Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = Fe atom exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1055 KiB  
Article
Reduction-Driven Mobilization of Structural Fe in Clay Minerals with High Fe Content
by Anke Neumann, Luiza Notini, W. A. P. Jeewantha Premaratne, Drew E. Latta and Michelle M. Scherer
Minerals 2025, 15(7), 713; https://doi.org/10.3390/min15070713 - 4 Jul 2025
Viewed by 332
Abstract
Clay minerals contain significant amounts of Fe in their alumosilicate framework, and this structural Fe can be reduced and re-oxidized, constituting a potentially renewable source of reduction equivalents in sedimentary environments. However, dissolution and/or clay mineral transformations during microbial Fe reduction contradict this [...] Read more.
Clay minerals contain significant amounts of Fe in their alumosilicate framework, and this structural Fe can be reduced and re-oxidized, constituting a potentially renewable source of reduction equivalents in sedimentary environments. However, dissolution and/or clay mineral transformations during microbial Fe reduction contradict this concept. Here, we investigate how Fe reduction and re-oxidation affect the propensity of Fe to be released from the clay mineral structure and use selective sequential extractions in combination with Mössbauer spectroscopy. Negligible amounts of Fe were released in the sequential extraction of high Fe content clay minerals NAu-1 and NAu-2. Once aqueous Fe(II) was added as a reductant, the extraction procedure recovered the initially added Fe amount and up to 30% of the Fe from the clay mineral structure as both Fe(II) and Fe(III). Similar extents of Fe mobilization were found for clay minerals partly reduced (7%–20%) with dithionite, suggesting that mobilization was reduction-induced and independent of the source of reduction equivalents (Fe(II), dithionite). Although higher Fe reduction extents mobilized more structural Fe, i.e., >90% in fully reduced clay minerals, re-oxidation largely reverted the reduction-induced Fe mobilization in clay minerals. Our finding of reduction-driven Fe mobilization provides a plausible explanation for conflicting reports on Fe release from clay minerals and how extensive Fe atom exchange between aqueous and clay mineral Fe occurs. Full article
(This article belongs to the Special Issue Redox Reactivity of Iron Minerals in the Geosphere, 2nd Edition)
Show Figures

Figure 1

15 pages, 10012 KiB  
Article
Preparation and Optimization of NiFe2O4/GAC Composite Catalyst and Its Application in PEM Electrolytic Ozonation for Sulfamethoxazole Degradation
by Xiaohong Xu, Bo Wen, Yu Yan, Xinrui Ren and Bo Zhang
Coatings 2025, 15(6), 654; https://doi.org/10.3390/coatings15060654 - 29 May 2025
Viewed by 391
Abstract
With the increasing detection of antibiotics such as sulfamethoxazole (SMX) in water bodies, developing efficient and eco-friendly treatment technologies is critical. This study employs a hydrothermal impregnation method to prepare a NiFe2O4/granular activated carbon (GAC) composite catalyst, optimized for [...] Read more.
With the increasing detection of antibiotics such as sulfamethoxazole (SMX) in water bodies, developing efficient and eco-friendly treatment technologies is critical. This study employs a hydrothermal impregnation method to prepare a NiFe2O4/granular activated carbon (GAC) composite catalyst, optimized for use in a proton exchange membrane (PEM) electrolytic ozonation system to degrade SMX. Single-factor experiments optimized preparation conditions with a Fe:Ni molar ratio of 3:1, a GAC:Fe + Ni mass ratio of 2:1, and calcination at 500 °C for 3 h. The catalyst was characterized using XRD, SEM, TEM, XPS, and FT-IR, confirming a spinel NiFe2O4 structure (crystal size ~15.2 nm) uniformly dispersed on GAC, with an Fe:Ni atomic ratio of ~2.1:1. In the PEM system, the optimized catalyst achieved a 99.15% ± 0.3% SMX degradation rate (50 mg/L) within 25 min, compared to 95.06% ± 0.6% in 30 min without a catalyst. The catalyst maintained 98.45% ± 0.5% efficiency after three cycles, demonstrating excellent stability. The synergy between GAC adsorption and NiFe2O4 catalysis, driven by Fe3+/Fe2+ redox cycling, enhances ·OH generation from ozone decomposition, boosting SMX degradation. This work provides a robust catalyst for antibiotic wastewater treatment and a foundation for scaling up catalytic ozonation. Full article
(This article belongs to the Special Issue Functional Coatings in Electrochemistry and Electrocatalysis)
Show Figures

