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Abstract: The aim of this current contribution is to examine the rheological significance of Maxwell
fluid configured between two isothermal stretching disks. The energy equation is also extended by
evaluating the heat source and sink features. The governing partial differential equations (PDEs)
are converted into the ordinary differential equations (ODEs) by using appropriate variables. An
analytically-based technique is adopted to compute the series solution of the dimensionless flow
problem. The convergence of this series solution is carefully ensured. The physical interpretation of
important physical parameters like the Hartmann number, Prandtl number, Archimedes number,
Eckert number, heat source/sink parameter and the activation energy parameter are presented for
velocity, pressure and temperature profiles. The numerical values of different involved parameters
for skin friction coefficient and local Nusselt number are expressed in tabular and graphical forms.
Moreover, the significance of an important parameter, namely Frank-Kamenetskii, is presented both
in tabular and graphical form. This particular study reveals that both axial and radial velocity
components decrease by increasing the Frank–Kamenetskii number and stretching the ratio parameter.
The pressure distribution is enhanced with an increasing Frank–Kamenetskii number and stretching
ratio parameter. It is also observed that thetemperature distribution increases with the increasing
Hartmann number, Eckert number and Archimedes number.

Keywords: maxwellfluid; mixed convection; isothermal stretching disks; homotopy analysis method

1. Introduction

The mixed convection flow is the combination of both coupled free and forced convection, and is
a topic of particular interest from an engineering (aerospace and chemical engineering) point of view
in the past few years. A diverse significance of such a phenomenon may appear in various electronic
devices, nuclear reactors, food industries, energy storage, era of astrophysics, lubrication phenomenon,
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fire control, chemical metallurgical, etc. The phenomenon of free convection is resulted due to the
temperature difference in fluid particles associated with isothermal stretching disks.

The involvement of magnetic force in the heat transfer processes between stretching disks is
termed as forced convection. In a mixed convection flow, the Archimedes number represents the
comparative contribution of natural to forced convection. It is a well justified fact that the phenomenon
of free convection becomes more prevailing over forced convection when the Archimedes number is
larger than unity. In the modern era of science, the flows caused by heat supplied in the presence of
transport processes which occurred due to chemical reactions gained the attention of investigators due
to numerous applications in several industrial processes. Arrhenius kinetics is adopted for modeling
such reactions, where the flow is thermally obsessed by exothermic surface reaction. Maleque [1]
studied the effects of exothermic/endothermic chemical reactions in the presence of energy activation
over a porous flat plate. The impact of nonlinear thermal radiation and activation energy in the flow of
Cross nanofluid has been reported by Khan et al. [2]. Shafique et al. [3] examined the flow of Maxwell
fluid along with activation energy features in a rotating frame. A numerically-based continuation for
viscous fluid flow in the presence of activation energy and slip factors has been pointed out by Awad
et al. [4]. Another interesting contribution on the flow of viscoelastic fluid in presence of activation
energy was investigated by Hsiao [5]. According to this study, the obtained observations can be used to
enhance the manufacturing and thermal extrusion systems. The mixed convection flow on chemically
reactive surfaces for external flow in the presence of porous medium was investigated by Merkin
and Mahmood [6]. Similar studies were also performed by Minto et al. [7] for a vertical surface. We
also acknowledge the interesting study presented by Chou and Tsern [8], in which they presented
experimentally-based results regarding mixed convection flow in a horizontal channel with constant
heat flux conditions.

In recent years, the stretched flows of electrically conducting materials under the influence of
magnetic force have attained attention due to diverse engineering and medical applications. Some
valuable applications of this phenomenon may include nuclear reactors, fission and fusion reactions,
plasma, metallurgical processes, the exploration of oil, thermal conductors, magnetohydrodynamic
(MHD) generators, etc. The MHD flow passing in arteries is important because of diverse physiological
processes. For example, the flow of blood can be effectively controlled via an addition of the mixing
of samples, heat transportation and interaction of the magnetic field. Many authors performed
an extensive analysis regarding the MHD flow of various fluid models with different geometries.
Nadeem et al. [9] investigated the impact of magnetic force in viscous nanofluid flow configured by
a curved surface. Ahmed et al. [10] performed some numerical computations while explaining the
thermophysical consequences in nanofluid flow subjected to magnetic force. Khan et al. [11] successfully
obtained the dual solution for the combined heat and mass flow of magnetized nanoparticles over a
curved surface. The oscillatory flow of micropolar nanofluid subjected to magnetic force has been
numerically inspected by Sadiq et al. [12].

