD at the in vivo level compared to cerium dioxide nanoparticles (CeO2NPs). Nanoparticles were synthesized using the co-precipitation method. Their antioxidant activity was tested. For the bio-assessment, rats were randomly assigned into four groups: AD + GeO2NPs, AD + CeO2NPs, AD, and control. Serum and brain tau protein, phosphorylated tau, neurogranin, amyloid β peptide 1-42, acetylcholinesterase, and monoamine oxidase levels were measured. Brain histopathological evaluation was conducted. Furthermore, nine AD-related microRNAs were quantified. Nanoparticles were spherical with diameters ranging from 12–27 nm. GeO2NPs exhibited a stronger antioxidant activity than CeO2NPs. Serum and tissue analyses revealed the regression of AD biomarkers to almost control values upon treatment using GeO2NPs. Histopathological observations strongly supported the biochemical outcomes. Then, miR-29a-3p was down-regulated in the GeO2NPs-treated group. This pre-clinical study substantiated the scientific evidence favoring the pharmacological application of GeO2NPs and CeO2NPs in AD treatment. Our study is the first report on the efficiency of GeO2NPs in managing AD. Further studies are needed to fully understand their mechanism of action. Full article
(This article belongs to the Special Issue Nanotechnology-Based Pharmaceutical Treatments)
Show Figures

Figure 1

16 pages, 3470 KiB  
Article
Gluten Exorphins Promote Cell Proliferation through the Activation of Mitogenic and Pro-Survival Pathways
by Federico Manai, Lisa Zanoletti, Giulia Morra, Samman Mansoor, Francesca Carriero, Elena Bozzola, Stella Muscianisi and Sergio Comincini
Int. J. Mol. Sci. 2023, 24(4), 3912; https://doi.org/10.3390/ijms24043912 - 15 Feb 2023
Cited by 3 | Viewed by 4512
Abstract
Celiac disease (CD) is a chronic and systemic autoimmune disorder that affects preferentially the small intestine of individuals with a genetic predisposition. CD is promoted by the ingestion of gluten, a storage protein contained in the endosperm of the seeds of wheat, barley, [...] Read more.
Celiac disease (CD) is a chronic and systemic autoimmune disorder that affects preferentially the small intestine of individuals with a genetic predisposition. CD is promoted by the ingestion of gluten, a storage protein contained in the endosperm of the seeds of wheat, barley, rye, and related cereals. Once in the gastrointestinal (GI) tract, gluten is enzymatically digested with the consequent release of immunomodulatory and cytotoxic peptides, i.e., 33mer and p31-43. In the late 1970s a new group of biologically active peptides, called gluten exorphins (GEs), was discovered and characterized. In particular, these short peptides showed a morphine-like activity and high affinity for the δ-opioid receptor (DOR). The relevance of GEs in the pathogenesis of CD is still unknown. Recently, it has been proposed that GEs could contribute to asymptomatic CD, which is characterized by the absence of symptoms that are typical of this disorder. In the present work, GEs cellular and molecular effects were in vitro investigated in SUP-T1 and Caco-2 cells, also comparing viability effects with human normal primary lymphocytes. As a result, GEs treatments increased tumor cell proliferation by cell cycle and Cyclins activation as well as by induction of mitogenic and pro-survival pathways. Finally, a computational model of GEs interaction with DOR is provided. Altogether, the results might suggest a possible role of GEs in CD pathogenesis and on its associated cancer comorbidities. Full article
(This article belongs to the Special Issue Emerging Research in Cell Death and Differentiation)
Show Figures

Figure 1

19 pages, 1532 KiB  
Article
Towards Radiolabeled EGFR-Specific Peptides: Alternatives to GE11
by Benedikt Judmann, Björn Wängler, Ralf Schirrmacher, Gert Fricker and Carmen Wängler
Pharmaceuticals 2023, 16(2), 273; https://doi.org/10.3390/ph16020273 - 11 Feb 2023
Cited by 5 | Viewed by 3215
Abstract
The human epidermal growth factor receptor (EGFR) is closely related to several cancer-promoting processes and overexpressed on a variety of tumor types, rendering it an important target structure for the imaging and therapy of several malignancies. To date, approaches to develop peptidic radioligands [...] Read more.
The human epidermal growth factor receptor (EGFR) is closely related to several cancer-promoting processes and overexpressed on a variety of tumor types, rendering it an important target structure for the imaging and therapy of several malignancies. To date, approaches to develop peptidic radioligands able to specifically address and visualize EGFR-positive tumors have been of limited success. Most of the attempts were based on the lead GE11, as this peptide was previously described to be a highly potent EGFR-specific agent. However, since it has recently been shown that GE11 exhibits an insufficient affinity to the EGFR in monomeric form to be suitable as a basis for the development of tracers based on it, in the present work we investigated which other peptides might be suitable as lead structures for the development of EGFR-specific peptidic radiotracers. For this purpose, we developed 68Ga-labeled radioligands based on the peptides D4, P1, P2, CPP, QRH, EGBP and Pep11, having been described before as EGFR-specific. In addition, we also tested three truncated versions of the endogenous EGFR ligand hEGF (human epidermal growth factor) with respect to their ability to specifically target the EGFR with high affinity. Therefore, chelator-modified labeling precursors of the mentioned peptides were synthesized, radiolabeled with 68Ga and the obtained radioligands were evaluated for their hydrophilicity/lipophilicity, stability against degradation by human serum peptidases, in vitro tumor cell uptake, and receptor affinity in competitive displacement experiments on EGFR-positive A431 cells. Although all NODA-GA-modified (NODA-GA: (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) labeling precursors could be obtained more or less efficient in yields between 5 and 74%, the 68Ga-radiolabeling proved to be unsuccessful for two of the three truncated versions of hEGF ([68Ga]Ga-8 and [68Ga]Ga-9), producing several side-products. For the other agents [68Ga]Ga-1–[68Ga]Ga-7, [68Ga]Ga-10 and [68Ga]Ga-11, high radiochemical yields and purities of ≥98% and molar activities of up to 114 GBq/µmol were obtained. In the assay investigating the radiopeptide susceptibilities against serum peptidase degradation, the EGBP-based agent demonstrated a limited stability with a half-life of only 66.4 ± 3.0 min, whereas the other tracers showed considerably higher stabilities of up to an 8000 min half-life. Finally, all radiotracer candidates were evaluated in terms of tumor cell internalization and receptor binding potential on EGFR-positive A431 cell. In these experiments, all developed agents failed to show an EGFR-specific tumor cell uptake or a relevant EGFR-affinity. By contrast, the positive controls tested under identical conditions, [125I]I-hEGF and hEGF demonstrated the expected high EGFR-specific tumor cell uptake (33.6% after 1 h, being reduced to 1.9% under blocking conditions) and affinity (IC50 value of 15.2 ± 3.3 nM). Thus, these results indicate that none of the previously described peptidic agents developed for EGFR targeting appears to be a reasonable choice as a lead structure for the development of radiopeptides for targeting of EGFR-positive tumors. Likewise, the tested truncated variants of the endogenous hEGF do not seem to be promising alternatives for this purpose. Full article
Show Figures

Figure 1

Back to TopTop