Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = Fusarium crown rot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3777 KiB  
Article
Talaromyces pinophilus Strain HD25G2 as a Novel Biocontrol Agent of Fusarium culmorum, the Causal Agent of Root and Crown Rot of Soft Wheat
by Amel Bennacer, Fatma Sahir-Halouane, Micaela Alvarez, Zahia Oukali, Nour El Houda Bennacer, Abdelhamid Foughalia and Josué Delgado
J. Fungi 2025, 11(8), 588; https://doi.org/10.3390/jof11080588 - 11 Aug 2025
Viewed by 401
Abstract
Fusarium culmorum is the causal agent of root rot and crown rot in soft wheat. The aim of this study was to investigate the control mechanism of Talaromyces pinophilus HD25G2 as a biocontrol agent against F. culmorum. This involved the isolation and [...] Read more.
Fusarium culmorum is the causal agent of root rot and crown rot in soft wheat. The aim of this study was to investigate the control mechanism of Talaromyces pinophilus HD25G2 as a biocontrol agent against F. culmorum. This involved the isolation and molecular identification of Fusarium and Talaromyces strains from soft wheat. The assay included the inhibition test of F. culmorum mycelial growth on potato dextrose agar and soft wheat media at two water activity values (0.98 and 0.95), its production of mycotoxins, and the fungal cell wall-degrading enzymes implicated in the antagonistic effect of T. pinophilus. The results showed that T. pinophilus and its extract free of cells reduced the growth of F. culmorum by over 55%. Interestingly, the T. pinophilus HD25G2 showed high chitinase, protease, and cellulose production on solid media. In addition, chitinolytic and proteolytic activities were estimated at the values of 1.72 ± 0.02UI and 0.49 ± 0.01UI, respectively. However, the mycotoxin evaluation assay revealed that F. culmorum HD15C10 produced zearalenone (ZEA) and the biocontrol agent enhanced its production, but the early inoculation of T. pinophilus, before F. culmorum growth onset, inhibited 100% its growth and, therefore, prevented the presence of ZEA. Hence, this strain can be proposed as a biocontrol agent against F. culmorum, and it can be further investigated for biocontrol of Fusarium root and crown rot in vivo. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Graphical abstract

17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Viewed by 347
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

19 pages, 10978 KiB  
Article
Identification of Fungi Causing Root Rot in Oregano Crops in Southern Peru: Morphological and Molecular Analysis
by Rubí Adelin Quispe-Mamani, Liduvina Sulca-Quispe, Wilson Huanca-Mamani, Mirna G. Garcia-Castillo, Patricio Muñoz-Torres and German Sepúlveda-Chavera
Pathogens 2025, 14(8), 746; https://doi.org/10.3390/pathogens14080746 - 29 Jul 2025
Viewed by 655
Abstract
Oregano (Origanum vulgare) cultivation is of great economic importance in Peru. Tacna stands out as its main producer. However, the presence of phytopathogenic fungi represents a challenge for its production. This study aimed to characterize both the morphological and molecular levels [...] Read more.
Oregano (Origanum vulgare) cultivation is of great economic importance in Peru. Tacna stands out as its main producer. However, the presence of phytopathogenic fungi represents a challenge for its production. This study aimed to characterize both the morphological and molecular levels of the causal agent of crown and root rot in a crop field in the Camilaca district, Candarave, Tacna. To this end, systematic sampling was carried out using the five-gold method, collecting plants with typical symptoms. Fungi were isolated from diseased roots and characterized using macroscopic and microscopic morphological analysis as well as sequencing and multilocus phylogenetic analysis (ITS, 28S, HIS3, TEF1, TUB2). In addition, pathogenicity tests were performed on healthy plants to confirm the infectivity of the isolates. The results demonstrated that root rot was caused by a complex of phytopathogenic fungi through phylogenetic analysis of Dactylonectria torresensis, Fusarium oxysporum, F. iranicum, and F. redolens. These findings represent the first report of these species as causal agents of oregano root rot in Peru, highlighting the need for integrated management strategies that reduce the economic impact of these diseases and contribute to the sustainability of the crop in key producing regions such as Tacna. Full article
Show Figures