The study of non-Newtonian fluids is important due to their wide range of applications in
engineering, physiology, the chemical and petroleum industries. The non-Newtonian fluid models
capture a nonlinear relationship between shear stress and deformation rate in contrast to the viscous
materials. The traditional examples of such fluids include paints, blood, paste, jell, apple source, etc.
The non-Newtonian boundary layer flow due to stretching surfaces has been paid a great attention by
scientists due to interesting industrial and engineering applications like glass fiber manufacturing,
paper production, plastic films, crystal growing and in the processing of cooling bath of metallic
sheets. In order to study the physical properties of non-Newtonian fluids, various models have been
introduced in the literature. The classification of non-Newtonian models can be referred as rate type,
differential type and integral type fluids. In the category of rate type, Maxwell fluid is considered
as a subclass of rate type liquids which accomplishes the relaxation time features. The examples of
Maxwell fluid include crude oil, toluene, polymer solution, etc. Haris [13] suggested the boundary
layer equations for two-dimensional flow of Maxwell fluid. After that the analysis of boundary layer
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flow and heat transfer over a stretching surface by using the constitutive equation of Maxwell fluid
was carried out by several researchers. For instance, Hayat et al. [14] discussed the series solution of
upper-convected Maxwell fluid over a porous stretching plate.

The effects of thermal radiation on the MHD flow of a Maxwell fluid over a stretching surface were
examined by Aliakbar et al. [15]. Two-dimensional stagnation-point flow of upper-convected Maxwell
fluid (UCM) over a stretching sheet has been determined by Hayat et al. [16]. They used the homotopy
analysis method (HAM) to solve the resulting nonlinear differential equations. Prasad et al. [17]
discussed the effects of temperature-dependent viscosity, thermal conductivity and internal heat
generation/absorption features in the MHD flow of upper-convected Maxwell fluid configured by a
stretched surface. Khan et al. [18] examined the flow of Maxwell fluid in a channel with oscillating
walls under the action of a magnetic field. The analysis for Maxwell fluid in the presence of a heat
transfer phenomenon over coaxially rotating disks has been depicted by Ahmed et al. [19].

The fluid flow encountered by a rotating and stretching disk has gained serious importance in the
last years due to a large number of physical applications for both physical and theoretical aspects. Some
emerging applications of such flows includes a rotor-stator system, MHD generators, turbine engines,
aircraft engines, spin coating, centrifugal pumps, flow-through swept wings, shrouded-disks rotation,
rotating electrodes, centrifuges, hydraulic press, boilers, condensers, etc. Merkin and Chaudhary [20]
investigated the flow of viscous fluid induced by stretching a disk in the presence of an exothermic
surface reaction. Gorder et al. [21] reported the analytical solution for flow encountered by stretching
disks. Khan et al. [22] studied the mixed convection flow induced by exothermal and isothermal
stretching disks analytically.

In the present analysis, we study an incompressible mixed convection flow of Maxwell fluid
between infinite isothermal stretching disks in the presence of heat absorption/generation, activation
energy and chemical reaction features. In fact, this work is the extension of Gorder et al. [21] in three
directions: Firstly, by considering Maxwell fluid, secondly by including activation energy consequences,
and lastly by taking heat source and sink features. Considering the literature survey, it is noted that this
present analysis has not been investigated yet and presented for the first time in literature. The study
of the mixed convection flow of non-Newtonian fluid encountered enormous applications in nuclear
engineering, chemical engineering and petroleum industries. The considered flow problem contained
the impact of activation energy, which includes diverse industrial and engineering significance, like
oil emulsion, food processing, chemical processes and geothermal reservoirs. The problem is solved
analytically via the homotopy analysis method, and the results are discussed through pictorial and
tabular representations.

