ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZnFe2O4Nanoparticles
2.2. Synthesis of ZnFe2O4/Zeolite Composite Materials
2.3. Characterization Methods
2.4. Adsorption Experiments
2.5. Assessment of Magnetic Properties
3. Results and Discussion
3.1. Characterization of the Structure and Compositions of Zeolite, ZnFe2O4 and Composites on Their Base
3.2. Characterization of Surface Morphology of Zeolite, Zinc Ferrite and Composites on their Base
3.3. Kinetics of Cu2+ Ions’ Sorption from Aqueous Solutions by Zeolite, Zinc Ferrite and Composites on Their Base
3.4. Isotherms of Cu2+ Ions’ Sorption by Samples of Zeolite, Zinc Ferrite and Composites on Their Base
3.5. Effectiveness of Water Purification and Regeneration of Sorbents
3.6. Magnetic Properties of the Sorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teng, D.; Jin, P.; Guo, W.; Liu, J.; Wang, W.; Li, P.; Cao, Y.; Zhang, L.; Zhang, Y. Recyclable Magnetic Iron Immobilized onto Chitosan with Bridging Cu Ion for the Enhanced Adsorption of Methyl Orange. Molecules 2023, 28, 2307. [Google Scholar] [CrossRef]
- Fito, J.; Tibebu, S.; Nkambule, T.T.I. Optimization of Cr (VI) removal from aqueous solution with activated carbon derived from Eichhorniacrassipes under response surface methodology. BMC Chem. 2023, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Sviridova, E.S.; Kolesova, Y.A.; Voronyuk, I.V.; Eliseeva, T.V.; Mukhin, V.M. Features of sorption of hydroxybenzaldehydes from aqueous solutions with activated carbon VSK-400. Sorbtsionnye I Khromatograficheskie Protsessy 2022, 22, 901–908. [Google Scholar] [CrossRef]
- Jaspal, D.; Malviya, A. Composites for wastewater purification: A review. Chemosphere 2020, 246, 125788. [Google Scholar] [CrossRef] [PubMed]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Soliman, N.K.; Moustafa, A.F. Industrial solid waste for heavy metals adsorption features and challenges: A review. J. Mater. Res. Technol. 2020, 9, 10235–10253. [Google Scholar] [CrossRef]
- Buzukashvili, S.; Hu, W.; Sommerville, R.; Brooks, O.; Kökkılıç, O.; Rowson, N.A.; Ouzilleau, P.; Waters, K.E. Magnetic Zeolite: Synthesis and Copper Adsorption Followed by Magnetic Separation from Treated Water. Crystals 2023, 13, 1369. [Google Scholar] [CrossRef]
- Santamaría, L.; López-Aizpún, M.; García-Padial, M.; Vicente, M.A.; Korili, S.A.; Gil, A. Zn-Ti-Al layered double hydroxides synthesized from aluminum saline slag wastes as efficient drug adsorbents. Appl. Clay Sci. 2020, 187, 105486. [Google Scholar] [CrossRef]
- Saveleva, M.S.; Eftekhari, K.; Abalymov, A.; Douglas, T.E.L.; Volodkin, D.; Parakhonskiy, B.V.; Skirtach, A.G. Hierarchy of Hybrid Materials—The Place of Inorganics-in-Organics in it, Their Composition and Applications. Front. Chem. 2019, 7, 179. [Google Scholar] [CrossRef]
- Liu, C.; Wei, L.; Jia, X.; Gu, Y.; Guo, H.; Geng, X. Fluorinated-Polyether-Grafted Graphene-Oxide Magnetic Composite Material for Oil–Water Separation. AppliedChem 2023, 3, 400–413. [Google Scholar] [CrossRef]
- Bayat, M.; Javanbakht, V.; Esmaili, J. Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye. Int. J. Biol. Macromol. 2018, 116, 607–619. [Google Scholar] [CrossRef]
- Farhan, A.; Arshad, J.; Rashid, E.U.; Ahmad, H.; Nawaz, S.; Munawar, J.; Zdarta, J.; Jesionowski, T.; Bilal, M. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. Chemosphere 2023, 310, 136835. [Google Scholar] [CrossRef] [PubMed]
- Benettayeb, A.; Morsli, A.; Elwakeel, K.Z.; Hamza, M.F.; Guibal, E. Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate. Appl. Sci. 2021, 11, 8377. [Google Scholar] [CrossRef]