Graphical abstract

11 pages, 4570 KiB  
Article
Molecular-Level Regulation of Nitrogen-Doped Ordered Mesoporous Carbon Materials via Ligand Exchange Strategy
by Dandan Han, Zhen Quan, Congyuan Hu, Xiaopeng Wang, Lixia Wang, Ruige Li, Xia Sheng, Yanyan Liu, Meirong Song and Xianfu Zheng
Processes 2025, 13(5), 1558; https://doi.org/10.3390/pr13051558 - 18 May 2025
Viewed by 493
Abstract
Ordered mesoporous carbon materials (OMCMs) are widely used as high-performance electrode materials due to their uniform pore structure, excellent electrical conductivity, and good stability. In this paper, three OMCMs with controllable N content were prepared by a nanocasting method using Fe3O [...] Read more.
Ordered mesoporous carbon materials (OMCMs) are widely used as high-performance electrode materials due to their uniform pore structure, excellent electrical conductivity, and good stability. In this paper, three OMCMs with controllable N content were prepared by a nanocasting method using Fe3O4 nanocrystals as the template and organic ligands as the carbon source. By adopting a ligand exchange strategy, oleic acid, oleic amine, and octyl amine were successfully capped onto the Fe3O4 nanocrystals, respectively, which allowed the rational control of the elemental composition of OMCMs at the molecular level. Further characterizations revealed that the nitrogen content of the resulting OMCMs increased as the proportion of nitrogen atoms in the ligand increased, while the order of the porous structure decreased as the hydrocarbon chain length decreased. This study demonstrates that both the N-doping content and the order of the OMCMs are influenced by the N-containing ligand. This finding will provide a fundamental aspect for their further applications as high-performance electrode and catalytic materials in the field of electrochemistry. Full article
(This article belongs to the Special Issue Design and Performance Optimization of Heterogeneous Catalysts)
Show Figures

Figure 1

15 pages, 4030 KiB  
Article
The Defect Charge Effect on Magnetic Anisotropy Energy and Dzyaloshinskii–Moriya Interaction of the I Vacancy and 3d Transition Metal Co-Doped Monolayer CrI3
by Guangtian Ji, Qingqing Yang, Kun Zhang, Jueming Yang, Guixian Ge and Wentao Wang
Condens. Matter 2025, 10(2), 29; https://doi.org/10.3390/condmat10020029 - 14 May 2025
Viewed by 1394
Abstract
Recently, significant effort has been devoted to enhancing magnetic anisotropy energy (MAE) and the Dzyaloshinskii–Moriya interaction (DMI) in two-dimensional (2D) ferromagnetic materials through various tuning approaches. Among these methods, defect engineering is one of the most effective strategies. However, the influence of these [...] Read more.
Recently, significant effort has been devoted to enhancing magnetic anisotropy energy (MAE) and the Dzyaloshinskii–Moriya interaction (DMI) in two-dimensional (2D) ferromagnetic materials through various tuning approaches. Among these methods, defect engineering is one of the most effective strategies. However, the influence of these charged defects on the MAE and DMI is unclear. Therefore, we systematically investigate the defect effect on the MAE and DMI of I vacancy-doped (vI-CrI3), 3d-transition-metal-doped (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) (3d-TMi@CrI3), and vI-TM co-doped (3d-TMi@vI-CrI3) monolayer CrI3 using first-principles calculations. Our results indicate that Cr-rich conditions can promote the defect formation of vI-CrI3, 3d-TMi@CrI3, and 3d-TMi@vI-CrI3 systems and demonstrate that 49 types of charged systems are stable. Among these systems, the Cui@vI-CrI3 in the +1 charge state (Cui@vI-CrI3) system has a smaller defect formation energy, exhibiting a large MAE exceeding 30 meV, and the ratio (D/J) of the antisymmetric magnetic exchange parameter (D) to the Heisenberg exchange parameter (J) reaches 1.04. The large MAE originates from the transition from single-ion anisotropy (SIA) to covalent interaction anisotropy (CIA) due to the coupling variation between the py and px orbitals of I atoms near the Fermi level caused by charge states. The enhancement of the DMI is due to the electrostatic potential differences between the I-top and I-bottom layers, which are conducive to forming stable chiral spin textures. This study provides insight into the defect charge state modulating the magnetism of 2D magnetic materials. Full article
Show Figures