2. Mathematical Formulation

In the current analysis, a non-Newtonian fluid is configured between two infinite stretching disks.
It is assumed that flow is axisymmetric and steady. The rheological aspects of non-Newtonian material
have been deliberated by using the famous Maxwell fluid model which occupies the space 0 < z < d.
The disks are separated distance d from each other as shown in Figure 1. The flow is generated due to
the stretching of both disks in the radial direction. It is assumed that both (upper and lower) disks are
isothermal in nature at temperatures T1 and T2, respectively. The analysis is performed by opting for
cylindrical coordinates (r,θ, z). All the involved expressions are independent of θ due to axisymmetry.
Following Merkin et al. [20], the expressions for first order non-isothermal reaction are represented in
following form

A→ B + heat, rate = k0a0e−E/R1T. (1)

These above relations are known as Arrhenius kinetics, where E signifies the activation energy, B
is a product species, R1 is the gas constant, k0 is the chemical reaction, a0 the reactant concentration
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and T is the fluid temperature. The flow equations for the axisymmetric flow of Maxwell fluid can be
expressed as [20–22]:
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in which u and w are velocity components in the r and z directions, λ1 is the relaxation time, p is the
fluid pressure, ρ is the characteristic density, ν is the kinematic viscosity, KT is the thermal conductivity
of the fluid, T0 the reference temperature given by T0 = T1+T2

2 , β denotes the thermal expansion
coefficient, Q0 denotes the heat generation/absorption coefficient while Q stands for the exothermicity
factor. The imposed boundary conditions associated with the current flow problem are:

u = ar, w = 0, p =
aµβr2

4d2 , at z = 0
u = cr, w = 0, p = 0, at z = d,
T = T1 at z = 0, T = T2, at z = d.

(6)

In order to obtain the dimensionless form of above equations, we introduce the following similarity
variables [21,22]:

u = arF(η), w = adH(η), η = z
d
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d
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The above transformations lead to the following system:
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P′ = H′′ −RHH′ − λRH2H′′ , (10)

H(0) = 0, H(1) = 0, H′(0) = −2, H′(1) = −2γ,
θ(0) = RT , θ(1) = −RT, P(0) = 0.

}
(11)

where the stretching rate constant is γ, the Reynolds number R, the Hartmann number is M,
Grashoff number Gr, heat source/sink parameter α, the Prandtl number Pr, Eckert number Ec, the
Frank–Kamenetskii number K, constant temperature parameter RT, activation energy parameter ε, the
Archimedes number Ar and the dimensionless distance δ are defined as:
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By differentiating Equation (8) with respect to similarity variable η, we have

H(iv)
−RHH′′′ = λR

(
HH′H′′′ + H2H(iv)

−H′2H′′ −HH′′ 2
)

−MR [H′′ + λ(H′H′′ + HH′′′ )]
+RArε

δ4 [2θ′ + λ(3H′θ′ + 2Hθ′′ + H′′θ)].
(13)

where λ = λ1a, is the Deborah number. First of all, we solve Equation (12) subject to the boundary
conditions (11) and then β can be evaluated by using Equation (8).
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2.1. Skin Friction Coefficient

The expression for shear stress τw on the surface of the stretching disk is defined as [21,22]:

τw = τrz| z=0, (14)

The skin friction coefficients RC1 f and RC2 f at the lower and upper disks are:

C1 f =
τw

1
2ρ(δr)2 =

τrz| z=0
1
2ρ(δr)2 = −R−1H′′ (0), (15)

C2 f =
τw

1
2ρ(δr)2 =

τrz| z=d
1
2ρ(δr)2 = −R−1H′′ (1). (16)

2.2. Local Nusselt Number

The mathematical expressions for the local Nusselt number is represented as:

qw = −

(
KT
∂T
∂z

)
= −

KTR1T2
0

Ed
θ′(η), (17)

The dimensionless form of this local Nusselt number at both (lower and upper) disks is [21,22]:
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3. HomotopyAnalysis Method