- Khoshkerdar, I.; Esmaeili, H. Adsorption of Cr (III) and Cd (II) Ions using Mesoporous Cobalt-Ferrite Nanocomposite from Synthetic Wastewater. ActaChim. Slov. 2019, 66, 208–216. [Google Scholar] [CrossRef]
- Tran, Q.A.; Tran, N.L.; Nguyen, A.D.K.; Le, T.Q.N.; Nguyen, L.T.; Nguyen, H.T.P.; Nguyen, A.T.; Nguyen, T.Q.; Le, T.K. Synthesis of Magnetic Chromium Substituted Cobalt Ferrite Co(CrxFe1−x)2O4 Adsorbents for Phosphate Removal. Condens. Matter. Interphases 2022, 24, 306–314. [Google Scholar] [CrossRef]
- Martinez-Vargas, S.; Valle-Ascencio, L.; Mtz-Enriquez, A.I.; Glez-Rosas, A.J.; Vázquez-Hipólito, V.; Mijangos-Ricardez, O.F.; López–Luna, J. As(III) Adsorption on Co-Precipitated Cobalt Substituted Ferrite Nanoparticles. J. Magn. Magn. Mater. 2021, 539, 168389. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Danyliuk, N.; Kotsyubynsky, V.; Shumskaya, A.; Kaniukov, E.; Ghfar, A.A.; Naushad, M.; Shyichuk, A. Eco-Friendly Synthesis of Cobalt-Zinc Ferrites Using Quince Extract for Adsorption and Catalytic Applications: An Approach Towards Environmental Remediation. Chemosphere 2022, 294, 133565. [Google Scholar] [CrossRef]
- Mishra, S.; Sahoo, S.S.; Debnath, A.K.; Muthe, K.P.; Das, N.; Parhi, P. Cobalt Ferrite Nanoparticles Prepared by Microwave Hydrothermal Synthesis and Adsorption Efficiency for Organic dyes: Isotherms, Thermodynamics and Kinetic Studies. Adv. Powder Technol. 2020, 31, 4552–4562. [Google Scholar] [CrossRef]
- Debnath, S.; Das, R. Strong Adsorption of CV Dye by Ni Ferrite Nanoparticles for Waste Water Purification: Fits Well the Pseudo Second Order Kinetic and Freundlich Isotherm Model. Ceram. Int. 2023, 49, 16199–16215. [Google Scholar] [CrossRef]
- Jayalakshmi, R.; Jeyanthi, J.; Sidhaarth, K.R.A. Versatile Application of Cobalt Ferrite Nanoparticles for the Removal of Heavy Metals and Dyes from Aqueous Solution. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100659. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Shyichuk, A.; Sojka, Z.; Gryboś, J.; Naushad, M.; Kotsyubynsky, V.; Kowalska, M.; Kwiatkowska-Marks, S.; Danyliuk, N. Green Synthesis, Structure, Cations Distribution and Bonding Characteristics of Superparamagnetic Cobalt-Zinc Ferrites Nanoparticles for Pb(II) Adsorption and Magnetic Hyperthermia Applications. J. Mol. Liq. 2021, 328, 115375. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.; Liu, B.; Han, G.; Du, Y.; Su, S. Adsorption Behaviors of Strategic W/Mo/Re from Wastewaters by Novel Magnetic Ferrite Nanoparticles: Adsorption Mechanism Underlying Selective Separation. J. Hazard. Mater. 2022, 424 Pt D, 127675. [Google Scholar] [CrossRef]
- Gonsalves, J.M.; Faria, L.V.; Nascimento, A.B.; Germscheidt, R.L.; Patra, S.; Hernández-Saravia, L.P.; Bonacin, J.A.; Munoz, R.A.A.; Angnes, L. Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal. Chim. Acta 2022, 1233, 340362. [Google Scholar] [CrossRef]
- Slavu, L.M.; Rinaldi, R.; Di Corato, R. Application in Nanomedicine of Manganese-Zinc Ferrite Nanoparticles. Appl. Sci. 2021, 11, 11183. [Google Scholar] [CrossRef]
- Bini, M.; Ambrosetti, M.; Spada, D. ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review. Appl. Sci. 2021, 11, 11713. [Google Scholar] [CrossRef]
- Tomina, E.V.; Kurkin, N.A.; Doroshenko, A.V. Synthesis of Nanoparticulate Cobalt Ferrite and Its Catalytic Properties for Fenton-Like Processes. Inorg. Mater. 2022, 58, 701–705. [Google Scholar] [CrossRef]