Graphical abstract

13 pages, 4450 KiB  
Article
Emergent Magnetic Order in Superconducting FeS Induced by Trace Cr Doping
by Yangzhou Wang, Qianshuo Wang, Yanhao Dong, Jin Wang, Shu Chen, Zihan Wang, Fei Chen, Guixin Cao, Wei Ren, Jie Li and Wen Wan
Materials 2025, 18(9), 2108; https://doi.org/10.3390/ma18092108 - 4 May 2025
Viewed by 474
Abstract
Multiband and nodal-like superconductivity (SC) with s- + d-wave pairing symmetry have implied that tetragonal iron sulphide (FeS) is a distinctive testbed for exploring unexpected electronic correlations. In particular, the low-moment disordered static magnetism originating from the Fe moment leads to the possibility [...] Read more.
Multiband and nodal-like superconductivity (SC) with s- + d-wave pairing symmetry have implied that tetragonal iron sulphide (FeS) is a distinctive testbed for exploring unexpected electronic correlations. In particular, the low-moment disordered static magnetism originating from the Fe moment leads to the possibility of the coexistence of magnetic orders (MOs) in the superconducting ground state via the tuning of electronic configurations. Here, guided by density functional theory (DFT) calculations, we found that slightly substitutionally doped chromium (Cr) atoms in tetragonal FeS single crystals can induce both considerable d-orbital reconstruction around the Fermi surface and a local magnetic moment of 2.4 µB at each doping site, which could highly modulate the SC ground states of the host. On this basis, a clear magnetic transition and reduced anisotropy of SC were experimentally observed. In particular, SC can survive with a doping content below 0.05. This coexistence of SC and MOs suggests strong spin correlations between Cr dopants and the host through exchange coupling. Further, an electronic temperature-related phase diagram of FeS with Cr doping contents from 0 to 0.07 is also provided. These results demonstrate that the continuous injection of local moments can be a controllable method to use to tune collective orders in unconventional iron-based superconductors. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

19 pages, 861 KiB  
Article
Prediction of 57Fe Mössbauer Nuclear Quadrupole Splittings with Hybrid and Double-Hybrid Density Functionals
by Yihao Zhang, Haonan Tang and Wenli Zou
Int. J. Mol. Sci. 2025, 26(6), 2821; https://doi.org/10.3390/ijms26062821 - 20 Mar 2025
Viewed by 628
Abstract
As a crucial parameter in Mössbauer spectroscopy, nuclear quadrupole splitting (NQS) exhibits a strong dependence on quantum chemistry methods, which makes accurate theoretical predictions challenging. Meanwhile, the continuous emergence of new density functionals presents opportunities to advance current NQS research. In this study, [...] Read more.
As a crucial parameter in Mössbauer spectroscopy, nuclear quadrupole splitting (NQS) exhibits a strong dependence on quantum chemistry methods, which makes accurate theoretical predictions challenging. Meanwhile, the continuous emergence of new density functionals presents opportunities to advance current NQS research. In this study, we evaluate the performance of eleven hybrid density functionals and twelve double-hybrid density functionals, selected from widely used functionals and newly developed functionals, in predicting the NQS values of the 57Fe nuclide for 32 iron-containing molecules within about 70 atoms. The calculations have incorporated scalar relativistic effects using the exact two-component (X2C) Hamiltonian. In general, the double-hybrid functional PBE-0DH demonstrates superior performance compared to the experimental values, achieving a mean absolute error (MAE) of 0.20 mm/s. Meanwhile, rSCAN38 is the best hybrid functional for our database with an MAE = 0.25 mm/s, and it offers a significant advantage in computational efficiency over PBE-0DH. The +/ sign of NQS has also been considered in our error statistics when it has a clear physical meaning; if neglected, the errors of many functionals decrease, but PBE-0DH and rSCAN38 remain unaffected. Notably, when calculating ferrocene [Fe(C5H5)2], which involves strong static correlations, all hybrid functionals that incorporate more than 10% exact exchange fail, while several double-hybrid functionals continue to deliver reliable results. In addition, we encountered two particularly challenging species characterized by strong static correlations: [Fe(H2O)5NO]2+ and FeO2-porphyrin. Unfortunately, none of the density functionals tested in our study yielded satisfactory results for the two cases since the density functional theory (DFT) is a single-determinant approach, and it is imperative to explore large-scale multi-configurational methods for these species. This research offers valuable guidance for selecting density functionals in Mössbauer NQS calculations and serves as a reference point for the future development of new density functionals. Full article
Show Figures