In our modern era of scientific research, many physical and engineering problems are modeled in
the form of highly nonlinear differential equations which always remain challenging for mathematicians
to suggest the analytical or numerical solutions. Among different analytical techniques, thehomotopy
analysis method is one which can be used to compute the analytic solution of such problems with
excellent convergence. This technique is free of a complicated discretization procedure like numerical
methods. This analytical technique is free of any small or large parameter constraints. This method was
originally introduced by Liao [23], and later on many researchers used this method for their solutions
of various problems [24–36]. The initial guesses for H(η) and θ(η) are given by:

H0(η) = 2η(1− η)((1 + γ)η− 1), (20)

θ0(η) = η, (21)

Defining auxiliary linear operators

LH[y] =
d4y
dη4

, (22)

Lθ[y] =
d2y
dη2 , (23)

Satisfying
LH

[
C1 + C2η+ C3η

2 + C4η
3
]
= 0, (24)

Lθ[C5 + C6η] = 0, (25)

where Ci(i = 1− 6) are constants.

4. Convergence of Obtained Solution

It is a well-established fact that the convergence rate of HAM solutions is strictly based on
non-zero auxiliary parameters }H and }θ. The suitable selection of these parameters is quite useful for
adjusting and controlling the obtained solution. The admissible range of these auxiliary parameters,
the }−curves for velocity and temperature distributions, is displayed in Figure 2a,b. These figures
clearly demonstrate that the suitable values of }H and }θ can be selected from −2.0 ≤ }H ≤ −0.1 and
−1.8 ≤ }θ ≤ −0.3. For present computations, the optimal values of }H and }θ are taken }H = −1
and }θ = −1.08. The accuracy of obtained solution against various values of emerging parameters is
shown in Table 1. It is seen that the accuracy of the HAM solution is obtained at the twentieth order
of approximations.

Table 1. The convergence analysis of the homotopic solution with R = 5, γ = 0.5, M = 0.5, λ = 0.2,
Ar = 2, δ = 3, Ec = 1, Pr = 1, α = 0.5, K = 0.01, RT = 2, ε = 0.5, }H = −1 and }θ = −1.08.

Order of Approximation H”(0) θ
′

(0)

11 9.79594 −1.91738
14 9.79619 −1.91686
16 9.79643 −1.91634
18 9.79667 −1.91582
20 9.79717 −1.91461
25 9.79717 −1.91461
30 9.79717 −1.91461
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5. Validation of Solution

Before performing detailed graphical computations for flow parameters, we first compare our
results with Gorder et al. [21] as a limiting case in Table 2. It is noted that an excellent accuracy of our
results has been noted with these reported studies. Also Figure 3 shows the comparison of present
results for the velocity profile computed via the homotopy analysis method for various values of
the stretching ratio parameter with Gorder et al. [21]. It is found that present results have shown a
convincible accuracy with Gorder et al. [21].

Table 2. Comparison of H(η) and H′(η) for different values of η with λ = 0, R = 0 and M = 0.

η Gorder et al. [21] Present Result (HAM)

H(η) H
′

(η) H(η) H
′

(η)

0.0 0.000 −2.00 0.000 −2.00
0.2 −0.224 −0.360 −0.224 −0.360
0.4 −0.192 0.560 −0.192 0.560
0.6 −0.048 0.760 −0.048 0.760
0.8 0.064 0.240 0.064 0.240
1.0 0.000 −1.00 0.000 −1.000
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6. Results and Discussion

The formulated ordinary differential equations are targeted analytically via the homotopy analysis
scheme. The aim of this section is to examine the physical significance of each physical parameter on
velocity, pressure and temperature distributions.