- Azar, M.S.; Raygan, S.; Sheibani, S. Effect of Chemical Activation Process on Adsorption of As(V) Ion from Aqueous Solution by Mechano-Thermally Synthesized Zinc Ferrite Nanopowder. Int. J. Miner. Metall. Mater. 2020, 27, 526–537. [Google Scholar] [CrossRef]
- Amin, A.M.M.; Rayan, D.A.; Ahmed, Y.M.Z.; El-Shall, M.S.; Abdelbasir, S.M. Zinc Ferrite Nanoparticles from Industrial Waste for Se (IV) Elimination from Wastewater. J. Environ. Manag. 2022, 312, 114956. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Peng, Z.H.; Wang, L.; Shang, W.; Anzulevich, A.; Rao, M.; Li, G. Facile synthesis of zinc ferrite as adsorbent from high-zinc electric arc furnace dust. Powder Technol. 2022, 405, 117479. [Google Scholar] [CrossRef]
- Garg, J.; Chiu, M.N.; Krishnan, S.; Kumar, R.; Rifah, M.; Ahlawat, P.; Jha, N.K.; Kesari, K.K.; Ruokolainen, J.; Gupta, P.K. Emerging Trends in Zinc Ferrite Nanoparticles for Biomedical and Environmental Applications. Appl. Biochem. Biotechnol. 2023, 14, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Ajibade, P.A.; Nnadozie, E.C. Synthesis and Structural Studies of Manganese Ferrite and Zinc Ferrite Nanocomposites and Their Use as Photoadsorbents for Indigo Carmine and Methylene Blue Dyes. ACS Omega 2020, 5, 32386–32394. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Shuai, Q.; Wu, G.; Zheng, B.; Wang, Z.H.; Wu, H. Zinc ferrite composite material with controllable morphology and its applications. Mater. Sci. Eng. B 2017, 224, 125–138. [Google Scholar] [CrossRef]
- Khezami, L.; Alwqyan, T.S.; Bououdina, M.; Al-Najar, B.; Shaikh, M.N.; Modwi, A.; Taha, K.K. Dependence of Phase Distribution and Magnetic Properties of Milled and Annealed ZnO·Fe2O3 Nanostructures as Efficient Adsorbents of Heavy Metals. J. Mater. Sci. Mater. Electron. 2019, 30, 9683–9694. [Google Scholar] [CrossRef]
- Naz, S.; Rasheed, T.; Raza Naqvi, S.T.; Hussain, D.; Fatima, B.; Haq, M.N.; Majeed, S.; Shafi, S.; Rizwan, K.; Ibrahim, M. Polyvinylpropyllidone decorated manganese ferrite based cues for the efficient removal of heavy metals ions from waste water. Phys. B Condens. Matter. 2020, 599, 412559. [Google Scholar] [CrossRef]
- Mohammed, N.A.H.; Shamma, R.N.; Elagroudy, S.; Adewuyi, A. Copper ferrite immobilized on chitosan: A suitable photocatalyst for the removal of ciprofloxacin, ampicillin and erythromycin in aqueous solution. Catal. Commun. 2023, 182, 106745. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Y.; Tang, D.; Liu, Y.; Wang, X.; Li, P.; Wang, G. Sol-gel synthesis of new ZnFe2O4/Na-bentonite composites for simultaneous oxidation of RhB and reduction of Cr(VI) under visible light irradiation. J. Alloys Compd. 2019, 781, 1101–1109. [Google Scholar] [CrossRef]
- Almahri, A. The Solid-State Synthetic Performance of Bentonite Stacked Manganese Ferrite Nanoparticles: Adsorption and Photo-Fenton Degradation of MB Dye and Antibacterial Applications. J. Mater. Res. Technol. 2022, 17, 2935–2949. [Google Scholar] [CrossRef]
- Raghavendra, N.; Nagaswarupa, H.P.; Shashi Shekhar, T.R.; Mylarappa, M.; Surendra, B.S.; Prashantha, S.C.; Ravikumar, C.R.; Anil Kumar, M.R.; Basavaraju, N. Development of clay ferrite nanocomposite: Electrochemical, sensors and photocatalytic studies. Appl. Surf. Sci. Adv. 2021, 5, 100103. [Google Scholar] [CrossRef]
- Das, K.C.; Das, B.; Dhar, S.S. Effective Catalytic Degradation of Organic Dyes by Nickel Supported on Hydroxyapatite-Encapsulated Cobalt Ferrite (Ni/HAP/CoFe2O4) Magnetic Novel Nanocomposite. Water Air Soil Pollut. 2020, 231, 43. [Google Scholar] [CrossRef]
