Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Frank-Kamenetskii

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8778 KiB  
Article
Predictive Models for Single-Droplet Ignition in Static High-Temperature Air in Different Gravity Environments
by Xiaoyang Lan, Huilong Zheng, Yu Fang, Xianzhang Peng, Xiaofang Yang and Xiaowu Zhang
Appl. Sci. 2025, 15(12), 6558; https://doi.org/10.3390/app15126558 - 11 Jun 2025
Viewed by 523
Abstract
To address the design and optimization of the ignition system for the microgravity single-droplet combustion experiment module within the Combustion Science Experimental System (CSES) aboard the Chinese Space Station (CSS), it is essential to first determine the ignition temperatures required for typical liquid [...] Read more.
To address the design and optimization of the ignition system for the microgravity single-droplet combustion experiment module within the Combustion Science Experimental System (CSES) aboard the Chinese Space Station (CSS), it is essential to first determine the ignition temperatures required for typical liquid fuel droplets. In this study, ignition experiments were conducted on droplets of three representative hydrocarbon fuels—ethanol, n-heptane, and n-dodecane—in static air at high temperatures ranging from 760 K to 1100 K. The experimental results show that the initial droplet diameter is inversely correlated with the ambient temperature at which ignition occurs. Subsequently, based on Frank-Kamenetskii’s analytical method and combined with experimental data, a semi-empirical predictive model for droplet ignition temperatures in a normal-gravity environment was derived. Building upon this, and considering the characteristics of the microgravity environment, an appropriate empirical formula was applied to refine the model, resulting in a predictive model for droplet ignition temperatures in the microgravity environment. Furthermore, by comparing the experimental data and the observed phenomena from existing microgravity experiments, this semi-empirical predictive model used in the microgravity environment effectively reflects the trend of droplet ignition temperature variations. Full article
Show Figures

Figure 1

19 pages, 8353 KiB  
Article
Comparison of Ignition Process and Thermodynamic Conditions of TC4 and TC17 Alloys Under High-Speed Rubbing Ignition
by Yajun Li, Jianjun Li, Zichong Zu, Congzhen Wang, Yuqi Zhang, Lei Shao and Jinfeng Huang
Materials 2025, 18(1), 16; https://doi.org/10.3390/ma18010016 - 24 Dec 2024
Cited by 3 | Viewed by 939
Abstract
This study investigates the combustion characteristics and critical thermodynamic conditions for the ignition of TC4 and TC17 alloys under high-speed friction conditions. The results indicate that, under identical rubbing conditions, both the critical pressure and the ignition temperature of the TC17 alloy are [...] Read more.
This study investigates the combustion characteristics and critical thermodynamic conditions for the ignition of TC4 and TC17 alloys under high-speed friction conditions. The results indicate that, under identical rubbing conditions, both the critical pressure and the ignition temperature of the TC17 alloy are higher than those of the TC4 alloy. The critical ignition conditions for both alloys increase with thickness, while they decrease with increasing rotational speed, oxygen concentration, and oxygen pressure. The primary characteristics in the initial stage of friction ignition are abrasive and adhesive wear. As the duration of friction increases, material from the friction surface begins to peel away, creating favorable conditions for ignition. At the moment of ignition, significant peeling occurs, along with visible cracks and molten structures, resulting in the production of a substantial amount of titanium oxide on the friction surface. Based on the ignition theory proposed by Frank-Kamenetskii, the reaction order, adsorption coefficient, pre-exponential factor, and activation energy of the ignition criterion under high-speed friction conditions were determined by fitting and analyzing the experimental results. The ignition temperatures of the TC4 and TC17 alloys at different speeds were predicted with a relative error of less than 2.06%. This demonstrates that the Frank-Kamenetskii model can be utilized to explain the critical ignition conditions of titanium alloys under high-speed rubbing conditions. Full article
Show Figures