Figure 1

18 pages, 2973 KiB  
Article
Trichoderma longibrachiatum TG1 Colonization and Signal Pathway in Alleviating Salinity and Fusarium pseudograminearum Stress in Wheat
by Solomon Boamah, Shuwu Zhang, Bingliang Xu, Na Zhu and Enchen Li
Int. J. Mol. Sci. 2025, 26(9), 4018; https://doi.org/10.3390/ijms26094018 - 24 Apr 2025
Cited by 1 | Viewed by 524
Abstract
Fusarium pseudograminearum (Fp) and soil salinity are two types of stress that interact in complex ways, potentially leading to more severe consequences on wheat growth and productivity. However, little is known about the colonization efficiency and the signal pathways of the beneficial Trichoderma [...] Read more.
Fusarium pseudograminearum (Fp) and soil salinity are two types of stress that interact in complex ways, potentially leading to more severe consequences on wheat growth and productivity. However, little is known about the colonization efficiency and the signal pathways of the beneficial Trichoderma longibrachiatum TG1 (TG1) in controlling wheat Fusarium crown rot caused by Fp, and enhancing wheat seedling growth under combined salinity and Fp stresses. Therefore, the present study aims to determine the colonization, phytohormone profile, and signaling pathway in TG1-treated wheat seedlings under salinity and Fp stresses. In a dual culture assay, TG1 exhibited a mycoparasitic effect on Fp growth by coiling, conidial attachment, and parasitism observed under fluorescent microscopy. In addition, TG1 colonized the outermost layers of the wheat seedling roots with biomass consisting of conidia and hyphae. Under 100 mM NaCl stress, the combined TG1+Fp-treated seedlings recorded a control efficacy of 47.01% for the wheat crown rot disease compared with Fp-alone-treated seedlings. The contents of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and jasmonic acid (JA) significantly increased by 72.16%, 86.91%, 20.04%, and 50.40%, respectively, in the combined TG1+Fp treatments, whereas the ethylene (ET) content decreased by 39.07% compared with Fp alone at day 14; and 5.07 and 2.78-fold increases in the expression of salicylic acid (SA) signaling pathway genes, such as pathogenesis-related protein 1 (PR1) and isochorismate synthase 1 (ICS1) genes were recorded respectively, in the combined TG1+Fp-treated seedlings compared with the control at day 14. Full article
(This article belongs to the Special Issue Advances in Plant–Pathogen Interactions: 3rd Edition)
Show Figures

Figure 1

15 pages, 2569 KiB  
Article
Chemical Composition, Antifungal Activity, and Plant-Protective Potential of Rosa damascena Mill. Essential Oil Against Fusarium graminearum
by Esma Özsoy, Timur Hakan Barak, Emre Yörük, Hüseyin Servi and Tapani Yli-Mattila
Pathogens 2025, 14(4), 383; https://doi.org/10.3390/pathogens14040383 - 15 Apr 2025
Viewed by 757
Abstract
Fusarium graminearum is a common plant pathogen among cereals worldwide. The application of chemical antifungal compounds is the most frequently used method in controlling F. graminearum. However, its excessive use and the genomic plasticity of the fungal genome lead to increased resistance [...] Read more.
Fusarium graminearum is a common plant pathogen among cereals worldwide. The application of chemical antifungal compounds is the most frequently used method in controlling F. graminearum. However, its excessive use and the genomic plasticity of the fungal genome lead to increased resistance levels to these chemical antifungal compounds. In this context, plant-derived compounds might play a role in protecting against Fusarium head blight (FHB) and crown rot (CR) as an alternative. In this study, we aimed to examine the antifungal effects of an essential oil obtained from Rosa damascena Mill. on the plant pathogen F. graminearum using molecular and analytical methods. The chemical composition of the essential oil was determined by GC-MS. The half effective concentration (EC50) value of R. damascena essential oil (REO) for F. graminearum was determined as 604.25 µg mL−1. Water-soluble tetrazolium 1 (WST-1) analyses revealed that REO caused cytotoxicity in F. graminearum. The potential oxidative stress and autophagic cell death capacity of REO towards F. graminearum was revealed via gene expression analysis and fluorescence microscopy. It was also revealed that, due to the plant-protective effect of REO, the disease severity of treated plants decreased by up to 27.78% in juvenile wheat seedlings infected by F. graminearum. Our data show that R. damascena essential oil might be used as an alternative natural ingredient in the field of plant protection. Full article
(This article belongs to the Special Issue Current Research in the Control of Plant Pathogenic Fusarium Species)
Show Figures

