Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = FSEA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10962 KiB  
Article
Effects of Seawater Intrusion on the Groundwater Quality of Multi-Layered Aquifers in Eastern Saudi Arabia
by Mohammed Benaafi, S. I. Abba and Isam H. Aljundi
Molecules 2023, 28(7), 3173; https://doi.org/10.3390/molecules28073173 - 3 Apr 2023
Cited by 14 | Viewed by 3194
Abstract
The degradation of groundwater (GW) quality due to seawater intrusion (SWI) is a major water security issue in water-scarce regions. This study aims to delineate the impact of SWI on the GW quality of a multilayered aquifer system in the eastern coastal region [...] Read more.
The degradation of groundwater (GW) quality due to seawater intrusion (SWI) is a major water security issue in water-scarce regions. This study aims to delineate the impact of SWI on the GW quality of a multilayered aquifer system in the eastern coastal region of Saudi Arabia. The physical and chemical properties of the GW were determined via field investigations and laboratory analyses. Irrigation indices (electrical conductivity (EC), potential salinity (PS), sodium adsorption ratio (SAR), Na%, Kelly’s ratio (KR), magnesium adsorption ratio (MAR), and permeability index (PI)) and a SWI index (fsea) were obtained to assess the suitability of GW for irrigation. K-mean clustering, correlation analysis, and principal component analysis (PCA) were used to determine the relationship between irrigation hazard indices and the degree of SWI. The tested GW samples were grouped into four clusters (C1, C2, C3, and C4), with average SWI degrees of 15%, 8%, 5%, and 2%, respectively. The results showed that the tested GW was unsuitable for irrigation due to salinity hazards. However, a noticeable increase in sodium and magnesium hazards was also observed. Moreover, increasing the degree of SWI (fsea) was associated with increasing salinity, sodium, and magnesium, with higher values observed in the GW samples in cluster C1, followed by clusters C2, C3, and C4. The correlation analysis and PCA results illustrated that the irrigation indices, including EC, PS, SAR, and MAR, were grouped with the SWI index (fsea), indicating the possibility of using them as primary irrigation indices to reflect the impact of SWI on GW quality in coastal regions. The results of this study will help guide decision-makers toward proper management practices for SWI mitigation and enhancing GW quality for irrigation. Full article
(This article belongs to the Special Issue Chemometrics in Analytical Chemistry)
Show Figures

Figure 1

13 pages, 4521 KiB  
Article
Green Copolymers and Nanocomposites from Myrcene and Limonene Using Algerian Nano-Clay as Nano-Reinforcing Filler
by Hodhaifa Derdar, Geoffrey Robert Mitchell, Artur Mateus, Sarra Chaibedraa, Zinelabidine Otmane Elabed, Vidhura Subash Mahendra, Zakaria Cherifi, Khaldoun Bachari, Redouane Chebout, Rachid Meghabar, Amine Harrane and Mohammed Belbachir
Polymers 2022, 14(23), 5271; https://doi.org/10.3390/polym14235271 - 2 Dec 2022
Cited by 3 | Viewed by 2800
Abstract
In this work, we report a new facile method for the preparation of myrcene-limonene copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization using [...] Read more.
In this work, we report a new facile method for the preparation of myrcene-limonene copolymers and nanocomposites using a Lewis acid as a catalyst (AlCl3) and organo-modified clay as a nano-reinforcing filler. The copolymer (myr-co-lim) was prepared by cationic copolymerization using AlCl3 as a catalyst. The structure of the obtained copolymer is studied and confirmed by Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, and Differential Scanning Calorimetry. By improving the dispersion of the matrix polymer in sheets of the organoclay, Maghnite-CTA+ (Mag-CTA+), an Algerian natural organophilic clay, was used to preparenanocomposites of linear copolymer (myr-co-lim). In order to identify and assess their structural, morphological, and thermal properties, the effect of the organoclay, used in varyingamounts (1, 4, 7, and 10% by weight), and the preparation process were investigated. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process in which they were used as green nano-reinforcing filler. The X-ray diffraction of the resulting nanocomposites revealed a considerable alteration in the interlayer spacing of Mag-CTA+. As a result, interlayer expansion and myr-co-lim exfoliation between layers of Mag-CTA+ were observed. Thermogravimetric analysis provided information on the synthesized nanocomposites’ thermal properties. Fourier transform infrared spectroscopy and scanning electronic microscopy, respectively, were used to determine the structure and morphology of the produced nanocomposites (myr-co-lim/Mag). The intercalation of myr-co-lim in the Mag-CTA+ sheets has been supported by the results, and the optimum amount of organoclay needed to create a nanocomposite with high thermal stability is 10% by weight. Finally, a new method for the preparation of copolymer and nanocomposites from myrcene and limonene in a short reaction time was developed. Full article
Show Figures