Figure 1

11 pages, 5449 KiB  
Article
Theory for Electrochemical Heat Sources and Exothermic Explosions: The Akbari–Ganji Method
by Ramalingam Vanaja, Ponraj Jeyabarathi, Lakshmanan Rajendran and Michael Edward Gerard Lyons
Electrochem 2023, 4(3), 424-434; https://doi.org/10.3390/electrochem4030027 - 5 Sep 2023
Cited by 2 | Viewed by 2295
Abstract
A device that transforms chemical energy into electrical energy is an electrochemical cell. The reaction type inside the cell determines whether it is exothermic or endothermic. This paper discusses the mathematical modelling of exothermic explosions in a slab. This model is based on [...] Read more.
A device that transforms chemical energy into electrical energy is an electrochemical cell. The reaction type inside the cell determines whether it is exothermic or endothermic. This paper discusses the mathematical modelling of exothermic explosions in a slab. This model is based on a nonlinear equation containing a nonlinear term related to Arrhenius, bimolecular, and sensitised laws of reaction kinetics. The absolute temperature can be derived by solving the nonlinear equation using the Akbari–Ganji technique. The mathematical model also numerically solved and simulated in the MATLAB® v2016b software. The new simple theoretical result is validated with previously identified analytical and numerical findings. The influence of the parameters of Frank-Kamenetskii number, activation energy and the numerical exponent on temperature is discussed. The Frank-Kamenetskii number is observed to drop as the temperature is found to decrease, while the activation energy parameter is shown to increase. The numerical exponent has little or no effect on the temperature. An extension of this model to cylinder and sphere geometry is also provided. Full article
Show Figures

Figure 1

14 pages, 2833 KiB  
Article
A Comparative Study on the Mathematic Models for the Ignition of Titanium Alloy in Oxygen-Enriched Environment
by Congzhen Wang, Jianjun Li, Yajun Li, Caihong Dou, Pengfei Jin, Guangyu He, Xiping Song, Jinfeng Huang and Cheng Zhang
Metals 2022, 12(11), 1812; https://doi.org/10.3390/met12111812 - 26 Oct 2022
Cited by 6 | Viewed by 2188
Abstract
Metallic materials are always suffered from the risk of combustion when serviced under some extreme conditions such as high temperature, oxygen-enriched enrichment, and high-speed friction. Although different mathematic models have been proposed but it is still a challenge for accurately describing the ignition [...] Read more.
Metallic materials are always suffered from the risk of combustion when serviced under some extreme conditions such as high temperature, oxygen-enriched enrichment, and high-speed friction. Although different mathematic models have been proposed but it is still a challenge for accurately describing the ignition conditions of metals under the extreme conditions, which is of great significance for the safety-use of materials. In this paper, the mathematic models based on Semenov and Frank-Kamenetskii theory were introduced into describing the effects of size, oxygen concentration, and oxygen pressure on the ignition temperature and critical oxygen pressure of TC17 alloy. The results showed that the critical oxygen pressure of TC17 alloy increased with the increase of size, which was fitted well with the Frank-Kamenetskii model. As a comparison, the critical oxygen pressure was size independent in the Semenov model, which was inconsistent with the experimental data. For the Frank-Kamenetskii model, the fitting results showed that the activation energy, reaction order, as well as the adsorption coefficient of TC17 alloy were determined to be 99.23 kJ/mol, 1.69, and 4.01 MPa−1.69 respectively. Based on above, the ignition temperature of TC17 samples with different sizes were predicted well by the Frank-Kamenetskii model with the relative error within 3.58%, which could be suitable for describing the critical ignition conditions of bulk metallic materials under complex environment. Full article
Show Figures

Figure 1

19 pages, 21632 KiB  
Article
Poplar Sawdust Stack Self-Heating Properties and Variations of Internal Microbial Communities
by Zitao Yuan, Wenbin Xu, Zili He and Hao Shen
Materials 2022, 15(3), 1114; https://doi.org/10.3390/ma15031114 - 31 Jan 2022
Viewed by 2288
Abstract
The heat accumulation generated by microbial metabolic activities during the storage of the sawdust may lead to spontaneous combustion accidents. This paper studied the Critical Ambient Temperature (CAT) variation of poplar sawdust at different stack dimensions and investigated the physicochemical properties as well [...] Read more.
The heat accumulation generated by microbial metabolic activities during the storage of the sawdust may lead to spontaneous combustion accidents. This paper studied the Critical Ambient Temperature (CAT) variation of poplar sawdust at different stack dimensions and investigated the physicochemical properties as well as microbial community dynamics during the self-heating process of poplar sawdust stacks. From the self-heating substances test experiments and Frank-Kamenetskii (FK) theory, it was found that the CAT of poplar sawdust stacks would decrease from 158.27 °C to 102.46 °C with the increase of stack size from 0.1 m to 3.2 m. From the sawdust stack self-heating experiments, microbial metabolic activities were enhanced with the increasing moisture content (by watering) and oxygen (by turning over), which led to a remarkable increase of the sawdust stack temperature and the rapid decomposition of biochemical components (especially cellulose and hemicellulose). From the microbiological community analysis, at the thermophilic stage (around 60 °C, large amounts of heat release in compost bin), the existence of thermostable bacteria (such as Brevibacillus thermoruber, Bacillus thermoamylovorans and Paenibacillus barengoltzii belonging to Firmicutes) played an important role in degrading organic substances. The heat generated by the microbial metabolic activities might lead to spontaneous combustion eventually if sawdust stack is large enough. Therefore, the sawdust should be stacked in a cool and dry area while avoiding large amounts of storage in high humidity environments. Full article
Show Figures

