Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Fe-Mn-Mg modified biochar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5228 KB  
Article
Iron–Manganese–Magnesium Co-Modified Biochar Reduces Arsenic Mobility and Accumulation in a Pakchoi–Rice Rotation System
by Jingnan Zhang, Meina Liang, Mushi Qiao, Qing Zhang, Xuehong Zhang and Dunqiu Wang
Toxics 2026, 14(2), 112; https://doi.org/10.3390/toxics14020112 (registering DOI) - 24 Jan 2026
Abstract
Arsenic (As) contamination in paddy soils poses a serious risk to rice safety and human health. To mitigate this issue, we developed a low-temperature, partially pyrolyzed Fe/Mn/Mg-modified biochar (FMM-BC) and evaluated its performance and mechanisms for remediating As-contaminated soil through a pakchoi–rice rotation [...] Read more.
Arsenic (As) contamination in paddy soils poses a serious risk to rice safety and human health. To mitigate this issue, we developed a low-temperature, partially pyrolyzed Fe/Mn/Mg-modified biochar (FMM-BC) and evaluated its performance and mechanisms for remediating As-contaminated soil through a pakchoi–rice rotation pot experiment, aiming to reduce As accumulation in rice grains and pakchoi. The results indicated that FMM-BC application altered soil physicochemical properties and As speciation, reducing both water-soluble and bioavailable As and promoting its transformation from exchangeable to more stable organic-bound and residual fractions. Compared with the control, FMM-BC application reduced arsenic content in rice stems, leaves, and brown rice to 1.94 mg∙kg−1, 5.24 mg∙kg−1, and 1.21 mg∙kg−1, respectively. In contrast, unmodified biochar (BC) increased As bioavailability and plant uptake, underscoring the importance of Fe/Mn/Mg modification. FMM-BC also enhanced the translocation of Fe, Mn, and Mg within rice plants, thereby modifying internal As transport dynamics and suppressing its accumulation in aboveground tissues. Under FMM-BC treatment, arsenic content in pakchoi stems and leaves decreased to 1.19 mg∙kg−1 (vs. 1.96 mg∙kg−1 in the control), and brown rice declined to 0.27 mg∙kg−1 (vs. 1.49 mg∙kg−1 in the control)—well below the national food safety threshold (0.35 mg∙kg−1). These findings demonstrate that FMM-BC effectively stabilizes As in contaminated soils and reduces its transfer to edible plant parts, with Fe/Mn/Mg playing a key role in enhancing As immobilization and limiting its mobility within the soil–plant system. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

20 pages, 5439 KB  
Article
The Efficient Degradation of Oxytetracycline in Wastewater Using Fe/Mn-Modified Magnetic Oak Biochar: Pathways and Mechanistic Investigation
by Yujie Zhou, Yuzhe Fu, Xiaoxue Niu, Bohan Wu, Xinghan Liu, Fu Hao, Zichuan Ma, Hao Cai and Yuheng Liu
Magnetochemistry 2025, 11(6), 49; https://doi.org/10.3390/magnetochemistry11060049 - 6 Jun 2025
Cited by 5 | Viewed by 2270
Abstract
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal [...] Read more.
Antibiotic resistance has been recognized as a global threat to human health. Therefore, it is urgent to develop effective strategies to address the contamination of water environments caused by antibiotics. In this study, Fe/Mn bimetallic-modified biochar (FMBC) was synthesized through a one-pot oxidation/reduction-hydrothermal co-precipitation method, demonstrating an exceptional photocatalytic-Fenton degradation performance for oxytetracycline (OTC). Characterization techniques including FTIR, SEM, XRD, VSM, and N2 adsorption–desorption analysis confirmed that the Fe/Mn bimetals were successfully loaded onto the surface of biochar in the form of Fe3O4 and MnFe2O4 mixed crystals and exhibited favorable paramagnetic properties that facilitate magnetic recovery. A key innovation is the utilization of biochar’s inherent phenol/quinone structures as reactive sites and electron transfer mediators, which synergistically interact with the loaded bimetallic oxides to significantly enhance the generation of highly reactive ·OH radicals, thereby boosting catalytic activity. Even after five recycling cycles, the material exhibited minimal changes in degradation efficiency and bimetallic crystal structure, indicating its notable stability and reusability. The photocatalytic degradation experiment conducted in a Fenton-like reaction system demonstrates that, under the conditions of pH 4.0, a H2O2 concentration of 5.16 mmol/L, a catalyst dosage of 0.20 g/L, and an OTC concentration of 100 mg/L, the optimal degradation efficiency of 98.3% can be achieved. Additionally, the pseudo-first-order kinetic rate constant was determined to be 4.88 min−1. Furthermore, this study elucidated the detailed degradation mechanisms, pathways, and the influence of various ions, providing valuable theoretical insights and technical support for the degradation of antibiotics in real wastewater. Full article
(This article belongs to the Special Issue Applications of Magnetic Materials in Water Treatment)
Show Figures