6.1. Velocity Distribution

Figures 4–6 are plotted to capture the influence of various parameters like the stretching ratio γ,
Deborah number λ, Reynolds number R, Prandtl number Pr, heat source/sink parameter α, constant
temperature parameter RT, the Eckert number Ec, activation energy parameter ε, Frank–Kamenetskii
number K, Hartmann number M and the Archimedes number Ar on the r−velocity component H′(η)
and z−direction velocity component H(η). Figure 4a–f presents the effect of the Deborah number λ,
stretching ratio γ, Eckert number Ec, Prandtl number Pr, dimensionless distance parameter δ and
the Frank–Kamenetskii number K on ther- and z-components of velocity. Figure 3a prescribed the
outcomes of the Deborah number λ on thez component of velocity. It is observed that the r-component
of velocity increases up to a certain range and later on decreases slightly. It can be justified physically,
as the Deborah number is directly proportional to the relaxation time. In fact, it is the associated with
the fluid relaxation time to the observation time. The smaller values of the Deborah number represent
the viscous nature of fluid while a material having a higher Deborah number represents the solid
nature of fluid. The effects of the stretching ratio γ, Eckert number Ec, dimensionless distance δ and
the Frank–Kamenetskii number K on H(η) and H′(η) has been expressed in Figure 4b–e. From all
these figures, it is noted that both H(η) and H′(η) are enhanced by varying these parameters. Figure 4f
manifested the influence of the Hartmann number on the z component of velocity. A decay in the z
component of velocity is observed for intensifying values of the Hartmann number. Physically, the
larger values of this Hartmann number attributed strong drag force which resists the amplitude of
flow.Figure 4g–h determined the effects of the Archimedes number Ar and Reynolds number R on
axial and radial velocities. A retarded distribution of both components has been resulted with the
variation of all these parameters. Since the Reynolds number represents the ratio of inertial force to
viscous, therefore higher values of R become associated with larger inertial force which decay the
velocity distribution effectively.

6.2. Pressure Distribution

The variation in pressure distribution P(η) for various values of the stretching ratio parameter
γ, dimensionless distance δ, Reynolds number R, Archimedes number Ar, constant temperature
parameter RT, activation energy parameter ε, Deborah number λ, Hartmann number M and the
Frank–Kamenetskii number K is discussed in Figure 5a–h. Figure 5a,b show the change in P(η) for
diverse values of γ and δ. It is noted that pressure is an increasing function of γ and δ up to a specific
height, and later on decreases gradually. However, a decreasing trend has been observed for maximum
values of the Reynolds number R and the Archimedes number Ar (Figure 5c,d). The graphical
explanation for the Deborah number λ and the Hartmann number M is presented in Figure 5e,f.
The Deborah number specified the relaxation time to the observation time ratio which means that
maximum values of λ correspond to larger relaxation time due to which the pressure distribution
declined. Similarly, a decreasing trend in the pressure distribution is due to the fact that the Hartmann
number is associated with Lorentz force, which efficiently controls the pressure distribution in the
whole domain. Figure 5g determines the influence of the Frank–Kamenetskii number K on pressure
distribution P(η). A retarded pressure distribution has been examined with the variation of K. With
the increase of K, the pressure distribution decreases up to maximum level.
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Figure 4. In r and z components of velocities when γ = 0.5, }H = −1, M = 0.5, λ = 0.2, Ec = 1, Pr = 1,
α = 0.5, R = 5, δ = 1.5, ε = 0.5, Ar = 50, K = 0.5 and RT = 1.
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Figure 5. Pressure distribution for different parameters withγ = 0.5, }H = −1, M = 0.5, λ = 0.5, Ec = 1,
Pr = 1, α = 0.9, δ = 1.5, R = 5, ε = 0.5, Ar = 2, K = 0.5 and RT = 2.
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6.4. Physical Quantities of Interests 

Figure 7a–c show the effect of different parameters like the stretching ratio parameter 𝛾, 

Deborah number 𝜆 and Hartmann number 𝑀 on the skin friction coefficient at upper and lower 

Figure 6. Temperature profile for γ = 0.5, }H = −1, }θ = −1.08, M = 1, λ = 0.2, Ec = 1, R = 5, Pr = 1,
α = 0.5, δ = 0.5, ε = 0.5, Ar = 5, K = 0.01 and RT = 1.

