Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Fe-Cu-Zn sorbents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3697 KB  
Article
Heavy Metal Removal from Produced Water Using Waste Materials: A Comparative Study
by Neetu Bansal, Md Maruf Mortula and Sameer Al-Asheh
Water 2025, 17(18), 2789; https://doi.org/10.3390/w17182789 - 22 Sep 2025
Viewed by 2665
Abstract
Produced water, a typical byproduct of oil and gas extraction, is considered a significant environmental and health problem due to its heavy metals content. The objective of this study is to evaluate and compare the efficiency of seven low-cost, waste-derived adsorbents in removing [...] Read more.
Produced water, a typical byproduct of oil and gas extraction, is considered a significant environmental and health problem due to its heavy metals content. The objective of this study is to evaluate and compare the efficiency of seven low-cost, waste-derived adsorbents in removing Cr3+, Cu2+, Fe2+, Zn2+, and Pb2+ from simulated produced water. The sorbents include gypsum, neem leaves, mandarin peels, pistachio shells, date seed powder, date seed ash, and activated carbon from date seeds. Adsorption experiments were performed using 2.5 and 5 g/L of the adsorbent. SEM and EDX analyses were used to confirm morphological changes and metal deposition after adsorption. Results showed that date seed ash exhibited the highest efficiency (85–100% across all metals), followed by activated carbon (25–98%), with strong Fe and Cu removal but a lower Pb uptake. Neem leaves, mandarin peels, and date seed powder showed moderate efficiencies (30–97%), while gypsum and pistachio shells were the least effective (0–81%). Lignocellulosic peels also showed good results due to the abundance of –OH and –COOH functional groups. Gypsum performed poorly across most metals. Integrating these waste-based adsorbents into secondary or tertiary treatment stages is an economical and sustainable solution for oil wastewater treatment. The results revealed the potential for valorizing agro-industrial and construction waste for circular economic applications in heavy metal pollution control. Full article
Show Figures

Graphical abstract

14 pages, 2312 KB  
Article
SO2 Removal from Flue Gas by Char-Supported Fe-Zn-Cu Sorbent
by Yueying Li, Chuan Na, Jinxiao Dou and Jianglong Yu
Materials 2025, 18(2), 394; https://doi.org/10.3390/ma18020394 - 16 Jan 2025
Cited by 2 | Viewed by 1639
Abstract
In this study, the mechanisms of SO2 adsorption on lignite char and char-supported Fe-Zn-Cu sorbent (FZC sorbent) were investigated. The FZC sorbent was prepared by the impregnation of metal components on raw coal followed by steam gasification. Flue gas desulfurization experiments were [...] Read more.
In this study, the mechanisms of SO2 adsorption on lignite char and char-supported Fe-Zn-Cu sorbent (FZC sorbent) were investigated. The FZC sorbent was prepared by the impregnation of metal components on raw coal followed by steam gasification. Flue gas desulfurization experiments were carried out on a fixed-bed reactor at 100–300 °C by using simulated flue gas containing SO2/O2/H2O balanced by N2. The flue gas composition was monitored by using an online flue gas analyzer. The solid samples before and after desulfurization were analyzed by using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Thermogravimetric Analysis–Mass Spectroscopy (TG-MS), and Brunauer–Emmett–Teller (BET) surface area analysis. The experimental results showed that both lignite char and the FZC sorbent can effectively adsorb SO2 under the present experimental conditions. The presence of O2 and H2O in the flue gas promoted the adsorption of SO2 on the FZC sorbent. The SO2 adsorption capacity of the FZC sorbent increased with the increase in the temperature up to 250 °C. When the temperature was further increased to 300 °C, the SO2 adsorption capacity of the sorbents decreased rapidly. Under optimum experimental conditions with a space velocity of 1500 h−1, a desulfurization temperature of 250 °C, and 5% (vol) O2 and 10% (vol) H2O in the flue gas, the sorbents exhibited the longest breakthrough time of 280 min and breakthrough SO2 adsorption capacity of about 2200 mg (SO2) per gram sorbent. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