Figure 1

20 pages, 2670 KiB  
Article
Mycobiome and Pathogenic Fusarium Fungi in the Rhizosphere of Durum Wheat After Seed Dressing with Debaryomyces hansenii
by Weronika Giedrojć and Urszula Wachowska
Agriculture 2025, 15(6), 639; https://doi.org/10.3390/agriculture15060639 - 18 Mar 2025
Viewed by 558
Abstract
Debaryomyces hansenii naturally colonize wheat grain and can potentially inhibit the pathogens responsible for Fusarium crown rot (FCR). Seed dressing is a recommended method for protecting crops against FCR pathogens. The effectiveness of seed dressing with antagonistic yeasts in reducing the incidence of [...] Read more.
Debaryomyces hansenii naturally colonize wheat grain and can potentially inhibit the pathogens responsible for Fusarium crown rot (FCR). Seed dressing is a recommended method for protecting crops against FCR pathogens. The effectiveness of seed dressing with antagonistic yeasts in reducing the incidence of FCR remains insufficiently investigated. The aim of this study was to evaluate the effect of seed dressing with a triazole fungicide and a suspension of D. hansenii cells on the health status and development of durum wheat cultivars (Durasol and Floradur), and to analyze the structure of the mycobiome in the rhizosphere of seedlings. Under field conditions, the incidence of FCR was reduced by 57.1% by triticonazole and 35.7% by the biocontrol agent relative to the control treatment. Seed dressing with D. hansenii decreased the number of operational taxonomic units (OTUs) of Fusarium pathogens by 47.24% in cv. Durasol and 87.4% in cv. Floradur. The number of OTUs of autochthonous yeast species and Mortierellomycota increased in the rhizosphere of both durum wheat cultivars. The effectiveness of seed dressing with yeasts is determined by the quality and local adaptation of biocontrol agents. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

11 pages, 3853 KiB  
Article
Molecular and Biological Characterization of an Isolate of Fusarium graminearum dsRNA mycovirus 4 (FgV4) from a New Host Fusarium pseudograminearum
by Guoping Ma, Yueli Zhang, Liguo Ma, Kai Cui, Bo Zhang, Hang Jiang, Kai Qi and Junshan Qi
Microorganisms 2025, 13(2), 418; https://doi.org/10.3390/microorganisms13020418 - 14 Feb 2025
Cited by 1 | Viewed by 816
Abstract
Wheat Fusarium crown rot (FCR), mainly caused by Fusarium pseudograminearum, is one of the most important diseases. Some mycoviruses are reported to have a hypovirulence trait and considered as a biocontrol agent for plant fungal diseases. In most cases, mycovirus biological effects [...] Read more.
Wheat Fusarium crown rot (FCR), mainly caused by Fusarium pseudograminearum, is one of the most important diseases. Some mycoviruses are reported to have a hypovirulence trait and considered as a biocontrol agent for plant fungal diseases. In most cases, mycovirus biological effects have not been explored clearly. In this study, we identified and characterized a novel isolate of double-stranded RNA (dsRNA) mycovirus, Fusarium graminearum dsRNA mycovirus 4 (FgV4), from a new host, an isolate WC9-2 of F. pseudograminearum. The genome of FgV4-WC9-2 includes two dsRNA segments of 2194 bp and 1738 bp. FgV4-WC9-2 dsRNA1 contains a single open reading frame (ORF1), which encodes a protein of 675 amino acids (aa) and has a conserved RNA-dependent RNA polymerase (RdRp) domain. FgV4-WC9-2 dsRNA2 contains two discontinuous ORFs (ORF2-1 and ORF2-2) that code for hypothetical proteins with unknown function. Biological characteristics research has shown that FgV4-WC9-2 infection did not change the colony morphology, but it could significantly decrease colony growth rate. FgV4-WC9-2 could also reduce the sporulation ability, change the conidia size and reduce the pathogenicity of the host to a certain extent. This study is the first to describe a hypovirulence-associated orthocurvulavirus infecting F. pseudograminearum, which has the potential to assist with FCR disease biological management. Full article
(This article belongs to the Special Issue Diversity and Evolution of Plant and Fungal Viruses)
Show Figures