6.3. Temperature Distribution

In order to examine the impact of the Hartmann number M, heat source/sink parameter α, Eckert
number Ec, stretching ratio parameter γ, Archimedes number Ar, dimensionless distance δ and the
Reynolds number R on temperature distribution θ(η), Figure 6a–g are prepared. Figure 6a captured
the consequences of the Hartmann number M on temperature distribution θ(η). As expected, an
enhanced temperature distribution is observed for larger values of M due to the interaction of Lorentz
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force. From Figure 6b, again an increment in temperature distribution has been noted for maximum
values of the Eckert number Ec. The physical consequences of such trend may be attributed as heat
due to viscous dissipation of fluid enhanced, due to which results an increment in θ(η). Figure 6c,d
portrayed the impact Archimedes number Ar and activation energy parameter ε on θ(η). It is seen
that temperature distribution enlarges with increasing both parameters. The activation energy plays
a significant role in enhancement of many reaction processes. Figure 6e reports the influence of the
heat source/sink constant on θ(η). It is noted that θ(η) increases in the case of heat source case (α > 0),
while the opposite trend is noted for the heat sink case (α < 0). The physical aspect of such a trend may
attribute, as in the case of heat source, more heat is added to the system, due to which the temperature
distribution improved. On the contrary, due to the heat sink, heat is removed from the whole system
which turns down the temperature distribution efficiently. From Figure 6f,g, a declining temperature
distribution has been observed with maximum variation of dimensionless distance δ and Reynolds
number R.

6.4. Physical Quantities of Interests

Figure 7a–c show the effect of different parameters like the stretching ratio parameter γ, Deborah
number λ and Hartmann number M on the skin friction coefficient at upper and lower disks. From
Figure 7a, a decreasing variation in this skin friction coefficient is examined with increasing γ.
On contrary, the skin friction coefficient at both level disks is increased for maximum values of the
Deborah number λ (Figure 7b). Figure 7c reveals that the wall shear stress for different values of the
Hartmann number M is maximum at the upper level of the disk as compared to the lower level.Symmetry 2020, 12, x FOR PEER REVIEW 15 of 21 
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Figure 7. (a–c) The in skin friction coefficients at both disks for various values of γ,λ and M with
γ = 0.5,}H = −1, }θ = −1.08, M = 1, λ = 2, Ec = 1, Pr = 1, α = 0.5, δ = 1.2, ε = 0.5, Ar = 50,
K = 0.01 and RT = 1.



Symmetry 2020, 12, 62 13 of 18

Figure 8a,b show the effects of Hartmann number M and Eckert number Ec on the local Nusselt
number at lower and upper disks. The variation in local Nusselt number at the upper disk is larger for
both parameters.
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Figure 8. (a,b) The variation in Nusselt number at both disks for various values of M and Ec whenγ = 0.5,
}H = −1, }θ = −1.08, M = 1, λ = 2, Ec = 1, Pr = 1, α = 0.5, δ = 1.2, ε = 0.5, Ar = 50, K = 0.01
and RT = 1.

The numerical iteration in the wall shear stress at the upper level of the disk RC1 f and lower
level RC2 f are discussed in Table 3. The wall shear stress gets minimum values for stretching rate
constant γ, Reynolds number R, and Hartmann number M. It is noted that rate of wall shear
stress is relatively slower at the lower portion of the disk for all parameters. The variation for
various parameters on the local Nusselt number is portrayed in Table 4. Again, the continuations
are performed at both surfaces (upper surface N1u and lower surface N2u). This physical quantity
increases with Pr and Ec. Finally, the numerical values of Frank–Kamenetskii against different values
of γ, M, λ, R, Pr, Ec, δ, α, ε, Ar and RT is shown in Table 5. The variation in Frank–Kamenetskii
constant is slower for λ and Ar.

Table 3. Numerical variation in wall shear stress at both surfaces of moving disk.

