Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Fagopyrum dibotrys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2351 KiB  
Article
Selenium Nanoparticles Regulate Antioxidant Enzymes and Flavonoid Compounds in Fagopyrum dibotrys
by Ting Hu, Sasa Zhang, Kui Li and Yanbin Guo
Plants 2024, 13(21), 3098; https://doi.org/10.3390/plants13213098 - 3 Nov 2024
Cited by 2 | Viewed by 1438
Abstract
Fagopyrum dibotrys is a herbal plant. Selenium (Se) is a beneficial element for plants; selenium nanoparticles (SeNPs) are gaining importance in food and agriculture due to their low toxicity and high activity. This study revealed that foliar application of SeNPs enhanced superoxide dismutase, [...] Read more.
Fagopyrum dibotrys is a herbal plant. Selenium (Se) is a beneficial element for plants; selenium nanoparticles (SeNPs) are gaining importance in food and agriculture due to their low toxicity and high activity. This study revealed that foliar application of SeNPs enhanced superoxide dismutase, glutathione peroxidase, and peroxisome activities and significantly enhanced the flavonoid compound content in F. dibotrys. SeNPs with a concentration of 5.0 mg L−1 also promoted the growth of F. dibotrys. The foliar application of SeNPs could be absorbed by pores in leaves of F. dibotrys and mainly transformed to selenomethionine (32.5–43.2%) and selenocysteine (23.4–38.4%) in leaves and tubers of F. dibotrys. Consequently, this study offers a profound understanding of plants’ uptake and biotransformation of SeNPs. Furthermore, the findings of this study have suggested that SeNPs can be applied to improve the quantity and quality of the herbal plant of F. dibotrys. Full article
(This article belongs to the Special Issue Macronutrients and Micronutrients in Plant Growth and Development)
Show Figures

Figure 1

14 pages, 2193 KiB  
Article
Identification of Medicinal Compounds of Fagopyri Dibotryis Rhizome from Different Origins and Its Varieties Using UPLC-MS/MS-Based Metabolomics
by Chengcai Zhang, Yang Jiang, Changzheng Liu, Linyuan Shi, Jintong Li, Yan Zeng, Lanping Guo and Sheng Wang
Metabolites 2022, 12(9), 790; https://doi.org/10.3390/metabo12090790 - 25 Aug 2022
Cited by 14 | Viewed by 2627
Abstract
Fagopyrum dibotrys, being native to southwest China, is widely distributed in Yunnan, Guizhou Provinces and Chongqing City. However, the quality of medicinal materials growing in different origins varies greatly, and cannot meet the market demand for high-quality F. dibotrys. In this [...] Read more.
Fagopyrum dibotrys, being native to southwest China, is widely distributed in Yunnan, Guizhou Provinces and Chongqing City. However, the quality of medicinal materials growing in different origins varies greatly, and cannot meet the market demand for high-quality F. dibotrys. In this study, 648 metabolites were identified, and phenolic compounds of F. dibotrys from different origins were clearly separated by principal component analysis (PCA). Our results suggested that the medicinal differences of F. dibotrys from different origins can be elucidated via the variations in the abundance of the phenolic and flavonoid compounds. We found that the epicatechin, total flavonoids and total tannin content in Yunnan Qujing (YQ) and Yunnan Kunming (YK) were higher than those in Chongqing Shizhu (CS), Chongqing Fuling (CF) and Guizhou Bijie (GB), suggesting that Yunnan Province can be considered as one of the areas that produce high-quality medicinal materials. Additionally, 1,6-di-O-galloyl-β-D-glucose, 2,3-di-O-galloyl-D-glucose and gallic acid could be used as ideal marker compounds for the quality control of F. dibotrys from different origins caused by metabolites, and the F. dibotrys planted in Yunnan Province is well worth exploiting. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

22 pages, 14278 KiB  
Article
Antioxidant and Antidiabetic Activity of Proanthocyanidins from Fagopyrum dibotrys
by Xin Li, Jingling Liu, Qinxiang Chang, Ziyun Zhou, Ruilian Han and Zongsuo Liang
Molecules 2021, 26(9), 2417; https://doi.org/10.3390/molecules26092417 - 21 Apr 2021
Cited by 52 | Viewed by 4656
Abstract
Proanthocyanidins are natural glycosidase inhibitors with excellent antioxidant activity. This study aims to search for a new source of proanthocyanidins for the prevention and treatment of type 2 diabetes with higher content and better activity and get their structure elucidated. First, the total [...] Read more.
Proanthocyanidins are natural glycosidase inhibitors with excellent antioxidant activity. This study aims to search for a new source of proanthocyanidins for the prevention and treatment of type 2 diabetes with higher content and better activity and get their structure elucidated. First, the total proanthocyanidins contents (TOPCs), antioxidant activity, antidiabetic activity of seven common Polygonaceae plants were analyzed and compared. Then proanthocyanidins from the rhizome of Fagopyrum dibotrys were purified, and the detailed structure was comprehensively analyzed by ultraviolet visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance spectroscopy (13C NMR), reversed-phase high-performance liquid chromatography-electrospray mass spectrometry (RP-HPLC-ESI-MS), and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The rhizome of F. dibotrys showed the highest TOPCs, the strongest antioxidant, and antidiabetic activities; the TOPCs, antioxidant and antidiabetic activities were all very significantly positively correlated. Proanthocyanidins purified from the rhizome of F. dibotrys showed better antidiabetic activity than grape seed proanthocyanidins (GsPs). Seventy-two proanthocyanidins from trimer to undecamer with a mean degree of polymerization (mDP) of about 5.02 ± 0.21 were identified with catechin and epicatechin as the dominant monomers. Conclusion: Proanthocyanidins are the main antioxidant and antidiabetic active substances of F. dibotrys and are expected to be developed into potential antioxidant and hypoglycemic products. Full article
(This article belongs to the Special Issue Natural Products: Isolation, Identification and Biological Activity)
Show Figures