- Agasti, N.; Gautam, V.; Pandey, N.; Genwa, M.; Meena, P.L.; Tandon, S.; Samantaray, R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. Appl. Surf. Sci. Adv. 2022, 10, 100270. [Google Scholar] [CrossRef]
- Tong, B.; Shi, L.; Liu, X. Sol–Gel Synthesis and Photocatalytic Activity of Graphene Oxide/ZnFe2O4-Based Composite Photocatalysts. Front. Mater. 2022, 9, 934759. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Zhu, W.; Qin, P.; Zhou, Q.; Lu, M.; Zhang, X.; Zhao, W.; Zhang, S.H.; Cai, Z. Facile preparation of reduced graphene oxide/ZnFe2O4 nanocomposite as magnetic sorbents for enrichment of estrogens. Talanta 2020, 208, 120440. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, I.; Khan, S.; Shifa, M.S.; Wazir, A.H. Graphene oxide-based ZnFe2O4 catalyst for efficient adsorption and degradation of methylene blue from water. J. Dispers. Sci. Technol. 2022, 43, 282–288. [Google Scholar] [CrossRef]
- Rad, L.R.; Anbia, M. Zeolite-based composites for the adsorption of toxic matters from water: A review. J. Environ. Chem. Eng. 2021, 9, 106088. [Google Scholar] [CrossRef]
- Sodha, V.; Shahabuddin, S.; Gaur, R.; Ahmad, I.; Bandyopadhyay, R.; Sridewi, N. Comprehensive Review on Zeolite-Based Nanocomposites for Treatment of Effluents from Wastewater. Nanomaterials 2022, 12, 3199. [Google Scholar] [CrossRef]
- Rodríguez-Iznaga, I.; Shelyapina, M.G.; Petranovskii, V. Ion Exchange in Natural Clinoptilolite: Aspects Related to Its Structure and Applications. Minerals 2022, 12, 1628. [Google Scholar] [CrossRef]
- Worasith, N.; Goodman, B.A. Clay mineral products for improving environmental quality. Appl. Clay Sci. 2023, 242, 106980. [Google Scholar] [CrossRef]
- Inchaurrondo, N.S.; Font, J. Clay, Zeolite and Oxide Minerals: Natural Catalytic Materials for the Ozonation of Organic Pollutants. Molecules 2022, 27, 2151. [Google Scholar] [CrossRef]
- Ugwu, I.M.; Igbokwe, O.A. Chapter—Sorption of Heavy Metals on Clay Minerals and Oxides: A Review. In Advanced Sorption Process Applications; Edebali, S., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Krupskaya, V.; Novikova, L.; Tyupina, E.; Belousov, P.; Dorzhieva, O.; Zakusin, S.; Kim, K.; Roessner, F.; Badetti, E.; Brunelli, A.; et al. The influence of acid modification on the structure of montmorillonites and surface properties of bentonites. Appl. Clay Sci. 2019, 172, 1–10. [Google Scholar] [CrossRef]
- de Gennaro, B.; Aprea, P.; Liguori, B.; Galzerano, B.; Peluso, A.; Caputo, D. Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water. Appl. Sci. 2020, 10, 6939. [Google Scholar] [CrossRef]
- Novikova, L.; Ayrault, P.; Fontaine, C.; Chatel, G.; Jérôme, F.; Belchinskaya, L. Effect of low frequency ultrasound on the surface properties of natural aluminosilicates. Ultrason. Sonochem. 2016, 31, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Belchinskaya, L.I.; Khodosova, N.A.; Novikova, L.A.; Anisimov, M.V.; Petukhova, G.A. Regulation of Sorption Processes in Natural NanoporousAluminosilicates. 3. Impact of Electromagnetic Fields on Adsorption and Desorption of Formaldehyde by Clinoptilolite. Prot. Met. Phys. Chem. Surf. 2017, 53, 793–800. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, T.; Liu, C.H.; Huang, W.; Wang, J.; Xue, X. Effect of microwave pre-treatment on the magnetic properties of Ludwigite and its implications on magnetic separation. Metall. Res. Technol. 2019, 116, 107. [Google Scholar] [CrossRef]