Figure 1

25 pages, 3484 KB  
Article
Trimetallic Fe-Zn-Mn (Oxy)Hydroxide-Enhanced Coffee Biochar for Simultaneous Phosphate and Ammonium Recovery and Recycling
by Diana Guaya, Jhuliana Campoverde, Camilo Piedra and Alexis Debut
Nanomaterials 2025, 15(11), 849; https://doi.org/10.3390/nano15110849 - 2 Jun 2025
Cited by 1 | Viewed by 1677
Abstract
Excess phosphorus (P) and nitrogen (N) in wastewater contribute to eutrophication, driving the need for low–cost and sustainable recovery technologies. This study presents a novel adsorbent synthesized from spent coffee grounds biochar (CB) chemically modified with Mn2+/Zn2+/Fe3+ (oxy)hydroxide [...] Read more.
Excess phosphorus (P) and nitrogen (N) in wastewater contribute to eutrophication, driving the need for low–cost and sustainable recovery technologies. This study presents a novel adsorbent synthesized from spent coffee grounds biochar (CB) chemically modified with Mn2+/Zn2+/Fe3+ (oxy)hydroxide nanoparticles (CB–M) for simultaneous removal of phosphate and ammonium. Batch adsorption experiments using both synthetic solution and municipal wastewater were conducted to evaluate the material’s adsorption performance and practical applicability. Kinetic, isotherm, thermodynamic, and sequential extraction analyses revealed that CB–M achieved maximum phosphate adsorption capacities ranging from 42.6 to 72.0 mg PO43−·g−1 across temperatures of 20–33 °C, reducing effluent phosphate concentrations to below 0.01 mg·L−1. Ammonium removal was moderate, with capacities ranging between 2.8 and 2.95 mg NH4+·g−1. Thermodynamic analysis indicated that phosphate adsorption was spontaneous and endothermic, dominated by inner–sphere complexation, while ammonium uptake occurred primarily through weaker, reversible ion exchange mechanisms. Sequential extraction showed over 70% of adsorbed phosphate was associated with Fe-Mn-Zn phases, indicating the potential for use as a slow–release fertilizer. The CB–M retained structural integrity and exhibited partial desorption, supporting its reusability for nutrient recovery. Compared to other biochars, CB–M demonstrated superior phosphate selectivity at a neutral–pH, avoided the use of hazardous metals, and transformed coffee waste into a multifunctional material for wastewater treatment and soil amendment. These findings underscore the potential of CB–M as a circular economy solution for nutrient recovery without introducing secondary contamination. Full article
Show Figures