Figure 1

10 pages, 17192 KiB  
Article
Influence of Interface Mixed Layer on Non-Collinear Exchange Coupling in V-Fe Multilayers
by Agnieszka Ranecka, Maria Pugaczowa-Michalska and Lesław Smardz
Materials 2025, 18(3), 697; https://doi.org/10.3390/ma18030697 - 5 Feb 2025
Viewed by 549
Abstract
V/Fe multilayers were prepared on naturally oxidized Si(100) substrates at room temperature (RT) by UHV magnetron sputtering. Mixing effects at the Fe–V interfaces were investigated in-situ, directly after deposition, by means of X-ray photoelectron spectroscopy (XPS). The results of systematic in-situ XPS studies [...] Read more.
V/Fe multilayers were prepared on naturally oxidized Si(100) substrates at room temperature (RT) by UHV magnetron sputtering. Mixing effects at the Fe–V interfaces were investigated in-situ, directly after deposition, by means of X-ray photoelectron spectroscopy (XPS). The results of systematic in-situ XPS studies of the integral intensity of the Fe-2p peak, as a function of the nominal thickness of the Fe sublayer deposited on vanadium, allowed us to estimate the thickness of the pure iron layer that forms the mixed layer at about 0.4 nm. Assuming the same thickness of the vanadium layer that forms the mixed layer, the estimated thickness of the mixed layer near the Fe–V interface was about 0.8 nm. In the analysis of magnetic hysteresis loops, in addition to the bilinear (J1) and biquadratic (J2) coupling constant, the contribution of the cubic exchange constant (J3) was taken into account, which also contributed significantly to the total energy. Higher order interactions (J2 and J3) are particularly important for V spacer thicknesses greater than 7 atomic monolayers. Hydrogen absorption in V/Fe multilayers at RT and a pressure of about 1 bar causes an increase in the biquadratic coupling constant J2, while the values of J1 and J3 are reduced. A comparison of the obtained experimental results and available theoretical models leads to the conclusion that the mechanism of “fluctuating thickness of the non-magnetic spacer” could be responsible for the biquadratic exchange coupling. On the other hand, the “loose spins” model can explain the cubic coupling in the V/Fe multilayers. The modification of the interlayer exchange coupling using hydrogen is fully reversible. Full article
Show Figures

Figure 1

16 pages, 4260 KiB  
Article
Comparative Study of (Fe,Nb)MoTaTiZr High Entropy Alloys in Ringer Grifols Solution
by Miguel Lopez-Rios, Santiago Brito-Garcia, Julia Mirza-Rosca and Ionelia Voiculescu
Metals 2024, 14(12), 1430; https://doi.org/10.3390/met14121430 - 13 Dec 2024
Cited by 1 | Viewed by 853
Abstract
High-entropy alloys (HEAs) are a family of materials that, because of their particular characteristics and possible uses in a variety of industries, have garnered a lot of interest recently. One such promising HEA is the MoNbTaTiZr high-entropy alloy, which displays excellent corrosion resistance [...] Read more.
High-entropy alloys (HEAs) are a family of materials that, because of their particular characteristics and possible uses in a variety of industries, have garnered a lot of interest recently. One such promising HEA is the MoNbTaTiZr high-entropy alloy, which displays excellent corrosion resistance and biocompatibility alongside good mechanical properties. Another promising HEA that has attracted researchers for its potential applications in various fields is FeMoTaTiZr. Exchanging one of the elements may result in important variation of properties of a material. This work studies two different samples of high-entropy alloys, MoNbTaTiZr (named NbHEA) and FeMoTaTiZr (named FeHEA), both generated in a laboratory context using electric-arc remelting technology, keeping similar atomic percentage of the elements in both alloys. Optical microscopy and scanning electron microscopy techniques were used to characterize the microstructure of the alloys. Replacing Nb for Fe affects the distribution proportion of the other four elements, since Fe has a higher tendency than Nb to form part of the inter-dendrite region. An evaluation of the properties related to the corrosion process was accomplished using the polarization method along with electrochemical impedance spectroscopy (EIS), performed under a simulated biological environment. As a result, FeHEA showed a higher corrosion rate in simulated body fluid than NbHEA. Full article
(This article belongs to the Special Issue Feature Papers in Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