Graphical abstract

16 pages, 6768 KiB  
Article
Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method
by Hodhaifa Derdar, Geoffey Robert Mitchell, Sarra Chaibedraa, Vidhura Subash Mahendra, Zakaria Cherifi, Khaldoun Bachari, Redouane Chebout, Fouzia Touahra, Rachid Meghabar and Mohammed Belbachir
Polymers 2022, 14(14), 2820; https://doi.org/10.3390/polym14142820 - 11 Jul 2022
Cited by 8 | Viewed by 2895
Abstract
In the present work, we report a simple synthesis method for preparation of copolymers and nanocomposites from limonene and styrene using clay as a catalyst. The copolymerization reaction is carried out by using a proton exchanged clay as a catalyst called Mag-H+ [...] Read more.
In the present work, we report a simple synthesis method for preparation of copolymers and nanocomposites from limonene and styrene using clay as a catalyst. The copolymerization reaction is carried out by using a proton exchanged clay as a catalyst called Mag-H+. The effect of temperature, reaction time and amount of catalyst were studied, and the obtained copolymer structure (lim-co-sty) is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H-NMR) and differential scanning calorimetry (DSC). The molecular weight of the obtained copolymer is determined by gel permeation chromatography (GPC) and is about 4500 g·mol−1. The (lim-co-sty/Mag 1%, 3%, 7% and 10% by weight of clay) nanocomposites were prepared through polymer/clay mixture in solution method using ultrasonic irradiation, in the presence of Mag-CTA+ as green nano-reinforcing filler. The Mag-CTA+ is organophilic silicate clay prepared through a direct exchange process, using cetyltrimethylammonuim bromide (CTAB). The prepared lim-co-sty/Mag nanocomposites have been extensively characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM). TEM analysis confirms the results obtained by XRD and clearly show that the obtained nanocomposites are partially exfoliated for the lower amount of clay (1% and 3% wt) and intercalated for higher amounts of clay (7% and 10% wt). Moreover, thermogravimetric analysis (TGA) indicated an enhancement of thermal stability of nanocomposites compared with the pure copolymer. Full article
(This article belongs to the Special Issue Advanced Polymer-Inorganic Composites)
Show Figures

Graphical abstract

21 pages, 5953 KiB  
Article
Fenugreek Seed Galactomannan Aqueous and Extract Protects against Diabetic Nephropathy and Liver Damage by Targeting NF-κB and Keap1/Nrf2 Axis
by Sarah M. Alsuliam, Nawal A. Albadr, Salah A. Almaiman, Abdullrahman S. Al-Khalifah, Noorah S. Alkhaldy and Ghedeir M. Alshammari
Toxics 2022, 10(7), 362; https://doi.org/10.3390/toxics10070362 - 30 Jun 2022
Cited by 20 | Viewed by 4659
Abstract
This investigation was conducted to test the potential of the galactomannan (F-GAL) and aqueous extract (FS-AE) of the Fenugreek seed aqueous to prevent liver and kidney damage extracts in streptozotocin (STZ)-induced T1DM in rats. Non-diabetic and diabetic rats received the normal saline as [...] Read more.
This investigation was conducted to test the potential of the galactomannan (F-GAL) and aqueous extract (FS-AE) of the Fenugreek seed aqueous to prevent liver and kidney damage extracts in streptozotocin (STZ)-induced T1DM in rats. Non-diabetic and diabetic rats received the normal saline as a vehicle or were treated with FS-EA or F-GAL at a final concentration of 500 mg/kg/each. Treatments with both drugs reduced fasting hyperglycemia and improved serum and hepatic lipid profiles in the control and diabetic rats. Additionally, F-GAL and FS-AE attenuated the associated reduction in the mass and structure of the islets of Langerhans in diabetic rats and improved the structure of the kidneys and livers. In association, they also reduced the generation of reactive oxygen species (ROS), lipid peroxides, factor (TNF-α), interleukin-6 (IL-6), and nuclear levels of NF-κB p65, and improved serum levels of ALT, AST, albumin, and creatinine. However, both treatments increased hepatic and renal superoxide dismutase (SOD) in the livers and kidneys of both the control and diabetic-treated rats, which coincided with a significant increase in transcription, translation, and nuclear localization of Nrf2. In conclusion, FS-AE and F-GAL are effective therapeutic options that may afford a possible treatment for T1DM by attenuating pancreatic damage, hyperglycemia, hyperlipidemia, and hepatic and renal damage. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