Graphical abstract

23 pages, 3603 KB  
Article
Application of Iron-Bimetal Biochar for As and Cd Reduction and Soil Organic Carbon Preservation Under Varying Moisture
by Frank Stephano Mabagala, Tingjuan Wang, Qiufen Feng, Xibai Zeng, Chao He, Cuixia Wu, Nan Zhang and Shiming Su
Agriculture 2025, 15(11), 1114; https://doi.org/10.3390/agriculture15111114 - 22 May 2025
Cited by 1 | Viewed by 1517
Abstract
The contamination of paddy soils with arsenic (As) and cadmium (Cd), coupled with the depletion of soil organic carbon (SOC), poses significant threats to rice yields and quality. There is an urgent need to identify a suitable soil additive capable of achieving simultaneous [...] Read more.
The contamination of paddy soils with arsenic (As) and cadmium (Cd), coupled with the depletion of soil organic carbon (SOC), poses significant threats to rice yields and quality. There is an urgent need to identify a suitable soil additive capable of achieving simultaneous heavy metal remediation and promotion of organic matter enrichment. The current study introduced two novel iron (Fe)/magnesium (Mg)-based bimetal-oxide-modified rice straw biochar (RSB), namely RSB-Fe/Mn and RSB-Fe/Mg. It evaluated their effectiveness in As/Cd immobilization and SOC preservation. An 8-week cultivation experiment was carried out in sequential drying–flooding moisture fluctuation conditions, with the soil pore water As/Cd (PWAs/Cd) and SOC fractions monitored. The mechanisms of As/Cd immobilization were investigated using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) characterizations. Results revealed that PWAs and PWCd were reduced by up to 67.1% and 80.2% during the drying period and by 27.0% and 76.5% during the flooding period, respectively. Additionally, SOC content increased by 16.3% and 33.9% with RSB-Fe/Mn addition during the drying and flooding period, respectively, with an increase in the mineral-associated organic carbon (MAOC) fraction. The study proves that RSB-Fe/Mn and RSB-Fe/Mg are effective for soil As/Cd passivation and SOC stabilization, offering a promising solution to mitigate As and Cd pollution in paddy soils while maintaining soil quality. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

12 pages, 2238 KB  
Article
Adsorption Characteristics of Cd2+ Ions in Aqueous Solution on Modified Straw Biochar
by Bo Tang, Haopu Xu, Fengmin Song and Zhifeng Liu
Sustainability 2023, 15(5), 4373; https://doi.org/10.3390/su15054373 - 1 Mar 2023
Cited by 7 | Viewed by 3075
Abstract
Rice straw and corn straw were selected as raw materials to prepare biocharby anoxic carbonization and the biochar was loaded on the surface with FeCl3, MnCl2 and Fe(NO3)3 & KMnO4, respectively, and then two types [...] Read more.
Rice straw and corn straw were selected as raw materials to prepare biocharby anoxic carbonization and the biochar was loaded on the surface with FeCl3, MnCl2 and Fe(NO3)3 & KMnO4, respectively, and then two types of straw biochar and six types of modified biochar were prepared. FT-IR, SEM, and XRD were used to characterize and analyze the physical and chemical properties of the biochar. The adsorption kinetics and adsorption isothermal tests of Cd2+ ions in aqueous solution were carried out. The results showed that modified biochars attached more active sites and surface group, especially iron-manganese-modified biochar (FMBC1, FMBC2). The kinetic adsorption tests showed that the adsorption process of eight kinds of biochar all conformed to the quasi-second-order kinetic equation, and chemisorption maybe dominated the adsorption process. The adsorption isothermal test showed that the adsorption process of Cd2+ ions by FeCl3-modified biochar (FBC1, FBC2) and Fe(NO3)3 & KMnO4-modified biochar (FMBC1, FMBC2) conforms to the Freundlich model, and the adsorption process of Cd2+ ions by MnCl2-modified biochar (MBC1, MBC2) conforms to Langmuir model. Compared with other kinds of biochar, the KF value of Fe(NO3)3 & KMnO4-modified biochar of rice straw biochar (FMBC1) was the largest, reached 18.602 L·mg−1, and its 1/n value was the smallest, it reached 0.474, indicating that the adsorption effect on Cd2+ of FMBC1 was the best. Full article
Show Figures