10 pages, 1275 KiB  
Article
Ab Initio Study of the β-Fe2O3 Phase
by Priyanka Mishra and Carmine Autieri
Molecules 2024, 29(23), 5751; https://doi.org/10.3390/molecules29235751 - 5 Dec 2024
Viewed by 1176
Abstract
We present first-principles results on the electronic and magnetic properties of the cubic bulk β-phase of Fe2O3. Given that all Fe–Fe magnetic couplings are expected to be antiferromagnetic within this high-symmetry crystal structure, the system may exhibit some [...] Read more.
We present first-principles results on the electronic and magnetic properties of the cubic bulk β-phase of Fe2O3. Given that all Fe–Fe magnetic couplings are expected to be antiferromagnetic within this high-symmetry crystal structure, the system may exhibit some signature of magnetic frustration, making it challenging to identify its magnetic ground state. We have analyzed the possible magnetic phases of the β-phase, among which there are ferrimagnets, altermagnets, and Kramers antiferromagnets. While the α-phase is an altermagnet and the γ-phase is a ferrimagnet, we conclude that the magnetic ground state for the bulk β-phase of Fe2O3 is a Kramers antiferromagnet. Moreover, we find that close in energy, there is a bulk d-wave altermagnetic phase. We report the density of states and the evolution band gap as a function of the electronic correlations. For suitable values of the Coulomb repulsion, the system is a charge-transfer insulator with an indirect band gap of 1.5 eV. More in detail, the unit cell of the β-phase is composed of 8Fea atoms and 24Feb atoms. The 8Fea atoms lie on the corner of a cube, and their magnetic ground state is a G-type. This structural phase is composed of zig-zag chains FeaFebFeaFeb with spin configuration ↑-↑-↓-↓ along the 3 directions such that for every Fea atoms there are 3Feb atoms. As the opposite to the γ-phase, the magnetic configuration between the first neighbor of the same kind is always antiferromagnetic while the magnetic configuration between Fea and Feb is ferro or antiferro. In this magnetic arrangement, first-neighbor interactions cancel out in the mean-field estimation of the Néel temperature, leaving second-neighbor magnetic exchanges as the primary contributors, resulting in a Néel temperature lower than that of other phases. Our work paves the way toward the ab initio study of nanoparticles and alloys for the β-phase of Fe2O3. Full article
Show Figures

Figure 1

19 pages, 6365 KiB  
Article
Hierarchically Ordered Macroporous–Mesoporous (HOM-m) MgFe2O4/MgO for Highly Efficient Adsorption of Ce(III) and La(III): Experimental Study and DFT Calculation Analysis
by Lina Zhang, Jiarui Lu and Baixiong Liu
Separations 2024, 11(12), 333; https://doi.org/10.3390/separations11120333 - 21 Nov 2024
Cited by 1 | Viewed by 873
Abstract
This study employed a template method to prepare a highly ordered and interconnected porous HOM-m MgFe2O4/MgO rare earth ion-efficient adsorbent. The specific surface area of the adsorbent was as high as 130 m2/g, with saturation adsorption capacities [...] Read more.
This study employed a template method to prepare a highly ordered and interconnected porous HOM-m MgFe2O4/MgO rare earth ion-efficient adsorbent. The specific surface area of the adsorbent was as high as 130 m2/g, with saturation adsorption capacities for Ce(Ⅲ) and La(Ⅲ) of 5689.69 mg/g and 2123.50 mg/g, respectively. The adsorbent exhibited superparamagnetism with efficient and rapid separation from an aqueous solution using a magnet. The adsorption results indicated that the adsorption mechanism of HOM-m MgFe2O4/MgO towards Ce(III) and La(III) primarily involved the ion exchange and redox reactions between Mg(II) hydrolyzed from MgO and Ce(III)/La(Ⅲ), as well as the electrostatic attraction between MgFe2O4 and Ce(Ⅲ)/La(Ⅲ). Density functional theory (DFT) calculations revealed that the adsorption process was driven by the interaction of Ce(III) and La(III) ions with the surface oxygen atoms of MgFe2O4/MgO. Moreover, MgFe2O4/MgO showed a higher affinity and stronger adsorption effect towards Ce(III) than La(III). Adsorption cycling experiments demonstrated that even after three cycles, HOM-m MgFe2O4/MgO maintained good removal efficiency for Ce(III) and La(III). Therefore, this adsorbent shows promise as an effective material for removing Ce(III) and La(III) and has significant implications for the remediation of water resources in ion adsorption-type rare earth mining areas. Full article
(This article belongs to the Special Issue Recent Advances in Rare Earth Separation and Extraction)
Show Figures