27 pages, 22816 KB  
Article
Aqueous Carbonation of Waste Incineration Residues: Comparing BA, FA, and APCr Across Production Scenarios
by Quentin Wehrung, Davide Bernasconi, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Sara Di Felice, Erica Bicchi, Alessandro Pavese and Linda Pastero
Minerals 2024, 14(12), 1269; https://doi.org/10.3390/min14121269 - 13 Dec 2024
Cited by 6 | Viewed by 3888
Abstract
This study investigates the reactivity of municipal solid waste incineration residues to aqueous carbonation, focusing on CO2 absorption rates, uptakes, and heavy metal (HM) leachability. Various combinations of boiler, electrofilter, and bag filter residues were assessed under typical incineration conditions. Bag filter [...] Read more.
This study investigates the reactivity of municipal solid waste incineration residues to aqueous carbonation, focusing on CO2 absorption rates, uptakes, and heavy metal (HM) leachability. Various combinations of boiler, electrofilter, and bag filter residues were assessed under typical incineration conditions. Bag filter residues from lime-sorbent plants exhibited the highest CO2 uptake (244.5 gCO2/kg), while bottom ash (BA) fine fraction, boiler/electrofilter fly ash (FA), and other mixed air pollution control residue (APCr) demonstrated uptakes of 101, 0, 93, and 167 gCO2/kg, respectively. Carbonation kinetics revealed that high calcium content FA and APCr, followed similar CO2 absorption trends. Notably, BA carbonation was predominantly driven by Ca-aluminates rather than lime. Carbonation reduces leaching of Al, As, Cd, Co, Cu, Ni, Pb and Zn compared to water washing, though significant concerns arise with anions such as Sb and Cr. In BA, critical behaviours of Cr, Mn, and Fe were observed, with Cr leaching likely controlled by Fe-Mn-Cr oxide particle dissolution. These findings highlight the potential of integrating enhanced metal recovery (EMR) through density or magnetic separation in BA prior to carbonation to reduce HM leaching and recycle critical metals (Ag, Cu, Cr, Ni, Mn, etc). Full article
(This article belongs to the Special Issue CO2 Mineralization and Utilization)
Show Figures

Figure 1

15 pages, 1615 KB  
Article
Selective Sorption of Noble Metals on Polymer Gel Modified with Ionic Liquid
by Ivanka Dakova, Olga Veleva and Irina Karadjova
Molecules 2024, 29(20), 4970; https://doi.org/10.3390/molecules29204970 - 21 Oct 2024
Viewed by 1836
Abstract
The solid phase extraction of Au, Ir, Pd, Pt, and Rh on a polymer gel modified with ionic liquid containing methylimidazolium groups (MIA-PG) has been investigated. The positively charged surface of the sorbent is highly suitable for the sorption of stable chlorido complexes [...] Read more.
The solid phase extraction of Au, Ir, Pd, Pt, and Rh on a polymer gel modified with ionic liquid containing methylimidazolium groups (MIA-PG) has been investigated. The positively charged surface of the sorbent is highly suitable for the sorption of stable chlorido complexes of the studied analytes, while the retention of base metals Cu, Fe, Ni, Zn, and Mn is negligible. Optimization experiments performed showed that, at 0.05 M HCl, the degree of sorption of Au, Ir, Pd, and Pt is above 95%, and only for Rh, the maximum degree is 65%; complete elution is achieved in the mixture of thiourea in HCl. The results obtained from the equilibrium adsorption studies are fitted in various adsorption models, such as Langmuir and Freundlich, and the model parameters have been evaluated. The kinetics analysis indicated that the adsorption of Au, Ir, Pd, Pt, and Rh onto the sorbent follows the pseudo-second-order model. Intraparticle diffusion and ion exchange reactions were the rate-limiting steps. Analytical procedures were developed for Pd, Pt, and Rh determination in road dust and soil and for Au determination in copper ore and copper concentrate. The procedures are validated by the analysis of certified reference materials. Analytical figures of merit confirmed their applicability in routine laboratory practice. Full article
Show Figures