Figure 1

11 pages, 2684 KiB  
Article
Neuraminidase Inhibitory Activity and Constituent Characterization of Fagopyrum dibotrys
by Xiang Zhang, Yu Cao, Jinhua Li, Ailin Liu, Haibo Liu and Linfang Huang
Molecules 2017, 22(11), 1998; https://doi.org/10.3390/molecules22111998 - 18 Nov 2017
Cited by 9 | Viewed by 4957
Abstract
This study aimed to identify a new biological activity of the widely distributed species Fagopyrum dibotrys. Four F. dibotrys extracts (ethyl acetate (EA), petroleum ether (P), ethanol (E), and water (W)) were explored for their anti-neuraminidase (NA) activity. A total of 32 [...] Read more.
This study aimed to identify a new biological activity of the widely distributed species Fagopyrum dibotrys. Four F. dibotrys extracts (ethyl acetate (EA), petroleum ether (P), ethanol (E), and water (W)) were explored for their anti-neuraminidase (NA) activity. A total of 32 compounds were identified using UHPLC-Q-Exactive Orbitrap HRMS in the EA extract, which had the best NA inhibitory effects. We used the docking data for supporting compounds’ anti-neuraminidase activity. Among them, five compounds including one flavonoid, three organic acids, and one glucoside were discovered for the first time in F. dibotrys. Docking studies and NA activity assay revealed the remarkable NA inhibitory activity of eight components in EA extract, especially rutin, hesperidin, procyanidin B2, and quercitrin. Therefore, F. dibotrys could be used to develop anti-influenza drugs. Full article
Show Figures

Figure 1

20 pages, 1617 KiB  
Review
Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats
by Rui Jing, Hua-Qiang Li, Chang-Ling Hu, Yi-Ping Jiang, Lu-Ping Qin and Cheng-Jian Zheng
Int. J. Mol. Sci. 2016, 17(4), 589; https://doi.org/10.3390/ijms17040589 - 19 Apr 2016
Cited by 106 | Viewed by 10686
Abstract
The genus Fagopyrum (Polygonaceae), currently comprising 15 species of plants, includes three important buckwheat species: Fagopyrum esculentum (F. esculentum) Moench. (common buckwheat), Fagopyrum tataricum (F. tataricum) (L.) Gaertn. (tartary buckwheat) and Fagopyrum dibotrys (F. dibotrys) (D. Don) [...] Read more.
The genus Fagopyrum (Polygonaceae), currently comprising 15 species of plants, includes three important buckwheat species: Fagopyrum esculentum (F. esculentum) Moench. (common buckwheat), Fagopyrum tataricum (F. tataricum) (L.) Gaertn. (tartary buckwheat) and Fagopyrum dibotrys (F. dibotrys) (D. Don) Hara. (perennial buckwheat), which have been well explored due to their long tradition of both edible and medicinal use. This review aimed to present an up-to-date and comprehensive analysis of the phytochemistry and pharmacology of the three Fagopyrum buckwheats. In addition, the scope for future research was also discussed. All available references included in this paper were compiled from major databases, such as MEDLINE, Pubmed, Scholar, Elsevier, Springer, Wiley and CNKI. A total of 106 compounds isolated from three Fagopyrum buckwheats can be mainly divided into six classes: flavonoids, phenolics, fagopyritols, triterpenoids, steroids and fatty acids. Flavonoids and phenolic compounds were considered to be the major active components. Considerable pharmacological experiments both in vitro and in vivo have validated that Fagopyrum buckwheats possess antitumor, anti-oxidant, anti-inflammatory, hepatoprotective, anti-diabetic activities, etc. All reported data lead us to conclude that Fagopyrum buckwheats have convincing medicinal potential. However, further research is needed to explore its bioactive constituents, the relationship to their structural activities and the molecular mechanisms of action. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

Back to TopTop