Figure 1

13 pages, 465 KiB  
Article
Linear Stability of a Steady Convective Flow between Permeable Cylinders
by Maksims Zigunovs, Andrei Kolyshkin and Ilmars Iltins
Fluids 2021, 6(10), 342; https://doi.org/10.3390/fluids6100342 - 28 Sep 2021
Cited by 2 | Viewed by 1768
Abstract
Linear stability analysis of a steady convective flow in a tall vertical annulus caused by nonlinear heat sources is conducted in the paper. Heat sources are generated as a result of a chemical reaction. The effect of radial cross-flow through permeable porous walls [...] Read more.
Linear stability analysis of a steady convective flow in a tall vertical annulus caused by nonlinear heat sources is conducted in the paper. Heat sources are generated as a result of a chemical reaction. The effect of radial cross-flow through permeable porous walls of the annulus is analyzed. The problem is relevant to biomass thermal conversion. The base flow solution is obtained by solving nonlinear boundary value problem. Linear stability analysis is performed, using collocation method. The calculations show that radial inward or outward flow has a stabilizing effect on the flow, while the increase in the Frank–Kamenetskii parameter (proportional to the intensity of the chemical reaction) destabilizes the flow. The increase in the Reynolds number based on the radial velocity leads to the appearance of the second minimum on the marginal stability curves. The rate of increase in the critical Grashof number with respect to the Reynolds number is different for inward and outward radial flows. Full article
(This article belongs to the Special Issue Convection in Fluid and Porous Media)
Show Figures

Figure 1

20 pages, 439 KiB  
Article
Modeling and Simulations of Buongiorno’s Model for Nanofluid in a Microchannel with Electro-Osmotic Effects and an Exothermal Chemical Reaction
by Ammarah Raees, Muhammad Raees-ul-Haq and Muavia Mansoor
Nanomaterials 2021, 11(4), 905; https://doi.org/10.3390/nano11040905 - 1 Apr 2021
Cited by 7 | Viewed by 2885
Abstract
The article presents a mathematical model for the magnetized nanofluid flow and heat transfer with an exothermic chemical reaction controlled by Arrhenius kinetics. Buongiorno’s model with passive boundary condition is employed to formulate the governing equation for nanoparticles concentration. The momentum equation with [...] Read more.
The article presents a mathematical model for the magnetized nanofluid flow and heat transfer with an exothermic chemical reaction controlled by Arrhenius kinetics. Buongiorno’s model with passive boundary condition is employed to formulate the governing equation for nanoparticles concentration. The momentum equation with slip boundary conditions is modelled with the inclusion of electroosmotic effects which remain inattentive in the study of microchannel flows with electric double layer (EDL) effects. Conclusions are based on graphical and numerical results for the dimensionless numbers representing the features of heat transfer and fluid flow. Frank-Kamenetskii parameter resulting from the chemical reaction showed significant effects on the optimization of heat transfer, leading to increased heat exchangers’ effectiveness. The Hartmann number and slip parameter significantly affect skin friction, demonstrating the notable effects of electroosmotic flow and the exothermic chemical reaction on heat transfer in microchannels. This analysis contributes to prognosticating the convective heat transfer of nanofluids on a micro-scale for accomplishing successful thermal designs. Full article
(This article belongs to the Special Issue Thermal Transport in Nanoscale)
Show Figures