Graphical abstract

13 pages, 3461 KB  
Article
Biosorption of Copper (II) Ions Using Coffee Grounds—A Case Study
by Anna Młynarczykowska and Monika Orlof-Naturalna
Sustainability 2024, 16(17), 7693; https://doi.org/10.3390/su16177693 - 4 Sep 2024
Cited by 7 | Viewed by 3838
Abstract
Industrial and domestic human activities have a significant impact on the environment, contributing, among other things, to the increased pollution of natural waters. The spread of heavy metals is particularly dangerous to the health and life of living organisms due to the high [...] Read more.
Industrial and domestic human activities have a significant impact on the environment, contributing, among other things, to the increased pollution of natural waters. The spread of heavy metals is particularly dangerous to the health and life of living organisms due to the high accumulation potential of, among others, Cr (VI), Zn (II), Cu (II), Cd (II), Fe (II), and Ni (II). In order to remove, concentrate, and/or recover ions of these metals, various physical and/or chemical methods are commonly used. In this study, spent coffee grounds (SCGs) efficiently removed copper ions from simulated aqueous solutions, especially at low metal ion concentrations. Without additional modification, coffee grounds performed comparably to traditional adsorbents like activated carbon or ion exchangers. It was found that used ground coffee grounds effectively removed Cu (II) ions at a wide range of concentrations, with the highest efficiency (over 85%) obtained for dilute solutions. On the other hand, regeneration tests performed using a 10% hydrochloric acid solution successfully restored the coffee residue adsorbent, achieving a desorption efficiency of about 35%. This method concentrated the solution and facilitated efficient metal recovery by minimizing acid usage. The sorbent used is an innovative, cheap, and easy-to-use material with high sorption capabilities. Full article
(This article belongs to the Special Issue Green Chemistry and Sustainable Biomass Conversion)
Show Figures

Figure 1

17 pages, 2721 KB  
Article
Exploring Methane Storage Capacities of M2(BDC)2(DABCO) Sorbents: A Multiscale Computational Study
by Nguyen Thi Xuan Huynh, Tue Nguyen-Van, Nguyen Le Bao Tran, Nguyen Van Nghia and Pham Ngoc Thanh
Crystals 2024, 14(7), 596; https://doi.org/10.3390/cryst14070596 - 27 Jun 2024
Viewed by 2561
Abstract
A promising solution for efficient methane (CH4) storage and transport is a metal–organic framework (MOF)-based sorbent. Hence, searching for potential MOFs like M2(BDC)2(DABCO) to enhance the CH4 storage capacity in both gravimetric and volumetric uptakes is [...] Read more.
A promising solution for efficient methane (CH4) storage and transport is a metal–organic framework (MOF)-based sorbent. Hence, searching for potential MOFs like M2(BDC)2(DABCO) to enhance the CH4 storage capacity in both gravimetric and volumetric uptakes is essential. Herein, we systematically elucidate the adsorption of CH4 in M2(BDC)2(DABCO) or M(DABCO) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) MOFs using multiscale simulations that combined grand canonical Monte Carlo simulation with van der Waals density functional (vdW-DF) calculation. We find that, in the M(DABCO) series, Mg(DABCO) has the highest total CH4 adsorption capacities, with mtot= 231.39 mg/g at 298 K, for gravimetric uptake, and Vtot= 231.43 cc(STP)/cc, for volumetric uptake. The effects of temperature, pressure, and metal substitution on enhancing CH4 storage are evaluated, and we predict that the volumetric CH4 storage capacity on M(DABCO) could meet the DOE target at temperatures of ca. 238 K–268 K and pressures of 35–100 bar. The interactions between CH4 and M(DABCO) are dominated by the vdW interactions, as shown by the vdW-DF calculations. The Mg, Mn, Fe, Co, and Ni substitutions in M(DABCO) result in a stronger interaction and thus, a higher CH4 storage capacity, at higher pressures for Mg, Mn, Ni, and Co and at lower pressures for Fe. This work may provide guidance for the rational design of CH4 storage in M2(BDC)2(DABCO) MOFs. Full article
Show Figures