Figure 1

17 pages, 9075 KiB  
Article
Involvement of the SIX10 Gene in the Pathogenicity of Fusarium oxysporum Formae Speciales in Strawberries
by Wenbo Yang, Tianling Ma, Dong Liang and Chuanqing Zhang
Int. J. Mol. Sci. 2025, 26(3), 1123; https://doi.org/10.3390/ijms26031123 - 28 Jan 2025
Cited by 1 | Viewed by 1117
Abstract
Strawberries are planted globally as an important crop. Fusarium oxysporum f. sp. fragariae (Fof), a haploid mitosporic, pathogenic fungus with obvious host specificity, is responsible for an economically devastating soil-borne disease seriously threatening strawberry. Fusarium oxysporum is distributed in soils worldwide and causes [...] Read more.
Strawberries are planted globally as an important crop. Fusarium oxysporum f. sp. fragariae (Fof), a haploid mitosporic, pathogenic fungus with obvious host specificity, is responsible for an economically devastating soil-borne disease seriously threatening strawberry. Fusarium oxysporum is distributed in soils worldwide and causes vascular wilt and root rot disease in over 100 plant species. However, the formae speciales of F. oxysporum commonly have a very narrow host range, often restricted to a single host plant species. We isolated and identified pathogenic F. oxysporum from diseased strawberry samples collected from different provinces in China. Further analysis showed that among the 55 F. oxysporum isolates, only 70.91% belonged to Fof, and the remaining 29.09% were named Fo. The mycelial growth of Fof was faster than that of Fo at 20, 30, and 35 °C. The sporulation ability of Fof was weaker than that of Fo, and Fof presented a significantly higher germination rate under high temperatures. Fof and Fo from strawberry were not pathogenic to tomato or cucumber plants, and Fof showed significantly higher pathogenicity on strawberry than Fo. To explore the pathogenic mechanism of Fof, we knocked out SIX10 in Fof. The mycelial growth rate of ΔFofSIX10 was significantly slower than that of the wild type, but there were no significant differences in spore production. The pathogenicity of ΔFofSIX10 to strawberry was significantly weakened, showing decreased severity of symptoms, indicated by root and crown rot, and wilt. Our research provides a basis for understanding the interaction between F. oxysporum and the host strawberry and the occurrence and management of Fusarium disease on strawberry. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 54124 KiB  
Perspective
Emerging Diseases in Spain Strawberry Crops: Neopestalotiopsis Leaf and Crown Rot and Fusarium Wilt
by Manuel Avilés, Ana M. Pastrana and Celia Borrero
Plants 2024, 13(23), 3441; https://doi.org/10.3390/plants13233441 - 8 Dec 2024
Cited by 2 | Viewed by 1953
Abstract
In recent years, strawberry cultivation in Spain has been increasingly affected by new and re-emerging fungal diseases. The most significant emerging diseases in Spain include those caused by Neopestalotiopsis spp. Maharachch., K.D.Hyde & Crous and Fusarium oxysporum f. sp. fragariae Winks & Y.N. [...] Read more.
In recent years, strawberry cultivation in Spain has been increasingly affected by new and re-emerging fungal diseases. The most significant emerging diseases in Spain include those caused by Neopestalotiopsis spp. Maharachch., K.D.Hyde & Crous and Fusarium oxysporum f. sp. fragariae Winks & Y.N. Williams. These pathogens are difficult to control due to their pathogenic variability (presence of pathotypes and/or races), the lack of knowledge about the susceptibility of the different cultivars, the limited availability of effective fumigants, and the absence of sufficient information about their sources of inoculum. Both pathogens can cause root and crown rot, leading to plant collapse and significant losses for strawberry producers. Several factors have contributed to the rise of these diseases in Spain: (i) the gradual ban on key soil fumigants has left the crop vulnerable; (ii) there has been a notable diversification in the origin of mother plants used in cultivation, with plants now sourced from various countries, increasing the risk of long-distance pathogen spread; (iii) the introduction of numerous new strawberry varieties, which exposes more genotypes to pathogenic infections; and (iv) changes in planting times, leading to younger and more vulnerable plants being exposed to heat stress, as well as an increase in disease susceptibility. Neopestalotiopsis spp. and Fusarium oxysporum f. sp. fragariae have also become major threats to strawberry crops worldwide, spreading through nursery plants and the movement of plant material. The latest research findings in Spain on both pathogens are highlighted in this manuscript. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