Figure 1

17 pages, 464 KiB  
Article
Numerical Convergence Analysis of the Frank–Kamenetskii Equation
by Matthew Woolway, Byron A. Jacobs, Ebrahim Momoniat, Charis Harley and Dieter Britz
Entropy 2020, 22(1), 84; https://doi.org/10.3390/e22010084 - 9 Jan 2020
Viewed by 3655
Abstract
This work investigates the convergence dynamics of a numerical scheme employed for the approximation and solution of the Frank–Kamenetskii partial differential equation. A framework for computing the critical Frank–Kamenetskii parameter to arbitrary accuracy is presented and used in the subsequent numerical simulations. The [...] Read more.
This work investigates the convergence dynamics of a numerical scheme employed for the approximation and solution of the Frank–Kamenetskii partial differential equation. A framework for computing the critical Frank–Kamenetskii parameter to arbitrary accuracy is presented and used in the subsequent numerical simulations. The numerical method employed is a Crank–Nicolson type implicit scheme coupled with a fourth order spatial discretisation as well as a Newton–Raphson update step which allows for the nonlinear source term to be treated implicitly. This numerical implementation allows for the analysis of the convergence of the transient solution toward the steady-state solution. The choice of termination criteria, numerically dictating this convergence, is interrogated and it is found that the traditional choice for termination is insufficient in the case of the Frank–Kamenetskii partial differential equation which exhibits slow transience as the solution approaches the steady-state. Four measures of convergence are proposed, compared and discussed herein. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

18 pages, 4645 KiB  
Article
A Theoretical Analysis for Mixed Convection Flow of Maxwell Fluid between Two Infinite Isothermal Stretching Disks with Heat Source/Sink
by Nargis Khan, Hossam A. Nabwey, Muhammad Sadiq Hashmi, Sami Ullah Khan and Iskander Tlili
Symmetry 2020, 12(1), 62; https://doi.org/10.3390/sym12010062 - 27 Dec 2019
Cited by 35 | Viewed by 3491
Abstract
The aim of this current contribution is to examine the rheological significance of Maxwell fluid configured between two isothermal stretching disks. The energy equation is also extended by evaluating the heat source and sink features. The governing partial differential equations (PDEs) are converted [...] Read more.
The aim of this current contribution is to examine the rheological significance of Maxwell fluid configured between two isothermal stretching disks. The energy equation is also extended by evaluating the heat source and sink features. The governing partial differential equations (PDEs) are converted into the ordinary differential equations (ODEs) by using appropriate variables. An analytically-based technique is adopted to compute the series solution of the dimensionless flow problem. The convergence of this series solution is carefully ensured. The physical interpretation of important physical parameters like the Hartmann number, Prandtl number, Archimedes number, Eckert number, heat source/sink parameter and the activation energy parameter are presented for velocity, pressure and temperature profiles. The numerical values of different involved parameters for skin friction coefficient and local Nusselt number are expressed in tabular and graphical forms. Moreover, the significance of an important parameter, namely Frank-Kamenetskii, is presented both in tabular and graphical form. This particular study reveals that both axial and radial velocity components decrease by increasing the Frank–Kamenetskii number and stretching the ratio parameter. The pressure distribution is enhanced with an increasing Frank–Kamenetskii number and stretching ratio parameter. It is also observed that thetemperature distribution increases with the increasing Hartmann number, Eckert number and Archimedes number. Full article
(This article belongs to the Special Issue Recent Advances in Mathematical Aspect in Engineering)
Show Figures

Figure 1

8 pages, 1867 KiB  
Article
Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro
by Buckley McCall, Connor K. McPartland, Reece Moore, Anastasia Frank-Kamenetskii and Brian W. Booth
Antioxidants 2018, 7(10), 135; https://doi.org/10.3390/antiox7100135 - 4 Oct 2018
Cited by 89 | Viewed by 9113
Abstract
Astaxanthin (ASX) is a marine-based ketocarotenoid; an accessory pigment in plants in that it has many different potential functions. ASX is an antioxidant that is notably more potent than many other antioxidants. Antioxidants have anti-inflammatory and oxidative stress-reducing properties to potentially reduce the [...] Read more.
Astaxanthin (ASX) is a marine-based ketocarotenoid; an accessory pigment in plants in that it has many different potential functions. ASX is an antioxidant that is notably more potent than many other antioxidants. Antioxidants have anti-inflammatory and oxidative stress-reducing properties to potentially reduce the incidence of cancer or inhibit the expansion of tumor cells. In this study, we tested the hypothesis that ASX would inhibit proliferation and migration of breast cancer cells in vitro. We found that application of ASX significantly reduced proliferation rates and inhibited breast cancer cell migration compared to control normal breast epithelial cells. Based on these results, further investigation of the effects of ASX on not only breast cancer cells, but other forms of tumor cells, should be carried out. Full article
Show Figures