Figure 1

21 pages, 4348 KB  
Article
Improved Soil Amendment by Integrating Metal Complexes and Biodegradable Complexing Agents in Superabsorbents
by Alicja Drozd, Yongming Ju and Dorota Kołodyńska
Materials 2024, 17(1), 141; https://doi.org/10.3390/ma17010141 - 27 Dec 2023
Cited by 2 | Viewed by 1876
Abstract
The superabsorbents’ application as materials for the preparation of modern mineral fertilizers of controlled activity is presented. Under the static conditions, the commercial acrylic-based Agro® Hydrogel was used as a sorbent for Cu(II), Fe(III), Mn(II), and Zn(II) ions in the presence of [...] Read more.
The superabsorbents’ application as materials for the preparation of modern mineral fertilizers of controlled activity is presented. Under the static conditions, the commercial acrylic-based Agro® Hydrogel was used as a sorbent for Cu(II), Fe(III), Mn(II), and Zn(II) ions in the presence of three biodegradable complexing agents of the new generation: (N-1,2-dicarboxyethyl)-D,L-aspartate acid (IDHA), N,N-ethylenediaminedisuccinic acid (EDDS) and N,N-bis(carboxymethyl) glutamic acid (GLDA). The ions and complexes concentrations were determined by the inductively coupled plasma optical emission spectrometer (ICP-OES). The characterization of hydrogel before and after the adsorption process was made using the Fourier transform infrared spectroscopy (FT-IR), surface area determination (ASAP), scanning electron microscopy (SEM-EDS) as well as the thermogravimetric (TGA) methods. The influence of the phase contact time, initial concentration, and pH on the adsorption capacities was investigated. The kinetic and adsorption parameters were determined. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe the experimental data. The Langmuir isotherm model accurately characterized the equilibrium process. The adsorption process was fast, and it reached equilibrium after 60 min of the phase contact time. The research on the adsorption of Cu(II), Fe(III), Mn(II), and Zn(II) onto Agro® Hydrogel with IDHA, EDDS, and GLDA indicates that these complexing agents improve process efficiency. Full article
(This article belongs to the Special Issue Environmentally Friendly Adsorption Materials)
Show Figures

Figure 1

18 pages, 2636 KB  
Article
Enhancing Trace Metal Extraction from Wastewater: Magnetic Activated Carbon as a High-Performance Sorbent for Inductively Coupled Plasma Optical Emission Spectrometry Analysis
by Sergio J. Abellán-Martín, David Villalgordo-Hernández, Miguel Ángel Aguirre, Enrique V. Ramos-Fernández, Javier Narciso and Antonio Canals
Separations 2023, 10(11), 563; https://doi.org/10.3390/separations10110563 - 10 Nov 2023
Cited by 7 | Viewed by 3939
Abstract
A new fast, sensitive, and environmentally friendly analytical method has been developed for the simultaneous determination of Ba, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn in wastewater samples using inductively coupled plasma optical emission spectroscopy (ICP OES). A preconcentration [...] Read more.
A new fast, sensitive, and environmentally friendly analytical method has been developed for the simultaneous determination of Ba, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn in wastewater samples using inductively coupled plasma optical emission spectroscopy (ICP OES). A preconcentration step using a magnetic dispersive solid-phase extraction (MDSPE) technique with a new magnetic sorbent was performed. The new sorbent material was a carbon containing magnetic cobalt and nitrogen groups. This material was synthetized using controlled pyrolysis of a zeolitic imidazolate framework (i.e., ZIF-67). In order to optimize the experimental parameters that affect the MDSPE procedure, a multivariate optimization strategy, using Plackett–Burman and circumscribed central composite designs (CCD), was used. The method has been evaluated employing optimized experimental conditions (i.e., sample weight, 10 g; sample pH, 7.6; amount of sorbent, 10 mg; dispersive agent, vortex; complexing agent concentration, 0.5%; ionic concentration, 0%; eluent, HCl; eluent concentration, 0.5 M; eluent volume, 300 μL; elution time, 3 min and extraction time, 3 min) using external calibration. Limits of detection (LODs) in a range from 0.073 to 1.3 μg L−1 were obtained, and the repeatability was evaluated at two different levels, resulting in relative standard deviations below 8% for both levels (n = 5). An increase in the sensitivity was observed due to the high enrichment factors (i.e., 3.2 to 13) obtained compared with direct ICP OES analysis. The method was also validated through carrying out recovery studies that employed a real wastewater sample and through the analysis of a certified reference material (ERM®-CA713). The recovery values obtained with the real wastewater were between 94 and 108% and between 90 and 109% for the analysis of ERM®-CA713, showing negligible matrix effects. Full article
Show Figures