Graphical abstract

24 pages, 6897 KiB  
Article
Tetradentate NOO′O″ Schiff-Base Ligands as a Platform for the Synthesis of Heterometallic CdII-FeIII and CdII-CrIII Coordination Clusters
by Konstantinos N. Pantelis, Sotiris G. Skiadas, Zoi G. Lada, Catherine P. Raptopoulou, Vassilis Psycharis, Yiannis Sanakis, Mark M. Turnbull and Spyros P. Perlepes
Magnetochemistry 2024, 10(10), 69; https://doi.org/10.3390/magnetochemistry10100069 - 27 Sep 2024
Viewed by 1536
Abstract
The chemistry of heterometallic metal complexes continues to attract the interest of molecular inorganic chemists mainly because of the properties that different metal ions can bring to compounds. Contrary to the plethora of 3d–4f- and 3d–3d′-metal complexes, complexes containing both 3d- and 4d-metal [...] Read more.
The chemistry of heterometallic metal complexes continues to attract the interest of molecular inorganic chemists mainly because of the properties that different metal ions can bring to compounds. Contrary to the plethora of 3d–4f- and 3d–3d′-metal complexes, complexes containing both 3d- and 4d-metal ions are much less studied. The choice of the bridging organic ligand is of paramount importance for the synthesis of such species. In the present work, we describe the use of the potentially tetradentate NOO′O″ Schiff bases N-(2-carboxyphenyl)salicylideneimine (saphHCOOH) and N-(4-chloro-carboxyphenyl)salicylideneimine (4ClsaphHCOOH) in CdII-MIII (M = Fe, Cr) chemistry. The complexes [Cd2Fe2(saphCOO)4(NO3)2(H2O)2] (1), [Cd2Cr2(saphCOO)4(NO3)2(H2O)2] (2), [Cd2Fe2(4ClsaphCOO)4(NO3)2(H2O)2] (3) and [CdCr2(4ClsaphCOO)4(H2O)3(EtOH)] (4) have been structurally characterized, the quality of the structure of the latter being poor but, permitting the knowledge of the connectivity and the main structural features. Complexes 13 are isostructural, but not isomorphous, possessing a variety of lattice solvent molecules (EtOH, MeCN, CH2Cl2, H2O). The metal topology can be described as two isosceles triangles sharing a common CdII…CdII edge. The two CdII atoms are doubly bridged by two μ-aqua groups. The MIII…CdII sides of the triangles are each asymmetrically bridged by one carboxylate oxygen atom of a 2.2111 saphCOO2−/4ClsaphCOO2− ligand. The core of the molecules is {Cd2M2(μ-Oaqua)2(μ-OR)4}6+, where the OR oxygen atoms are the bridging carboxylate oxygens. The coordination spheres of the metal ions in the centrosymmetric molecules are [Cd(Oaqua)2(Ocarboxylato)4(Onitrato)2] and [M(Nimino)2(Ocarboxylato)2(Ophenolato)2]. The biaugmented trigonal prism is the most appropriate for the description of the coordination geometry of the CdII atoms in 1 and 3, while the geometry of these metal ions in 2 is best described as distorted triangular dodecahedral. A combination of H-bonding and π–π stacking interactions give interesting supramolecular patterns in the three tetranuclear compounds. The three metal ions in 4 define an isosceles triangle with two almost equal CdII…CrIII sides. The CdII center is linked to each CrIII atom through one carboxylato oxygen of a 2.2111 4ClsaphCOO2− ligand. The core of the molecule is {CdCr2(μ-OR)2}6+, where the OR oxygen atoms are the bridging carboxylato oxygens. A tridentate chelating 1.1101 4ClsaphCOO2− ligand is bonded to each CrIII. The coordination spheres are [Cd(Oaqua)3(Oethanol)(Obridging carboxylato)2(Oterminal carboxylate)2] and [Cr(Obridging carboxylato)(Oterminal carboxylato)(Ophenolato)2(Nimino)2]. Complexes 14 are the first heterometallic 3d–4d complexes based on saphHCOOH and 4ClsaphCOOH. The structures are critically compared with those of previous reported ZnII-MIII (M = Fe, Cr) complexes. The IR and Raman spectra of the complexes are discussed in terms of the coordination modes of the ligands involved. UV/VIS spectra in CH2Cl2 are also reported, and the bands are assigned to the corresponding transitions. The δ and ΔEQ57Fe-Mössbauer parameters of 1 and 3 at room temperature and 80 K suggest the presence of isolated high-spin FeIII centers. Variable-temperature (1.8–310 K) and variable-field (0–50 kOe) magnetic studies for 1 and 2 indicate the absence of MIII…MIII exchange interactions, in agreement with the long distances (~8 Å) between the paramagnetic metal ions. The combined work demonstrates the ability of saphCOO2− and 4ClsaphCOO2− to give 3d–4d metal complexes. Full article
(This article belongs to the Special Issue Latest Research on the Magnetic Properties of Coordination Compounds)
Show Figures