- Mañosa, J.; Rosa, J.C.; Silvello, A.; Maldonado-Alameda, A.; Chimenos, J.M. Kaolinite structural modifications induced by mechanical activation. Appl. Clay Sci. 2023, 238, 106918. [Google Scholar] [CrossRef]
- Georgopoulos, G.; Badogiannis, E.; Tsivilis, S.; Perraki, M. Thermally and mechanically treated Greek palygorskite clay as a pozzolanic material. Appl. Clay Sci. 2021, 215, 106306. [Google Scholar] [CrossRef]
- Paris, E.C.; Malafatti, J.O.D.; Musetti, H.C.; Manzoli, A.; Zenatti, A.; Escote, M.T. Faujasite Zeolite Decorated with Cobalt Ferrite Nanoparticles for Improving Removal and Reuse in Pb2+ Ions Adsorption. Chin. J. Chem. Eng. 2020, 28, 1884–1890. [Google Scholar] [CrossRef]
- Poggere, G.; Gasparin, A.; Barbosa, J.Z.; Melo, G.W.; Corrêa, R.S.; Motta, A.C.V. Soil contamination by copper: Sources, ecological risks, and mitigation strategies in Brazil. J. Trace Elem. Miner. 2023, 4, 100059. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Potential environmental pollution from copper metallurgy and methods of management. Environ. Res. 2021, 197, 111050. [Google Scholar] [CrossRef]
- Burnase, N.; Jaiswal, S.; Barapatre, A. Metal Toxicity in Humans Associated with Their Occupational Exposures Due to Mining. In Medical Geology in Mining; Randive, K., Pingle, S., Agnihotri, A., Eds.; Springer Geology; Springer: Cham, Switzerland, 2022; pp. 127–186. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, T.; Wang, F. Microbial-Based Heavy Metal Bioremediation: Toxicity and Eco-Friendly Approaches to Heavy Metal Decontamination. Appl. Sci. 2023, 13, 8439. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud. Univ.—Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef] [PubMed]
- Khodosova, N.; Novikova, L.; Tomina, E.; Belchinskaya, L.; Zhabin, A.; Kurkin, N.; Krupskaya, V.; Zakusina, O.; Koroleva, T.; Tyupina, E.; et al. Magnetic Nanosorbents Based on Bentonite and CoFe2O4 Spinel. Minerals 2022, 12, 1474. [Google Scholar] [CrossRef]
- Chen, Z.H.; Zhang, Z.H.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2023, 441, 129889. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, S.S.; Al-Saidi, H.M. Spectrophotometric Determination of Trace Concentrations of Copper in Waters Using the Chromogenic Reagent 4-Amino-3-Mercapto-6-[2-(2-Thienyl)Vinyl]-1,2,4-Triazin-5(4H)-One: Synthesis, Characterization, and Analytical Applications. Appl. Sci. 2020, 10, 3895. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Crauch, S.R. Chapter 14—Application of Ultraviolet-Visible Molecular Absorption Spectrometry. In Principle of Instrumental Analysis, 7th ed.; Cengage Learning: Boston, MA, USA, 2017; pp. 331–352. [Google Scholar]
- León, G.; Hidalgo, A.M.; Martínez, A.; Guzmán, M.A.; Miguel, B. Methylparaben Adsorption onto Activated Carbon and Activated Olive Stones: Comparative Analysis of Efficiency, Equilibrium, Kinetics and Effect of Graphene-Based Nanomaterials Addition. Appl. Sci. 2023, 13, 9147. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Prelot, B. Chapter 7—Adsorption processes for the removal of contaminants from wastewater: The perspective role of nanomaterials and nanotechnology. In Micro and Nano Technologies, Nanomaterials for the Detection and Removal of Wastewater Pollutants; Bonelli, B., Freyria, F.S., Rossetti, I., Sethi, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar] [CrossRef]
- Paparo, R.; Carotenuto, G. Natural Clinoptilolite Characterization by SEM. Encyclopedia. Available online: https://encyclopedia.pub/entry/11616 (accessed on 6 July 2023).