Figure 1

25 pages, 9387 KB  
Article
ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium
by Elena Tomina, Lyudmila Novikova, Alexandra Kotova, Anna Meshcheryakova, Victoria Krupskaya, Ivan Morozov, Tatiana Koroleva, Ekaterina Tyupina, Nikolai Perov and Yuliya Alekhina
AppliedChem 2023, 3(4), 452-476; https://doi.org/10.3390/appliedchem3040029 - 30 Sep 2023
Cited by 6 | Viewed by 2902
Abstract
In order to enhance the efficiency of heavy metal ion extraction from aqueous medium, new nanocomposite magnetic sorbents were synthesized on the base of natural zeolite (Zt) and nanoparticles of ZnFe2O4 (F). The composition, structure and physical–chemical properties of new [...] Read more.
In order to enhance the efficiency of heavy metal ion extraction from aqueous medium, new nanocomposite magnetic sorbents were synthesized on the base of natural zeolite (Zt) and nanoparticles of ZnFe2O4 (F). The composition, structure and physical–chemical properties of new composites with 2% (Zt-2F), 8% (Zt-8F) and 16% (Zt-16F) of zinc ferrite were characterized by XRD, BET adsorption–desorption of nitrogen, SEM with elemental mapping, TEM and magnetometry. The sorption capacity of materials was assessed towards Cu2+ ions in aqueous solutions, for which kinetic and equilibrium features of sorption were established. The maximal sorption capacity (amax, mg/g) of the studied materials increased in the order: Zt (19.4) < Zt-2F (27.3) < Zt-8F (30.2) < Zt-16F (32.8) < ZnFe2O4 (161.3). The kinetics of the sorption process followed a pseudo-second order kinetic model. The sorption equilibrium at zinc ferrite was successfully described by the Langmuir model, while the Freundlich model better fitted the sorption equilibrium on zeolite and composites. The efficiency of Cu2+ ion extraction from 320 mg/dm3 aqueous solution was 63% for composite Zt-16F and 100% for a sample of ZnFe2O4. It was established that the proposed composite sorbents provide the operation of several cycles without regeneration, they can be easily recycled with 0.1 N HCl solution and are capable of magnetic separation. The advantages of new composites and the proposed method of synthesis allow recommending these materials as effective sorbents of heavy metals from wastewater. Full article
Show Figures

Figure 1

15 pages, 2945 KB  
Article
ZnAl-SO4 Layered Double Hydroxide and Allophane for Cr(VI), Cu(II) and Fe(III) Adsorption in Wastewater: Structure Comparison and Synergistic Effects
by Anna Maria Cardinale, Cristina Carbone, Marco Fortunato, Bruno Fabiano and Andrea Pietro Reverberi
Materials 2022, 15(19), 6887; https://doi.org/10.3390/ma15196887 - 4 Oct 2022
Cited by 16 | Viewed by 2917
Abstract
Owing to their structure, layered double hydroxides (LDHs) and allophane are nowadays considered as promising materials for application in different fields. The goal of this work is to compare the efficacy of allophane and ZnAl-SO4 LDH to remove, by adsorption, some cationic [...] Read more.
Owing to their structure, layered double hydroxides (LDHs) and allophane are nowadays considered as promising materials for application in different fields. The goal of this work is to compare the efficacy of allophane and ZnAl-SO4 LDH to remove, by adsorption, some cationic and anionic pollutants from industrial wastewater. Both compounds were synthesized via the co-precipitation route (direct method) followed by hydrothermal treatment, obtaining nanoscopic crystallites with a partially disordered turbostratic (ZnAl-SO4 LDH) or amorphous (allophane) structure. The characterization of the obtained compounds was performed by means of powder x-ray diffraction (PXRD), thermal gravimetry analysis (TGA), field emission scanning electron microscopy analysis (FESEM), and Fourier-transform infrared spectroscopy (FT-IR). The sorbents were tested using wastewater produced by a real metalworking plant and containing ionic species such as Cu(II), Fe(III) and Cr(VI), whose concentration was measured by means of inductively coupled plasma-optical emission spectrometry (ICP-OES). This investigation represents an alternative procedure with respect to standard protocols based on customarily made and artificially lab-produced wastewaters. Both sorbents and their combination proved to be efficient in Cr(VI) removal, irrespective of the presence of cations like Cu(II) and Fe(III). A synergistic effect was detected for Cu(II) adsorption in a mixed allophane/LDH sorbent, leading to a Cu(II) removal rate of 89.5%. Full article
(This article belongs to the Special Issue Bio-Based Materials and Their Environmental Applications)
Show Figures