19 pages, 2650 KiB  
Article
Evaluation of Endophytic Bacteria from Durum Wheat on Fusarium Root and Crown Rot Disease (Fusarium culmorum) Under Drought Stress
by Firas M. Abu El Samen, Imran Alsawalha, Kholoud M. Alananbeh, Nehaya Al-Karablieh and Ayed M. Al-Abdallat
Agronomy 2024, 14(12), 2912; https://doi.org/10.3390/agronomy14122912 - 5 Dec 2024
Cited by 2 | Viewed by 1404
Abstract
Drought and Fusarium crown and root rot (FCRR) are major stresses impacting durum wheat growth. This study aimed to evaluate the antifungal activity of endophytic bacteria against FCRR pathogens and their drought tolerance, as well as assess their effects on wheat growth under [...] Read more.
Drought and Fusarium crown and root rot (FCRR) are major stresses impacting durum wheat growth. This study aimed to evaluate the antifungal activity of endophytic bacteria against FCRR pathogens and their drought tolerance, as well as assess their effects on wheat growth under normal irrigation, drought stress, and F. culmorum-induced root rot. Sixty bacterial isolates from durum wheat plants in Jordan were tested for antagonism against F. culmorum and drought tolerance. Ten isolates were selected based on their antagonistic activity and drought tolerance for further molecular identification. Greenhouse experiments showed that several endophytes, including Bacillus amyloliquefaciens (isolate 52), Bacillus licheniformis (isolates 37 and 38), and Paenibacillus ehimensis (isolate 60), exhibited significant growth promotion under both normal and drought stress conditions. Isolate 52 demonstrated high antagonistic activity against F. culmorum and very high drought tolerance, making it a promising candidate for biocontrol and biofertilizer development. Furthermore, bacterial treatments significantly reduced FCRR severity, with reductions of up to 82% under normal conditions and up to 61% under drought stress. These findings suggest that endophytic bacteria can enhance durum wheat resilience to both drought and Fusarium infections, offering a sustainable solution for improving wheat productivity in stress-prone environments. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 9974 KiB  
Article
Identification and Antagonistic Potential of Bacillus atrophaeus against Wheat Crown Rot Caused by Fusarium pseudograminearum
by Shengzhi Guo, Arneeb Tariq, Jun Liao, Aowei Yang, Xinyan Jiang, Yanling Yin, Yuan Shi, Changfu Li, Junfeng Pan, Dejun Han and Xihui Shen
Agronomy 2024, 14(9), 2135; https://doi.org/10.3390/agronomy14092135 - 19 Sep 2024
Cited by 2 | Viewed by 2160
Abstract
Fusarium pseudograminearum (Fpg) is a significant pathogen responsible for fusarium crown rot (FCR) in wheat (Triticum aestivum L.), a disease with devastating impacts on crop yield. The utilization of biocontrol bacteria to combat fungal diseases in plants is a cost-effective, [...] Read more.
Fusarium pseudograminearum (Fpg) is a significant pathogen responsible for fusarium crown rot (FCR) in wheat (Triticum aestivum L.), a disease with devastating impacts on crop yield. The utilization of biocontrol bacteria to combat fungal diseases in plants is a cost-effective, eco-friendly, and sustainable strategy. In this trial, an endophytic bacterial species, designated as SW, was isolated from the roots of wheat. The strain exhibited potent antagonistic effects against Fpg and reduced the FCR disease severity index by 76.07 ± 0.33% in a greenhouse pot trial. Here, 106 colony-forming units (CFUs)/mL of the SW strain was determined to be the minimum dose required to exhibit the antagonism against Fpg. The strain was identified as Bacillus atrophaeus using genome sequencing and comparison with type strains in the NCBI database. Whole-genome sequencing analysis revealed that SW harbors genes for siderophores, antifungal metabolites, and antibiotics, which are key contributors to its antagonistic activity. Additionally, the strain’s ability to utilize various carbon and nitrogen sources, successfully colonize wheat root tissues as an endophyte, and form biofilms are critical attributes for promoting plant growth. In summary, these findings demonstrate the ability of Bacillus atrophaeus to control FCR disease in wheat in a sustainable agricultural setting. Full article
Show Figures

