Optimization of Automated Radiosynthesis of Gallium-68-Labeled PSMA11 with Two [68Ge]Ge/[68Ga]Ga Generators: Fractional Elution or Prepurification?
Abstract
:1. Introduction
- Double elution with prepurification to concentrate the gallium 68;
- Double fractional elution to extract the most concentrated fraction in activity of the two eluates.
2. Results
2.1. Double Elution with Prepurification
2.2. Double Fractional Elution
2.3. Statistical Tests
3. Discussion
4. Materials and Methods
4.1. Materials Used for Radiosynthesis with Prepurification and Fractional Double Elution
4.2. The Double Elution with Prepurification Method
4.3. The Double Fractional Elution Method
4.4. The Acceptance Criteria
- Visual examination of organoleptic character: the product must be clear and colorless.
- pH measured with a pH strip must be between 4 and 8.
- Radiochemical purity (RCP), measured via two methods: (1) High performance liquid chromatography (HPLC) with C18 column Waters® 250 × 4.6 mm, flow: 1 mL/min, with solvent gradient Acetonitril/TFA 0.1% and water/TFA 0.1%. The programming is 00:00–3:00 min: 97% A—3% B; 06:00–9:00 min: 0% A—100% B and 12:00–15:00 97% A—3% B. The retention time is 3.7 min for free 68Ga and 8.3 min for [68Ga]Ga-PSMA-11. The addition of the stereoisomers is at least 95% of the total radioactivity due to 68Ga. (2) Thin-layer chromatography (TLC) with ITLC-SG plates, where the retention factor of [68Ga]Ga-PSMA-11 is 0.8–1, that of 68Ga 3+ is 0–0.1, and that of the 68Ga colloid is 0.7. No less than 95% of the total radioactivity is due to [68Ga]Ga-PSMA-11.
- Bacterial endotoxins, measured via a kinetic and chromogenic LAL method (Endosafe®, Charles River, Wilmington, NC, USA): the preparation is diluted to the 10th and deposited on PTS-10 cassettes with a sensitivity of 0.01EU/ML-PTS2001. The expected result is a bacterial endotoxin content lower than 15.1 IU/mL.
- Radiolabeling yield: measured with an ISOMED2010® dose calibrator, which is expected to be higher than 80%.
- Elution yields were calculated. The manufacturer specification of elution yield is >62%, but the prepurification/fractioning steps tend to decrease this yield (about 10%), and therefore, we set the specification to an elution yield > 55%.
4.5. Statistical Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Radiosynthesis | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|
Yield | Mean ± SD | |||||
Elution yield (%) | 62.9 | 65.5 | 65.2 | 65.7 | 68.0 | 65.5 ± 1.8 |
Labeling yield (%) | 99.2 | 95.7 | 94.0 | 94.5 | 95.8 | 95.8 ± 2.0 |
Elution yield × Labeling yield (%) | 62.4 | 62.7 | 61.3 | 62.1 | 65.1 | 62.7 ± 1.5 |
Quality Control | ||||||
pH | 6 | 5 | 6 | 6 | 6 | 5.8 ± 0.4 |
68Ga free rate in TLC (%) | 2.5 | 0.3 | 1.4 | 2.0 | 2.7 | 1.8 ± 1.0 |
68Ga free rate in HPLC (%) | 2.0 | 1.5 | 3.1 | 1.8 | 2.6 | 2.2 ± 0.6 |
Radiochemical purity (%) | 97.5 | 98.5 | 96.9 | 98.0 | 97.3 | 97.6 ± 0.6 |
Endotoxins (UI/mL) | <15.1 | <15.1 | <15.1 | <15.1 | <15.1 |
References
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 1990, 157, 308–347. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
- Protocole D’utilisation Thérapeutique et de Recueil D’informations PSMA-11 10 µg, Poudre Pour Solution Injectable. Janvier 2022. Available online: https://ansm.sante.fr/uploads/2022/01/10/20220110-aac-psma-11-put-01-22.pdf (accessed on 1 April 2023).
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.S.; Lawrentschuk, N.; et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur. Urol. 2020, 77, 403–417. [Google Scholar] [PubMed]
- Bois, F.; Noirot, C.; Dietemann, S.; Mainta, I.C.; Zilli, T.; Garibotto, V.; Walter, M.A. [68Ga]Ga-PSMA-11 in prostate cancer: A comprehensive review. Nucl. Med. Mol. Imaging 2020, 10, 349. [Google Scholar]
- Kulprathipanja, S.; Hnatowich, D.J. A method for determining the pH stability range of gallium radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 1977, 28, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Morgat, C.; Hindié, E.; Mishra, A.K.; Allard, M.; Fernandez, P. Gallium-68: Chemistry and Radiolabeled Peptides Exploring Different Oncogenic Pathways. Cancer Biother. Radiopharm. 2013, 28, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Velikyan, I. 68Ga-Based Radiopharmaceuticals: Production and Application Relationship. Molecules 2015, 20, 12913–12943. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.J.; Mäcke, H.; Schuhmacher, J.; Knapp, W.H.; Hofmann, M. 68Ga-Labelled DOTA-Derivatised Peptide Ligands. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 1097–1104. Available online: http://link.springer.com/10.1007/s00259-004-1486-0 (accessed on 1 April 2023).