Figure 1

16 pages, 1799 KB  
Article
Antimony Immobilization in Primary-Explosives-Contaminated Soils by Fe–Al-Based Amendments
by Ningning Wang, Yucong Jiang, Tianxiang Xia, Feng Xu, Chengjun Zhang, Dan Zhang and Zhiyuan Wu
Int. J. Environ. Res. Public Health 2022, 19(4), 1979; https://doi.org/10.3390/ijerph19041979 - 10 Feb 2022
Cited by 4 | Viewed by 2511
Abstract
Soils at primary explosives sites have been contaminated by high concentrations of antimony (Sb) and co-occurring heavy metals (Cu and Zn), and are largely overlooked and neglected. In this study, we investigated Sb concentrations and species and studied the effect of combined Fe- [...] Read more.
Soils at primary explosives sites have been contaminated by high concentrations of antimony (Sb) and co-occurring heavy metals (Cu and Zn), and are largely overlooked and neglected. In this study, we investigated Sb concentrations and species and studied the effect of combined Fe- and Fe–Al-based sorbent application on the mobility of Sb and co-occurring metals. The content of Sb in soil samples varied from 26.7 to 4255.0 mg/kg. In batch experiments, FeSO4 showed ideal Sb sorption (up to 97% sorption with 10% FeSO4·7H2O), whereas the sorptions of 10% Fe0 and 10% goethite were 72% and 41%, respectively. However, Fe-based sorbents enhanced the mobility of co-occurring Cu and Zn to varying levels, especially FeSO4·7H2O. Al(OH)3 was required to prevent Cu and Zn mobilization. In this study, 5% FeSO4·7H2O and 4% Al(OH)3 mixed with soil was the optimal combination to solve this problem, with Sb, Zn, and Cu stabilizations of 94.6%, 74.2%, and 82.2%, respectively. Column tests spiked with 5% FeSO4·7H2O, and 4% Al(OH)3 showed significant Sb (85.85%), Zn (83.9%), and Cu (94.8%) retention. The pH-regulated results indicated that acid conditioning improved Sb retention under alkaline conditions. However, no significant difference was found between the acidification sets and those without pH regulation. The experimental results showed that 5% FeSO4·7H2O + 4% Al(OH)3 without pH regulation was effective for the stabilization of Sb and co-occurring metals in primary explosive soils. Full article
(This article belongs to the Special Issue New Advances in Soil Pollution and Remediation)
Show Figures

Figure 1

15 pages, 3421 KB  
Article
Superabsorbents and Their Application for Heavy Metal Ion Removal in the Presence of EDDS
by Dorota Kołodyńska, Alicja Drozd and Yongming Ju
Polymers 2021, 13(21), 3688; https://doi.org/10.3390/polym13213688 - 26 Oct 2021
Cited by 3 | Viewed by 2029
Abstract
Three acrylic-based superabsorbents—TerraHydrogel®Aqua (THA), Zeba®Hydrogel (ZH) and Agro®Hydrogel (AH) were used to investigate the influence of chemical conditions on kinetic and adsorption behavior towards metal ions in the presence of a chelating agent of a new generation [...] Read more.
Three acrylic-based superabsorbents—TerraHydrogel®Aqua (THA), Zeba®Hydrogel (ZH) and Agro®Hydrogel (AH) were used to investigate the influence of chemical conditions on kinetic and adsorption behavior towards metal ions in the presence of a chelating agent of a new generation called ethylenediamine-N,N′-disuccinic acid (EDDS). The effects of relevant parameters—mainly including those of sorbent dose, pH of the solution and initial concentration of Cu(II), Zn(II), Mn(II) and Fe(III) complexes with EDDS as well as phase contact time and temperature—on the adsorption efficiency were studied in detail by the static method. The experimental data were also characterized by kinetic and adsorption parameters obtained based on the Langmuir and Freundlich models of sorption as well as the Lagergren, Ho and McKay and Weber–Morris models. Full article
(This article belongs to the Special Issue Functional Polymeric Adsorbents)
Show Figures