γ M R Pr Ec λ δ α ε Ar RT K Lower Disk Upper Disk

0.2 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −116.204 −252.335
0.4 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −129.404 −262.989
0.6 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −142.249 −272.563

0.5 1.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 1.5 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −149.413 −273.824
0.5 2.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −162.905 −281.867

0.5 01 1.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −1.63619 −38.7856
0.5 01 2.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −22.2454 −67.5845
0.5 01 3.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −44.9617 −108.970

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 2.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −102.816 −437.258
0.5 01 05 3.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −69.7624 −606.601

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.5 0.2 0.5 0.5 0.5 02 2.0 0.1 115.683 −430.368
0.5 01 05 1.0 2.0 0.2 0.5 0.5 0.5 02 2.0 0.1 367.236 −592.821

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.0 0.4 0.5 0.5 0.5 02 2.0 0.1 −195.891 −369.982
0.5 01 05 1.0 1.0 0.6 0.5 0.5 0.5 02 2.0 0.1 −255.476 −472.018

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.0 0.2 0.6 0.5 0.5 02 2.0 0.1 −62.2384 −77.8090
0.5 01 05 1.0 1.0 0.2 0.7 0.5 0.5 02 2.0 0.1 −23.2608 −44.7235

0.5 01 05 1.0 1.0 0.2 0.5 0.1 0.5 02 2.0 0.1 −130.344 −270.583
0.5 01 05 1.0 1.0 0.2 0.5 0.3 0.5 02 2.0 0.1 −133.108 −269.244
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
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Table 3. Cont.

γ M R Pr Ec λ δ α ε Ar RT K Lower Disk Upper Disk

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.1 02 2.0 0.1 −14.4518 −37.1367
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.3 02 2.0 0.1 −52.1849 −61.3395
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −89.1381 −99.7870

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 3.5 2.0 0.1 24.7854 −1205.14
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.0 2.0 0.1 195.575 −1786.25
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.5 2.0 0.1 445.195 −2541.17

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.3 0.1 −185.374 −345.966
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.6 0.1 −247.552 −440.297

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −155.783 −257.838
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.2 −154.907 −257.367
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.3 −154.003 −256.903

Table 4. Numerical variation in local Nusselt number at both surfaces of moving disk.

γ M R Pr Ec λ δ α ε Ar RT K Lower Disk Upper Disk

0.2 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.2173 62.2902
0.4 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.1456 64.2379
0.6 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.1225 66.2978

0.5 1.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.1714 65.2526
0.5 1.5 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −49.2164 71.3174
0.5 2.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −55.2913 77.3855

0.5 01 2.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −1.93260 10.9702
0.5 01 3.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −9.76591 20.5937
0.5 01 4.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −20.8434 35.8615

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 2.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −59.2591 126.626
0.5 01 05 3.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −70.4176 209.251

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 1.0 1.5 0.2 0.5 0.5 0.5 02 2.0 0.1 −65.0929 88.3373
0.5 01 05 1.0 2.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −95.5317 118.241

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −37.1562 59.1911
0.5 01 05 1.0 1.0 0.4 0.5 0.5 0.5 02 2.0 0.1 −35.3967 58.5028
0.5 01 05 1.0 1.0 0.6 0.5 0.5 0.5 02 2.0 0.1 −33.6384 57.8153

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 1.0 1.0 0.2 0.6 0.5 0.5 02 2.0 0.1 −4.57816 17.6285
0.5 01 05 1.0 1.0 0.2 0.7 0.5 0.5 02 2.0 0.1 −2.16759 8.23666

0.5 01 05 1.0 1.0 0.2 0.5 0.1 0.5 02 2.0 0.1 −32.5620 56.3592
0.5 01 05 1.0 1.0 0.2 0.5 0.3 0.5 02 2.0 0.1 −33.5476 57.2673
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.1 02 1.0 0.1 −4.03154 4.78376
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.3 02 1.0 0.1 −7.31547 21.5100
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.1 −34.5174 58.1590

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 3.5 1.0 0.1 −128.255 180.574
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.0 1.0 0.1 −171.887 236.943
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.5 1.0 0.1 −221.713 301.095

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.3 0.1 −43.9555 76.6222
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.6 0.1 −53.7965 97.8575

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.1 −35.1337 58.7998
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.2 −35.8183 59.5099
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.3 −36.5027 60.2180
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Table 5. The numerical values of Critical Frank–Kamenetskii number for various parameters.