Figure 1

21 pages, 9235 KiB  
Article
Investigation of Accidents during Storage Caused by Fermentation or Oxidation from SSSR and Fishmeal Using Thermal Analysis and Frank-Kamenetskii Theory
by Naoharu Murasawa, Hiroshi Koseki, Yusaku Iwata and Takabumi Sakamoto
Recycling 2018, 3(2), 26; https://doi.org/10.3390/recycling3020026 - 2 Jun 2018
Cited by 1 | Viewed by 4351
Abstract
In Japan, where soy sauce production and the fishery industries thrive, soy sauce squeezing residue (SSSR) and fishmeal, which are operational byproducts of these sectors, are produced as waste materials for recycling. SSSR and fishmeal have resulted in accidents due to spontaneous ignition [...] Read more.
In Japan, where soy sauce production and the fishery industries thrive, soy sauce squeezing residue (SSSR) and fishmeal, which are operational byproducts of these sectors, are produced as waste materials for recycling. SSSR and fishmeal have resulted in accidents due to spontaneous ignition and oxygen deprivation, which are believed to have been caused by the heat generated through fermentation or oxidation; consequently, it is desirable to develop measures that prevent such accidents during storage and transportation. In this study, we assessed the hazards associated with the spontaneous ignition and oxygen deprivation of SSSR and fishmeal in storage areas using thermal and gas analysers, focusing on the heat produced by fermentation and oxidation. We also used Frank-Kamenetskii theory to determine the relationship between pile height and the ambient temperatures at which spontaneous ignition and oxygen deprivation occur. Our results suggest that oxygen deficiency may occur in a well-sealed storage facility in which oxygen is consumed by fermentation. For example, the oxygen concentration can drop below critical safety thresholds in the case of SSSR, even when stored below 25 °C, particularly when the moisture content is high. However, when a sufficient amount of oxygen is present and the material is stored in large deposits in a well-insulated facility, fermentation causes the temperature to increase, leading to the oxidation of fatty acid esters and eventually fire; when SSSR or fishmeal is maintained at temperatures near 40 °C, their temperatures can increase to 250 °C within approximately 30 h. Furthermore, the results of this study also demonstrate the need to consider pile height in storage areas in order to prevent accidents due to spontaneous ignition and oxygen deprivation; the critical ambient temperature at which heat accumulates is estimated to be between 20–30 °C, at a bulk density of 0.3 × 103 kg/m3, and a pile height of 3 m. Full article
Show Figures

Figure 1

6 pages, 651 KiB  
Review
Duplex DNA Capture
by Vadim V. Demidov, Nikolay O. Bukanov and Maxim D. Frank-Kamenetskii
Curr. Issues Mol. Biol. 2000, 2(1), 31-35; https://doi.org/10.21775/cimb.002.031 - 1 Jan 2000
Viewed by 1020
Abstract
This article describes the sequence-specific isolation and purification of intact double-stranded DNA (dsDNA) by oligonucleotide/PNA-assisted affinity capture (OPAC). The OPAC assay is based on selective tagging of a DNA duplex by biotinylated oligodeoxyribonucleotide (ODN) through formation of a so-called PD-loop. The PD-loop is [...] Read more.
This article describes the sequence-specific isolation and purification of intact double-stranded DNA (dsDNA) by oligonucleotide/PNA-assisted affinity capture (OPAC). The OPAC assay is based on selective tagging of a DNA duplex by biotinylated oligodeoxyribonucleotide (ODN) through formation of a so-called PD-loop. The PD-loop is assembled with the aid of a pair of PNA "openers", which allow sequence-specific targeting with a Watson-Crick complementary ODN probe in the exposed region of the dsDNA. The protocol involves three steps. First, two cationic bis-PNAs locally pry the DNA duplex apart at a predetermined site. Then, the exposed DNA single strand is targeted by a complementary biotinylated ODN to selectively form a stable PD-loop complex. Finally, the capture of dsDNA is performed using streptavidin covered magnetic beads. The OPAC procedure has many advantages in the isolation of highly purified native DNA over other affinity capture and amplification techniques. Full article
Back to TopTop