Figure 1

11 pages, 2141 KiB  
Article
Effect of Substitutional Metallic Impurities on the Optical Absorption Properties of TiO2
by Eduardo Cisternas, Rodrigo Aguilera-del-Toro, Faustino Aguilera-Granja and Eugenio E. Vogel
Nanomaterials 2024, 14(14), 1224; https://doi.org/10.3390/nano14141224 - 19 Jul 2024
Cited by 3 | Viewed by 1155
Abstract
(TiO2) is both a natural and artificial compound that is transparent under visible and near-infrared light. However, it could be prepared with other metals, substituting for Ti, thus changing its properties. In this article, we present density functional theory calculations for [...] Read more.
(TiO2) is both a natural and artificial compound that is transparent under visible and near-infrared light. However, it could be prepared with other metals, substituting for Ti, thus changing its properties. In this article, we present density functional theory calculations for Ti(1−x)AxO2, where A stands for any of the eight following neutral substitutional impurities, Fe, Ni, Co, Pd, Pt, Cu, Ag and Au, based on the rutile structure of pristine TiO2. We use a fully unconstrained version of the density functional method with generalized gradient approximation plus the U exchange and correlation, as implemented in the Quantum Espresso free distribution. Within the limitations of a finite-size cell approximation, we report the band structure, energy gaps and absorption spectrum for all these cases. Rather than stressing precise values, we report on two general features: the location of the impurity levels and the general trends of the optical properties in the eight different systems. Our results show that all these substitutional atoms lead to the presence of electronic levels within the pristine gap, and that all of them produce absorptions in the visible and near-infrared ranges of electromagnetic radiation. Such results make these systems interesting for the fabrication of solar cells. Considering the variety of results, Ni and Ag are apparently the most promising substitutional impurities with which to achieve better performance in capturing the solar radiation on the planet’s surface. Full article
Show Figures

Figure 1

13 pages, 1863 KiB  
Article
Theoretical Study of the Magnetic Properties of the SmFe12−xMox (x = 1, 2) and SmFe10Mo2H Compounds
by Diana Benea, Eduard Barna, Viorel Pop and Olivier Isnard
Crystals 2024, 14(7), 598; https://doi.org/10.3390/cryst14070598 - 27 Jun 2024
Viewed by 1254
Abstract
We present theoretical investigations examining the electronic and magnetic properties of the SmFe12−xMox (x = 1, 2) and SmFe10Mo2H compounds, including magneto-crystalline anisotropy, magnetic moments, exchange-coupling parameters, and Curie temperatures. The spin-polarized fully relativistic Korringa–Kohn–Rostoker (SPR-KKR) [...] Read more.
We present theoretical investigations examining the electronic and magnetic properties of the SmFe12−xMox (x = 1, 2) and SmFe10Mo2H compounds, including magneto-crystalline anisotropy, magnetic moments, exchange-coupling parameters, and Curie temperatures. The spin-polarized fully relativistic Korringa–Kohn–Rostoker (SPR-KKR) band structure method has been employed, using the coherent potential approximation (CPA) to deal with substitutional disorder. Hubbard-U correction was applied to the local spin density approximation (LSDA+U) in order to account for the significant correlation effects arising from the 4f electronic states of Sm. According to our calculations, the total magnetic moments increases with H addition, in agreement with experimental data. Adding one H atom in the near-neighbor environment of the Fe 8j site reduces the magnetic moments of Fe 8j and enhances the magnetic moment of Fe 8f. For every investigated alloy, the site-resolved spin magnetic moments of Fe on the 8i, 8j, and 8f sites exhibit the same magnitude sequence, with msFe (8i) > msFe (8j) > msFe (8f). While the addition of H has a positive impact on magneto-crystalline anisotropy energy (MAE), the increase in Mo concentration is detrimental to MAE. The computed exchange-coupling parameters reveal the highest values between the closest Fe 8i spins, followed by Fe 8i and Fe 8j spins, for all investigated alloys. The Curie temperature of the alloys under investigation is increased by decreasing the Mo concentration or by H addition, which is qualitatively consistent with experimental findings. Full article
(This article belongs to the Special Issue New Trends in Materials for Permanent Magnets)
Show Figures