Figure 1

25 pages, 19076 KiB  
Article
Exploring the Biocontrol Potential of Phanerochaete chrysosporium against Wheat Crown Rot
by Lei Liu, Yaqiong Jin, Huijuan Lian, Qianxi Yin and Hailei Wang
J. Fungi 2024, 10(9), 641; https://doi.org/10.3390/jof10090641 - 7 Sep 2024
Cited by 2 | Viewed by 2394
Abstract
The worldwide occurrence of wheat crown rot, predominantly caused by the pathogen Fusarium pseudograminearum, has a serious impact on wheat production. Numerous microorganisms have been employed as biocontrol agents, exhibiting effectiveness in addressing a wide array of plant pathogens through various pathways. [...] Read more.
The worldwide occurrence of wheat crown rot, predominantly caused by the pathogen Fusarium pseudograminearum, has a serious impact on wheat production. Numerous microorganisms have been employed as biocontrol agents, exhibiting effectiveness in addressing a wide array of plant pathogens through various pathways. The mycelium of the white-rot fungus Phanerochaete chrysosporium effectively inhibits the growth of F. pseudograminearum by tightly attaching to it and forming specialized penetrating structures. This process leads to the release of intracellular inclusions and the eventual disintegration of pathogen cells. Furthermore, volatile organic compounds and fermentation products produced by P. chrysosporium exhibit antifungal properties. A comprehensive understanding of the mechanisms and modalities of action will facilitate the advancement and implementation of this biocontrol fungus. In order to gain a deeper understanding of the mycoparasitic behavior of P. chrysosporium, transcriptome analyses were conducted to examine the interactions between P. chrysosporium and F. pseudograminearum at 36, 48, and 84 h. During mycoparasitism, the up-regulation of differentially expressed genes (DEGs) encoding fungal cell-wall-degrading enzymes (CWDEs), iron ion binding, and mycotoxins were mainly observed. Moreover, pot experiments revealed that P. chrysosporium not only promoted the growth and quality of wheat but also hindered the colonization of F. pseudograminearum in wheat seedlings. This led to a delay in the development of stem base rot, a reduction in disease severity and incidence, and the activation of the plant’s self-defense mechanisms. Our study provides important insights into the biocontrol mechanisms employed by P. chrysosporium against wheat crown rot caused by F. pseudograminearum. Full article
(This article belongs to the Special Issue Biological Control of Fungal Diseases)
Show Figures

Figure 1

14 pages, 4610 KiB  
Article
Characterisation of Fusarium oxysporum f. sp. radicis-lycopersici in Infected Tomatoes in Inner Mongolia, China
by Yongqing Yang, Yong Wang, Jing Gao, Zhidan Shi, Wenjin Chen, Haiyan Huangfu, Zhengnan Li and Yan Liu
J. Fungi 2024, 10(9), 622; https://doi.org/10.3390/jof10090622 - 30 Aug 2024
Cited by 1 | Viewed by 3055
Abstract
Fusarium crown and root rot (FCRR), caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL), is an economically important disease that affects tomatoes worldwide and has become more prevalent in China in recent years. In 2021 and 2022, tomato plants in greenhouses in Hohhot, [...] Read more.
Fusarium crown and root rot (FCRR), caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL), is an economically important disease that affects tomatoes worldwide and has become more prevalent in China in recent years. In 2021 and 2022, tomato plants in greenhouses in Hohhot, Inner Mongolia, were observed showing symptoms of stunting, premature loss of lower leaves, and root rot. Fungal pathogens were isolated from 20 infected tomato plants and identified based on morphological observation and DNA sequencing. Twelve isolates were consistently identified as Fusarium oxysporum f. sp. radicis-lycopersici (FORL) via an analysis of the ITS, TEF-, and pgx4 genes. This is the first report of FORL in Inner Mongolia, China. The isolates were examined for their pathogenicity by inoculating them on tomatoes, eggplants, peppers, and chickpeas. The fungicide sensitivity of the isolates was determined. Effective concentrations for 50% growth inhibition (EC50) were measured using seven fungicides. The EC50 values of tebuconazole and prochloraz were <1.0 μg·mL−1, exhibiting the most effective inhibition among the fungicides tested. Additionally, FORL resistance screening of tomato germplasms was performed. One tomato variety was resistant to FORL, and the remaining 43 germplasm lines showed various levels of resistance. The rates of highly susceptible, moderately susceptible, susceptible, and moderately resistant germplasms accounted for 29.55%, 22.73%, 40.91%, and 4.55% of the 44 germplasms tested, respectively. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi)
Show Figures