Figure 1

15 pages, 5221 KB  
Article
Adsorption Characteristics and Mechanisms of Fe-Mn Oxide Modified Biochar for Pb(II) in Wastewater
by Shang-Feng Tang, Hang Zhou, Wen-Tao Tan, Jun-Guo Huang, Peng Zeng, Jiao-Feng Gu and Bo-Han Liao
Int. J. Environ. Res. Public Health 2022, 19(14), 8420; https://doi.org/10.3390/ijerph19148420 - 10 Jul 2022
Cited by 31 | Viewed by 4492
Abstract
This study prepared iron-manganese oxide-modified biochar (FM-BC) by impregnating rice straw biochar (BC) with a mixed solution of ferric nitrate and potassium permanganate. The effects of pH, FM-BC dosage, interference of coexisting ions, adsorption time, incipient Pb(II) concentration, and temperature on the adsorption [...] Read more.
This study prepared iron-manganese oxide-modified biochar (FM-BC) by impregnating rice straw biochar (BC) with a mixed solution of ferric nitrate and potassium permanganate. The effects of pH, FM-BC dosage, interference of coexisting ions, adsorption time, incipient Pb(II) concentration, and temperature on the adsorption of Pb(II) by FM-BC were investigated. Moreover, the Pb(II) adsorption mechanism of FM-BC was analyzed using a series of characterization techniques. The results showed that the Fe-Mn oxide composite modification significantly promoted the physical and chemical functions of the biochar surface and the adsorption capacity of Pb(II). The specific surface area of FM-BC was 18.20 times larger than that of BC, and the maximum Pb(II) adsorption capacity reached 165.88 mg/g. Adsorption kinetic tests showed that the adsorption of Pb(II) by FM-BC was based on the pseudo-second-order kinetic model, which indicated that the adsorption process was mainly governed by chemical adsorption. The isothermal adsorption of Pb(II) by FM-BC conformed to the Langmuir model, indicating that the adsorption process was spontaneous and endothermic. Characterization analyses (Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy) showed that the adsorption mechanism of Pb(II) by FM-BC was mainly via electrostatic adsorption, chemical precipitation, complexation, ion exchange, and the transformation of Mn2O3 into MnO2. Therefore, FM-BC is a promising adsorbent for Pb(II) removal from wastewater. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

14 pages, 3101 KB  
Article
Preparation and Characterization of Macroalgae Biochar Nanomaterials with Highly Efficient Adsorption and Photodegradation Ability
by Yarui Zhou, Hailong Zhang, Lu Cai, Jian Guo, Yaning Wang, Lili Ji and Wendong Song
Materials 2018, 11(9), 1709; https://doi.org/10.3390/ma11091709 - 13 Sep 2018
Cited by 45 | Viewed by 6602
Abstract
In this study, carbonized kelp biochar (AKB) modified by KOH impregnation and photocatalytic Bi2MoO6/AKB composite (BKBC) nanomaterials were the first time successfully synthesized for efficient removal of dyes in aqueous solution. BET, XRD, FT-IR, and SEM were employed to [...] Read more.
In this study, carbonized kelp biochar (AKB) modified by KOH impregnation and photocatalytic Bi2MoO6/AKB composite (BKBC) nanomaterials were the first time successfully synthesized for efficient removal of dyes in aqueous solution. BET, XRD, FT-IR, and SEM were employed to characterize as-prepared samples. UV-vis and other test results indicated that the removal efficiency of methylene blue (MB) was 61.39% and 94.12% for BKBC and AKB, respectively, which was up to 13 times and 20 times higher in comparison with pure Bi2MoO6 (PBM). In addition, the equilibrium adsorption capacity of MB could reach up to 324.1 mg/g for AKB. This high dyes adsorption performance could be likely attributed to its high specific surface area (507.177 m2/g) and its abundant presence of various functional groups such as –OH and =C–H on AKB. Particularly, the existing of amorphous carbon and transition metal oxides, such as Fe2O3 and Mn5O8, could be beneficial for the photodegradation of MB for AKB. Meanwhile, experimental data indicated that adsorption kinetics complied with the pseudo-second order model well, and all of the tests had satisfactory results in terms of the highly efficient adsorption and photodegradation activity of AKB nanomaterials, which suggested its great potential in wastewater treatment. Full article
Show Figures

Graphical abstract

Back to TopTop