- Hu, J.; Lo, I.M.C.; Chen, G. Comparative study of various magnetic nanoparticles for Cr(VI) removal. Sep. Purif. Technol. 2007, 56, 249–256. [Google Scholar] [CrossRef]
- Desalegn, Y.M.; Andoshe, M.D.; Temesgen, D.D. Composite of bentonite/CoFe2O4/hydroxyapatite for adsorption of Pb (II). Mater. Res. Express 2020, 7, 115501. [Google Scholar] [CrossRef]
- Klekotka, U.; Wińska, E.; Zambrzycka-Szelewa, E.; Satuła, D.; Kalska-Szostko, B. Heavy-metal detectors based on modified ferrite nanoparticles. Beilstein J. Nanotechnol. 2018, 9, 762–770. [Google Scholar] [CrossRef]
- Asadi, R.; Abdollahi, H.; Gharabaghi, M.; Boroumand, Z. Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption. Adv. Powder Technol. 2020, 31, 1480–1489. [Google Scholar] [CrossRef]
- Dyer, A.; Hriljac, J.; Evans, N.; Stokes, I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R.; et al. The use of columns of the zeolite clinoptilolite in the remediation of aqueous nuclear waste streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473–2491. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Buszewski, B.; Terzyk, A.P.; Namieśnik, J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 2006, 304, 21–28. [Google Scholar] [CrossRef]
- Novikova, L.A.; Bogdanov, D.S.; Belchinskaya, L.I.; Kolousek, D.; Doushova, B.; Lhotka, M.; Petukhova, G.A. Adsorption of Formaldehyde from Aqueous Solutions Using Metakaolin-Based Geopolymer Sorbents. Prot. Met. Phys. Chem. Surf. 2019, 55, 864–871. [Google Scholar] [CrossRef]
- Debnath, K.; Pramanik, A. Heterogeneous bimetallic ZnFe2O4nanopowdercatalysed facile four component reaction for the synthesis of spiro[indoline-3,2′-quinoline] derivatives from isatins in water medium. Tetrahedron Lett. 2015, 56, 1654–1660. [Google Scholar] [CrossRef]
- Wei, L.; Yang, G.; Wang, R.; Ma, W. Selective adsorption and separation of chromium (VI) on the magnetic iron–nickel oxide from waste nickel liquid. J. Hazard. Mater. 2009, 164, 1159–1163. [Google Scholar] [CrossRef] [PubMed]
- Liandi, A.R.; Cahyana, A.H.; Kusumah, A.J.F.; Lupitasari, A.; Alfariza, D.N.; Nuraini, R.; Sari, R.W.; Kusumasari, F.C. Recent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: A review. Case Stud. Chem. Environ. Eng. 2023, 7, 100303. [Google Scholar] [CrossRef]
- Fang, L.; Kanggen, Z.H.; Quanzhou, C.H.; Wang, A.; Chen, W. Comparative study on the synthesis of magnetic ferrite adsorbent for the removal of Cd(II) from wastewater. Adsorpt. Sci. Technol. 2018, 36, 1456–1469. [Google Scholar] [CrossRef]
- Andrejkovičová, S.; Sudagar, A.; Rocha, J.; Patinha, C.; Hajjaji, W.; Ferreira da Silva, E.; Velosa, A.; Rocha, F. The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Appl. Clay Sci. 2016, 126, 141–152. [Google Scholar] [CrossRef]
- Thanh, D.N.; Novák, P.; Vejpravova, J.; Vu, H.N.; Lederer, J.; Munshi, T. Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. J. Magn. Magn. Mater. 2018, 456, 451–460. [Google Scholar] [CrossRef]
- Sery, A.A.; El-Boraey, H.A.; Abo-Elenein, S.A.; ElKorashey, R.M. CuFe2O4@ hydroxyapatite composite for the environmental remediation of some heavy metal ions: Synthesis and characterization. Water Sci. 2021, 35, 154–164. [Google Scholar] [CrossRef]