γ M R Pr Ec δ α ε Ar RT λ Kc

0.3 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8144
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.7 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8170

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 03 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.7897
0.5 05 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.7400

0.5 01 01 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.6770
0.5 01 02 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.6946
0.5 01 03 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.7235

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 01 05 02 01 0.5 0.5 0.01 02 2.0 1.2 −10.9559
0.5 01 05 03 01 0.5 0.5 0.01 02 2.0 1.2 −11.0960

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 01 05 01 02 0.5 0.5 0.01 02 2.0 1.2 −10.8064
0.5 01 05 01 03 0.5 0.5 0.01 02 2.0 1.2 −10.7978

0.5 01 05 01 01 2.0 0.5 0.01 02 2.0 1.2 −10.5643
0.5 01 05 01 01 2.5 0.5 0.01 02 2.0 1.2 −10.4735
0.5 01 05 01 01 3.0 0.5 0.01 02 2.0 1.2 −10.3631

0.5 01 05 01 01 0.5 0.3 0.01 02 2.0 1.2 −10.6729
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 01 05 01 01 0.5 0.7 0.01 02 2.0 1.2 −10.9575

0.5 01 05 01 01 0.5 0.5 0.1 02 2.0 1.2 −12.1179
0.5 01 05 01 01 0.5 0.5 0.2 02 2.0 1.2 −14.0721
0.5 01 05 01 01 0.5 0.5 0.3 02 2.0 1.2 −16.1551

0.5 01 05 01 01 0.5 0.5 0.01 10 2.0 1.2 −11.3132
0.5 01 05 01 01 0.5 0.5 0.01 50 2.0 1.2 −15.1132
0.5 01 05 01 01 0.5 0.5 0.01 100 2.0 1.2 −20.1335

0.5 01 05 01 01 0.5 0.5 0.01 02 01 1.2 −10.4104
0.5 01 05 01 01 0.5 0.5 0.01 02 02 1.2 −10.3151
0.5 01 05 01 01 0.5 0.5 0.01 02 03 1.2 −11.2584

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 0.5 −10.8071
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.0 −10.8127
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.5 −10.8189

7. Conclusions

The axisymmetric flow of Maxwell fluid between two isothermal stretching disks is discussed in
presence of source/sink and activation energy features. The mixed convection effects are implemented
in the momentum equation. Analytical results are discussed by using the homotopy analysis method.
The following observations are furnished:

• The wall shear stress decreases by increasing stretching parameter, Hartmann number,
Reynolds number, Deborah number, activation energy parameter and constant temperature
parameter. It means that tangential stresses increase by increasing stretching the ratio parameter,
Hartmann number and Reynolds number. While the behavior of dimensionless distance and
Frank–Kamenetskii number are quite the opposite.

• The pressure distribution is increased with variation of theFrank–Kamenetskii number and
stretching ratio parameter.

• When the Deborah number λ and Hartmann number increases, the wall shear stress at the lower
disk increases while an opposite trend is found at the upper disk.

• It is observed that the surface heat transfer increases by increasing the stretching parameter and
heat source/sink parameter.

• The rate of heat transfer decreases at the lower disk and increases at the upper disk by increasing
the Hartmann number, Reynolds number, Archimedes number and activation energy parameter.
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Nomenclature

(r,θ, z) cylindrical coordinate
(u, w) velocity components
T1 upper disk temperature
E activation energy
R1 gas constant
a0 reactant concentration
ρ characteristic density
ν is the kinematic viscosity
KT thermal conductivity of fluid
Q exothermicity factor
γ stretching rate constant
M Hartmann number
α heat source/sink parameter
Ec Eckert number
RT constant temperature parameter
Ar Archimedes number
τw shear stress

d distance
T is the fluid temperature
T2 lower disk temperature
B product species
k0 is chemical reaction
λ1 is the relaxation time
p is the fluid pressure
T0 isreference temperature
β denotes the thermal expansion
Q0 heat generation/absorption coefficient
R Reynolds number
Gr Grashoff number
Pr Prandtl number
K Frank–Kamenetskii number
ε activation energy parameter
δ dimensionless distance
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