Figure 1

17 pages, 6187 KiB  
Article
Selective Adsorption of Sr(II) from Aqueous Solution by Na3FePO4CO3: Experimental and DFT Studies
by Yudong Xie, Xiaowei Wang, Jinfeng Men, Min Zhu, Chengqiang Liang, Hao Ding, Zhihui Du, Ping Bao and Zhilin Hu
Molecules 2024, 29(12), 2908; https://doi.org/10.3390/molecules29122908 - 19 Jun 2024
Cited by 6 | Viewed by 1288
Abstract
The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time [...] Read more.
The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time to the selective separation of Sr2+ from simulated LLRW. Static adsorption experimental results indicated that the distribution coefficient Kd remained above 5000 mL·g−1, even when the concentration of interfering ions was more than 40 times that of Sr2+. Furthermore, the removal efficiency of Sr2+ showed no significant change within the pH range of 4 to 9. The adsorption of Sr2+ fitted the pseudo-second-order kinetic model and the Langmuir isotherm model, with an equilibrium time of 36 min and a maximum adsorption capacity of 99.6 mg·g−1. Notably, the adsorption capacity was observed to increment marginally with an elevation in temperature. Characterization analyses and density functional theory (DFT) calculations elucidated the adsorption mechanism, demonstrating that Sr2+ initially engaged in an ion exchange reaction with Na+. Subsequently, Sr2+ coordinated with four oxygen atoms on the NFPC (100) facet, establishing a robust Sr-O bond via orbital hybridization. Full article
Show Figures

Graphical abstract

20 pages, 4575 KiB  
Article
Relevance of Platinum Underlayer Crystal Quality for the Microstructure and Magnetic Properties of the Heterostructures YbFeO3/Pt/YSZ(111)
by Sondes Bauer, Berkin Nergis, Xiaowei Jin, Lukáš Horák, Reinhard Schneider, Václav Holý, Klaus Seemann, Tilo Baumbach and Sven Ulrich
Nanomaterials 2024, 14(12), 1041; https://doi.org/10.3390/nano14121041 - 17 Jun 2024
Viewed by 1234
Abstract
The hexagonal ferrite h-YbFeO3 grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence [...] Read more.
The hexagonal ferrite h-YbFeO3 grown on YSZ(111) by pulsed laser deposition is foreseen as a promising single multiferroic candidate where ferroelectricity and antiferromagnetism coexist for future applications at low temperatures. We studied in detail the microstructure as well as the temperature dependence of the magnetic properties of the devices by comparing the heterostructures grown directly on YSZ(111) (i.e., YbPt_Th0nm) with h-YbFeO3 films deposited on substrates buffered with platinum Pt/YSZ(111) and in dependence on the Pt underlayer film thickness (i.e., YbPt_Th10nm, YbPt_Th40nm, YbPt_Th55nm, and YbPt_Th70nm). The goal was to deeply understand the importance of the crystal quality and morphology of the Pt underlayer for the h-YbFeO3 layer crystal quality, surface morphology, and the resulting physical properties. We demonstrate the relevance of homogeneity, continuity, and hillock formation of the Pt layer for the h-YbFeO3 microstructure in terms of crystal structure, mosaicity, grain boundaries, and defect distribution. The findings of transmission electron microscopy and X-ray diffraction reciprocal space mapping characterization enable us to conclude that an optimum film thickness for the Pt bottom electrode is ThPt = 70 nm, which improves the crystal quality of h-YbFeO3 films grown on Pt-buffered YSZ(111) in comparison with h-YbFeO3 films grown on YSZ(111) (i.e., YbPt_Th0nm). The latter shows a disturbance in the crystal structure, in the up-and-down atomic arrangement of the ferroelectric domains, as well as in the Yb–Fe exchange interactions. Therefore, an enhancement in the remanent and in the total magnetization was obtained at low temperatures below 50 K for h-YbFeO3 films deposited on Pt-buffered substrates Pt/YSZ(111) when the Pt underlayer reached ThPt = 70 nm. Full article
Show Figures

Figure 1

Back to TopTop