- Manimozhi, V.; Saravanathamizhan, R.; Sivakumar, E.K.T.; Jaisankar, V. Adsorption Study of Heavy Metals Removal from Wastewater Using PVA-Nano Ferrite Composites. Int. J. Nanosci. Nanotechnol. 2020, 16, 189–200. [Google Scholar]
- Taguba, M.A.M.; Ong, D.C.; Ensano, B.M.B.; Kan, C.-C.; Grisdanurak, N.; Yee, J.-J.; de Luna, M.D.G. Nonlinear Isotherm and Kinetic Modeling of Cu(II) and Pb(II) Uptake from Water by MnFe2O4/Chitosan Nanoadsorbents. Water 2021, 13, 1662. [Google Scholar] [CrossRef]
- Iqbal, Z.; Tanweer, M.S.; Alam, M. Reduced Graphene Oxide-Modified Spinel Cobalt Ferrite Nanocomposite: Synthesis, Characterization, and Its Superior Adsorption Performance for Dyes and Heavy Metals. ACS Omega 2023, 8, 6376–6390. [Google Scholar] [CrossRef] [PubMed]
- Alia, A.E.; Salema, W.M.; Younes, S.M.; Elabdeen, A.Z. Ferrite Nanocomposite (Rice Straw-CoFe2O4) as New Chemical Modified for Treatment of Heavy Metal from Waste Water. Hydrol. Current Res. 2018, 10, 311. [Google Scholar] [CrossRef]
- Singh, R.; Jasrotia, R.; Singh, J.; Mittal, S.; Singh, H. Recyclable Magnetic Nickel Ferrite-Carboxymethyl Cellulose-Sodium Alginate Bio-Composite for Efficient Removal of Nickel Ion from water. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Ramadan, R. Study the multiferroic properties of BiFeO3/Ni0.1Fe2.9O4 for heavy metal removal. Appl. Phys. A 2023, 129, 125. [Google Scholar] [CrossRef]
- Meirelles, M.R.; Malafatti, J.O.D.; Escote, M.T.; Pinto, A.H.; Paris, E.C. Magnetic Adsorbent Based on Faujasite Zeolite Decorated with Magnesium Ferrite Nanoparticles for Metal Ion Removal. Magnetochemistry 2023, 9, 136. [Google Scholar] [CrossRef]
Sample | Oxide Content, Mass.% | Total | ||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | MgO | K2O | CaO | Fe2O3 | ZnO | ||
Zt | 78.78 | 11.29 | 0.90 | 4.36 | 2.97 | 1.70 | 0.00 | 100.00 |
Zt-2F | 74.30 | 10.58 | 1.12 | 3.93 | 2.85 | 5.42 | 1.80 | 100.00 |
Zt-16F | 59.60 | 9.22 | 1.17 | 3.14 | 2.12 | 17.03 | 7.73 | 100.00 |
F | 1.16 | 0.00 | 0.00 | 0.00 | 0.00 | 62.41 | 36.43 | 100.00 |
Sample | SBET, m2/g | Pore Volume, cm3/g | Pore Diameter, Daver, nm | ||
---|---|---|---|---|---|
Vmeso | Vmacro | Vtotal | |||
Zt | 36 | 3.58 | 2.01 | 5.59 | 6.08 |
Zt-2F | 29 | 3.09 | 1.74 | 4.83 | 6.08 |
Zt-8F | 31 | 3.05 | 1.84 | 4.89 | 8.15 |
Zt-16F | 29 | 2.98 | 1.66 | 4.64 | 7.03 |
F | 26 | 2.18 | 1.46 | 3.64 | 5.88 |
Sample | Equation | Parameters of Pseudo-Second Order Model | |||
---|---|---|---|---|---|
qe2, mg/g | k2, g·mg−1·min−1 | R2 | RMSE | ||
Zt | y = 0.0354x + 0.0261 | 28.25 | 0.0480 | 0.9994 | 0.0192 |
F | y = 0.0145x + 0.0271 | 68.97 | 0.0078 | 0.9993 | 0.0119 |
Zt-2F | y = 0.0514x + 0.012 | 19.45 | 0.0560 | 1.0000 | 0.0024 |
Zt-8F | y = 0.0201x + 0.19 | 49.75 | 0.0021 | 0.9672 | 0.0767 |
Zt-16F | y = 0.0209x + 0.1237 | 47.85 | 0.0035 | 0.9972 | 0.0182 |
Sample | Mass.% | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mg | Al | Si | K | Ca | Fe | Cu | Zn | O | ||
Zt-Cu | 0.51 | 6.19 | 36.15 | 3.16 | 2.06 | 2.07 | 0.38 | - | 49.48 | 100.00 |
Zt-16F | 0.48 | 4.72 | 25.67 | 2.49 | 1.34 | 13.51 | 0.74 | 8.25 | 42.81 | 100.00 |
F | - | 0.43 | 1.52 | - | - | 41.74 | 1.15 | 27.97 | 27.19 | 100.00 |
Sample | Langmuir Model | Freundlich Model | ||||||
---|---|---|---|---|---|---|---|---|
Linear Equation | R2 | amax, mg/g | KL | Linear Equation | R2 | n | KF | |