Figure 1

14 pages, 9863 KiB  
Article
Relationships between Wheat Development, Soil Properties, and Rhizosphere Mycobiota
by Hang Jiang, Liguo Ma, Peixin Gao, Yueli Zhang, Bo Zhang, Guoping Ma, Kai Qi and Junshan Qi
Microorganisms 2024, 12(8), 1516; https://doi.org/10.3390/microorganisms12081516 - 24 Jul 2024
Cited by 1 | Viewed by 1833
Abstract
Wheat is a vital global food crop, yet it faces challenges in saline–alkali soils where Fusarium crown rot significantly impacts growth. Variations in wheat growth across regions are often attributed to uneven terrain. To explore these disparities, we examined well-growing and poorly growing [...] Read more.
Wheat is a vital global food crop, yet it faces challenges in saline–alkali soils where Fusarium crown rot significantly impacts growth. Variations in wheat growth across regions are often attributed to uneven terrain. To explore these disparities, we examined well-growing and poorly growing wheat samples and their rhizosphere soils. Measurements included wheat height, root length, fresh weight, and Fusarium crown rot severity. Well-growing wheat exhibited greater height, root length, and fresh weight, with a lower Fusarium crown rot disease index compared to poorly growing wheat. Analysis of rhizosphere soil revealed higher alkalinity; lower nutrient levels; and elevated Na, K, and Ca levels in poorly growing wheat compared to well-growing wheat. High-throughput sequencing identified a higher proportion of unique operational taxonomic units (OTUs) in poorly growing wheat, suggesting selection for distinct fungal species under stress. FUNGuild analysis indicated a higher prevalence of pathogenic microbial communities in poorly growing wheat rhizosphere soil. This study underscores how uneven terrains in saline–alkali soils affect pH, nutrient dynamics, mineral content, wheat health, and rhizosphere fungal community structure. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 3rd Edition)
Show Figures

Figure 1

17 pages, 6521 KiB  
Article
Histone H3 N-Terminal Lysine Acetylation Governs Fungal Growth, Conidiation, and Pathogenicity through Regulating Gene Expression in Fusarium pseudograminearum
by Hang Jiang, Lifang Yuan, Liguo Ma, Kai Qi, Yueli Zhang, Bo Zhang, Guoping Ma and Junshan Qi
J. Fungi 2024, 10(6), 379; https://doi.org/10.3390/jof10060379 - 25 May 2024
Cited by 1 | Viewed by 1741
Abstract
The acetylation of histone lysine residues regulates multiple life processes, including growth, conidiation, and pathogenicity in filamentous pathogenic fungi. However, the specific function of each lysine residue at the N-terminus of histone H3 in phytopathogenic fungi remains unclear. In this study, we mutated [...] Read more.
The acetylation of histone lysine residues regulates multiple life processes, including growth, conidiation, and pathogenicity in filamentous pathogenic fungi. However, the specific function of each lysine residue at the N-terminus of histone H3 in phytopathogenic fungi remains unclear. In this study, we mutated the N-terminal lysine residues of histone H3 in Fusarium pseudograminearum, the main causal agent of Fusarium crown rot of wheat in China, which also produces deoxynivalenol (DON) toxins harmful to humans and animals. Our findings reveal that all the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants are vital for vegetative growth and conidiation. Additionally, FpH3K14 regulates the pathogen’s sensitivity to various stresses and fungicides. Despite the slowed growth of the FpH3K9R and FpH3K23R mutants, their pathogenicity towards wheat stems and heads remains unchanged. However, the FpH3K9R mutant produces more DON. Furthermore, the FpH3K14R and FpH3K18R mutants exhibit significantly reduced virulence, with the FpH3K18R mutant producing minimal DON. In the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants, there are 1863, 1400, 1688, and 1806 downregulated genes, respectively, compared to the wild type. These downregulated genes include many that are crucial for growth, conidiation, pathogenicity, and DON production, as well as some essential genes. Gene ontology (GO) enrichment analysis indicates that genes downregulated in the FpH3K14R and FpH3K18R mutants are enriched for ribosome biogenesis, rRNA processing, and rRNA metabolic process. This suggests that the translation machinery is abnormal in the FpH3K14R and FpH3K18R mutants. Overall, our findings suggest that H3 N-terminal lysine residues are involved in regulating the expression of genes with important functions and are critical for fungal development and pathogenicity. Full article
(This article belongs to the Special Issue Morphology, Phylogeny and Pathogenicity of Fusarium)
Show Figures

Figure 1

Back to TopTop