Figure 1

22 pages, 3302 KB  
Article
Chitin as a Sorbent Superior to Other Biopolymers: Features and Applications in Environmental Research, Energy Conversion, and Understanding Evolution of Animals
by Felix Blind and Stefan Fränzle
Polysaccharides 2021, 2(4), 773-794; https://doi.org/10.3390/polysaccharides2040047 - 9 Oct 2021
Cited by 7 | Viewed by 3964
Abstract
Chitin is an effective sorbent which can be used in environmental monitoring, beyond obvious applications in withholding metal-containing pollutants from wastewater- or nuclear fuel reprocessing flows, since background levels in (purified) chitin are very low except for a few metals (Fe, Cu, Al, [...] Read more.
Chitin is an effective sorbent which can be used in environmental monitoring, beyond obvious applications in withholding metal-containing pollutants from wastewater- or nuclear fuel reprocessing flows, since background levels in (purified) chitin are very low except for a few metals (Fe, Cu, Al, Ti, and Zn). Since retention of Mx+ and their complexes on chitin depend on an oxidation state, and to a lesser extent the presence of possible ligands or co-ligands, partition between chitin samples exposed to sediment and those exposed to water can be changed by environmental factors such as local biota producing or absorbing/metabolizing effective ligands such as citrate or oxalate and by changes of redox potential. Thermodynamics are studied via log P, using calibration functions log P vs. 1/r or log P vs. Σσ (sum of Hammett parameters of ligand donor groups) for di- and trivalent elements not involved in biochemical activity (not even indirectly) and thus measuring “deviations” from expected values. These “deviations” can be due to input as a pollutant, biochemical use of certain elements, precipitation or (bio-induced reduction of SO42− or CO2) dissolution of solids in sediment. Biochemical processes which occur deep in sediment can be detected due to this effect. Data from grafted chitin (saturation within ≤ 10 min) and from outer surfaces of arthropods caught at the same site do agree well. Log P is more telling than total amounts retrieved. Future applications of these features of chitin are outlined. Full article
Show Figures

Figure 1

9 pages, 39668 KB  
Article
Synthesis of β-Ca2P2O7 as an Adsorbent for the Removal of Heavy Metals from Water
by Diana Griesiute, Justina Gaidukevic, Aleksej Zarkov and Aivaras Kareiva
Sustainability 2021, 13(14), 7859; https://doi.org/10.3390/su13147859 - 14 Jul 2021
Cited by 15 | Viewed by 3573
Abstract
In the present work, beta-calcium pyrophosphate (β-Ca2P2O7) was investigated as a potential adsorbent for the removal of heavy metal ions from water. Single-phase β-Ca2P2O7 powders were synthesized by a simple, scalable and [...] Read more.
In the present work, beta-calcium pyrophosphate (β-Ca2P2O7) was investigated as a potential adsorbent for the removal of heavy metal ions from water. Single-phase β-Ca2P2O7 powders were synthesized by a simple, scalable and cost-effective wet precipitation method followed by annealing at 800 °C, which was employed for the conversion of as-precipitated brushite (CaHPO4∙2H2O) to β-Ca2P2O7. Physicochemical properties of the sorbent were characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA/DSC), scanning electron microscopy (SEM) and low temperature adsorption–desorption of nitrogen (BET method). The synthesized powders consisted of porous plate-like particles with micrometer dimensions. Specific surface area calculated by the BET method was found to be 7 m2 g−1. For the estimation of sorption properties, the aqueous model solutions containing different metal ions (Al3+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, Pb2+, Sn2+, Sr2+ and Zn2+) were used. The adsorption test revealed that β-Ca2P2O7 demonstrates the highest adsorption capacity for Pb2+ and Sn2+ ions, while the lowest capacity was observed towards Sr2+, Ni2+ and Co2+ ions. The optimal pH value for the removal of Pb2+ ions was determined to be 2, which is also related to the low solubility of β-Ca2P2O7 at this pH. The adsorption capacity towards Pb2+ ions was calculated as high as 120 mg g−1. Full article
(This article belongs to the Special Issue Sustainable Materials for Environmental Applications)
Show Figures

Figure 1

18 pages, 4355 KB  
Article
Zeolite NaP1 Functionalization for the Sorption of Metal Complexes with Biodegradable N-(1,2-dicarboxyethyl)-D,L-aspartic Acid
by Dorota Kołodyńska, Yongming Ju, Małgorzata Franus and Wojciech Franus
Materials 2021, 14(10), 2518; https://doi.org/10.3390/ma14102518 - 12 May 2021
Cited by 4 | Viewed by 3037
Abstract
The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents [...] Read more.
The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers. Full article
Show Figures

Figure 1

Back to TopTop