Zt | y = 0.0055x + 0.0515 | 0.4741 | 19.42 | 9.36 | y = 0.2429x + 1.2351 | 0.735 | 4.17 | 17.18 |
F | y = 0.0039x + 0.0062 | 0.9928 | 161.3 | 1.59 | y = 0.4435x + 1.9409 | 0.9118 | 2.25 | 87.28 |
Zt-2F | y = 0.0052x + 0.0366 | 0.6191 | 27.32 | 7.04 | y = 0.2564x + 1.3621 | 0.8703 | 3.9 | 23.02 |
Zt-8F | y = 0.0056x + 0.0331 | 0.9234 | 30.21 | 5.91 | y = 0.249x + 1.3825 | 0.9666 | 4.02 | 24.13 |
Zt-16F | y = 0.0048x + 0.0305 | 0.9329 | 32.79 | 6.35 | y = 0.2337x + 1.4239 | 0.9885 | 4.28 | 26.54 |
Metal Ferrite-Based Composite | Type of Heavy Metal | Adsorption Capacity, (mg/g) | Reference |
---|---|---|---|
Cobalt–ferrite nanocomposite (CFNC) | Cr(III) | 217.00 | [14] |
Cd(II) | 303.00 | ||
Manganese ferrite nanoparticles (NPs) | As(III) | 49.05 | [16] |
As(V) | 27.65 | ||
Cobalt–zinc ferrites NPs (CoxZn1−xFe2O4) | Pb | 289.00 | [21] |
CoFe2O4 NPs | Pb | 275 | [20] |
Zn | 390 | ||
MnFe2O4 | Zn | 454.5 | [74] |
Iron–nickel oxide | Cr | 30.00 | [79] |
Magnetic ferrite | Cd | 160.91 | [81] |
Mixed oxides and ferrites nanoparticles | Ni | 49.42 | [33] |
Cd | 54.69 | ||
Cr | 12.34 | ||
Amine-functionalized MgFe2O4 | Pb | 32.2 | [34] |
Bentonite/CoFe2O4/hydroxyapatite | Pb | 66.0 | [72] |
MK100, clinoptilolite metakaolin based geopolymer | Cu | 44.73 | [82] |
Pb | 247.14 | ||
Cd | 74.36 | ||
Zn | 30.52 | ||
Cr | 21.84 | ||
Fe3O4–hydroxyapatite | Cu | 48.78 | [83] |
Ni | 29.07 | ||
CuFe2O4@HAp | Fe (II) | 91.7 | [84] |
Al (III) | 49.2 | ||
PVA–barium ferrite composite | Pb | 3.96 | [85] |
Cd | 2.51 | ||
Cu | 4.06 | ||
PVA–nickel ferrite composite | Pb | 4.67 | [85] |
Cd | 1.07 | ||
Cu | 4.14 | ||
MnFe2O4/Chitosan | Cu (II) | 14.86 | [86] |
Pb (II) | 15.36 | ||
Reduced graphene oxide–cobalt ferrite nanocomposite, RGCF | As (V) | 222.2 | [87] |
Rice Straw-CoFe2O4 | Fe, Mn, Cu, Cd, Zn, Ni, Pb | Removal efficiency, R = 20–55% | [88] |
Nickel ferrite carboxymethyl cellulose composite (NiFCMC) | Ni | 47.84 | [89] |
Nickel ferrite–carboxymethyl cellulose–sodium alginate bio-composite (NiFCMC-Alg) | Ni | 60.24 | [89] |
BiFeO3/Ni0.1Fe2.9°4 nanocomposites | Cr (VI) | Removal efficiency, R = 75% | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomina, E.; Novikova, L.; Kotova, A.; Meshcheryakova, A.; Krupskaya, V.; Morozov, I.; Koroleva, T.; Tyupina, E.; Perov, N.; Alekhina, Y. ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium. AppliedChem 2023, 3, 452-476. https://doi.org/10.3390/appliedchem3040029
Tomina E, Novikova L, Kotova A, Meshcheryakova A, Krupskaya V, Morozov I, Koroleva T, Tyupina E, Perov N, Alekhina Y. ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium. AppliedChem. 2023; 3(4):452-476. https://doi.org/10.3390/appliedchem3040029
Chicago/Turabian StyleTomina, Elena, Lyudmila Novikova, Alexandra Kotova, Anna Meshcheryakova, Victoria Krupskaya, Ivan Morozov, Tatiana Koroleva, Ekaterina Tyupina, Nikolai Perov, and Yuliya Alekhina. 2023. "ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium" AppliedChem 3, no. 4: 452-476. https://doi.org/10.3390/appliedchem3040029
APA StyleTomina, E., Novikova, L., Kotova, A., Meshcheryakova, A., Krupskaya, V., Morozov, I., Koroleva, T., Tyupina, E., Perov, N., & Alekhina, Y. (2023). ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium. AppliedChem, 3(4), 452-476. https://doi.org/10.3390/appliedchem3040029