- Chomet, M.; Cross, T.; Géraudie, B.; Chipan, A.S.; Talbot, J.N.; Nataf, V. Gallium-68: Considérations pratiques pour le succès des applications cliniques au sein d’un service de médecine nucléaire. Médecine Nucléaire 2014, 38, 229–234. [Google Scholar] [CrossRef]
- Reverchon, J.; Khayi, F.; Roger, M.; Moreau, A.; Kryza, D. Optimization of the radiosynthesis of [68Ga]Ga-PSMA-11 using a Trasis MiniAiO synthesizer: Do we need to heat and purify? Nucl. Med. Commun. 2020, 41, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Boukhlef, S.; Buziau, B.; Zajac, C.; Dekyndt, B.; Legrand, J.F. Automatisation du fractionnement d’élution d’un générateur de Gallium-68 en utilisant un automate MiniAIO(+ Running poster). Médecine Nucléaire 2021, 45, 216. [Google Scholar] [CrossRef]
Radiosynthesis | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Yield | Mean ± SD | |||||
Elution yield (%) | 62.7 | 71.7 | 64.5 | 59.4 | 60.7 | 63.8 ± 4.8 |
Labeling yield (%) | 73.9 | 54.3 | 6.4 | 24.4 | 69.9 | 45.8 ± 29.4 |
Elution yield × Labeling yield (%) | 46.3 | 38.9 | 4.1 | 14.5 | 42.4 | 29.2 ± 18.8 |
Quality control | ||||||
pH | 6 | 6 | 6 | 6 | 5 | 5.8 ± 0.4 |
68Ga free rate in TLC (%) | 1.7 | 4.5 | 28.2 | 0.1 | 1.0 | 7.1 ± 11.9 |
68Ga free rate in HPLC (%) | 3.3 | 6.7 | - | 4.6 | 4.6 | 4.8 ± 1.4 |
Radiochemical purity (%) | 96.7 | 93.3 | 71.8 | 95.4 | 95.4 | 90.5 ± 10.6 |
Endotoxins (UI/mL) | <15.1 | <15.1 | <15.1 | <15.1 | <15.1 |
Radiosynthesis | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|
Yield | Mean ± SD | |||||
Elution yield (%) | 61.2 | 56.1 | 59.5 | 61.6 | 58.8 | 59.4 ± 2.2 |
Labeling yield (%) | 97.1 | 98.1 | 94.5 | 99.0 | 99.0 | 97.5 ± 1.9 |
Elution yield × Labeling yield (%) | 59.4 | 55.0 | 56.2 | 61.0 | 58.2 | 58 ± 2.4 |
Quality control | ||||||
pH | 6 | 5.5 | 5 | 5 | 5 | 5.3 ± 0.4 |
68Ga free rate in TLC (%) | 1.8 | 1.0 | 0.7 | 1.1 | 0.4 | 1 ± 0.5 |
68Ga free rate in HPLC (%) | 3.6 | 3.3 | 4.2 | 3.1 | 4.2 | 3.7 ± 0.5 |
Radiochemical purity (%) | 96.4 | 96.7 | 95.8 | 97.0 | 95.8 | 96.3 ± 0.5 |
Endotoxins (UI/mL) | <15.1 | <15.1 | <15.1 | <15.1 | <15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durieux, F.; Dekyndt, B.; Legrand, J.-F.; Rogeau, A.; Malek, E.; Semah, F.; Odou, P. Optimization of Automated Radiosynthesis of Gallium-68-Labeled PSMA11 with Two [68Ge]Ge/[68Ga]Ga Generators: Fractional Elution or Prepurification? Pharmaceuticals 2023, 16, 1544. https://doi.org/10.3390/ph16111544
Durieux F, Dekyndt B, Legrand J-F, Rogeau A, Malek E, Semah F, Odou P. Optimization of Automated Radiosynthesis of Gallium-68-Labeled PSMA11 with Two [68Ge]Ge/[68Ga]Ga Generators: Fractional Elution or Prepurification? Pharmaceuticals. 2023; 16(11):1544. https://doi.org/10.3390/ph16111544
Chicago/Turabian StyleDurieux, Flore, Bérengère Dekyndt, Jean-François Legrand, Antoine Rogeau, Emmanuel Malek, Franck Semah, and Pascal Odou. 2023. "Optimization of Automated Radiosynthesis of Gallium-68-Labeled PSMA11 with Two [68Ge]Ge/[68Ga]Ga Generators: Fractional Elution or Prepurification?" Pharmaceuticals 16, no. 11: 1544. https://doi.org/10.3390/ph16111544
APA StyleDurieux, F., Dekyndt, B., Legrand, J. -F., Rogeau, A., Malek, E., Semah, F., & Odou, P. (2023). Optimization of Automated Radiosynthesis of Gallium-68-Labeled PSMA11 with Two [68Ge]Ge/[68Ga]Ga Generators: Fractional Elution or Prepurification? Pharmaceuticals, 16(11), 1544. https://doi.org/10.3390/ph16111544