11 pages, 6783 KiB  
Article
Green Nanocomposites from Rosin-Limonene Copolymer and Algerian Clay
by Hodhaifa Derdar, Geoffrey Robert Mitchell, Vidhura Subash Mahendra, Mohamed Benachour, Sara Haoue, Zakaria Cherifi, Khaldoun Bachari, Amine Harrane and Rachid Meghabar
Polymers 2020, 12(9), 1971; https://doi.org/10.3390/polym12091971 - 30 Aug 2020
Cited by 14 | Viewed by 4199
Abstract
Green nanocomposites from rosin-limonene (Ros-Lim) copolymers based on Algerian organophilic-clay named Maghnite-CTA+ (Mag-CTA+) were prepared by in-situ polymerization using different amounts (1, 5 and 10% by weight) of Mag-CTA+ and azobisisobutyronitrile as a catalyst. The Mag-CTA+ is an [...] Read more.
Green nanocomposites from rosin-limonene (Ros-Lim) copolymers based on Algerian organophilic-clay named Maghnite-CTA+ (Mag-CTA+) were prepared by in-situ polymerization using different amounts (1, 5 and 10% by weight) of Mag-CTA+ and azobisisobutyronitrile as a catalyst. The Mag-CTA+ is an organophilic montmorillonite silicate clay prepared through a direct exchange process; the clay was modified by ultrasonic-assisted method using cetyltrimethylammonuim bromide in which it used as green nano-filler.The preparation method of nanocomposites was studied in order to determine and improve structural, morphological, mechanical and thermal properties ofsin.The structure and morphology of the obtained nanocomposites(Ros-Lim/Mag-CTA+) were determined using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electronic microscopy and transmission electronic microscopy. The analyses confirmed the chemical modification of clay layers and the intercalation of rosin-limonene copolymer within the organophilic-clay sheets. An exfoliated structure was obtained for the lower amount of clay (1% wt of Mag-CTA+), while intercalated structures were detected for high amounts of clay (5 and 10% wt of Mag-CTA+). The thermal properties of the nanocomposites were studied by thermogravimetric analysis (TGA) and show a significant improvement inthe thermal stability of the obtained nanocomposites compared to the purerosin-limonene copolymer (a degradation temperature up to 280 °C). Full article
(This article belongs to the Special Issue Polymer Connect: Polymer Science and Composite Materials)
Show Figures

Graphical abstract

14 pages, 2491 KiB  
Article
Fold-Change-Specific Enrichment Analysis (FSEA): Quantification of Transcriptional Response Magnitude for Functional Gene Groups
by Daniil S. Wiebe, Nadezhda A. Omelyanchuk, Aleksei M. Mukhin, Ivo Grosse, Sergey A. Lashin, Elena V. Zemlyanskaya and Victoria V. Mironova
Genes 2020, 11(4), 434; https://doi.org/10.3390/genes11040434 - 17 Apr 2020
Cited by 8 | Viewed by 6352
Abstract
Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes from transcriptome data with respect to their fold changes. FSEA identifies Gene [...] Read more.
Gene expression profiling data contains more information than is routinely extracted with standard approaches. Here we present Fold-Change-Specific Enrichment Analysis (FSEA), a new method for functional annotation of differentially expressed genes from transcriptome data with respect to their fold changes. FSEA identifies Gene Ontology (GO) terms, which are shared by the group of genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA are fold-change-specifically (e.g., weakly, moderately, or strongly) affected by a stimulus under investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of the fold-change-specific GO terms are invisible by classical algorithms for functional gene enrichment, Singular Enrichment Analysis (SEA), and Gene Set Enrichment Analysis (GSEA). These are GO terms not enriched compared to the genome background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated response can be the valuable source to search for possible regulators, markers, and therapeutic targets in oncogenic processes. Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and a web-server. Full article
(This article belongs to the Section Technologies and Resources for Genetics)
Show Figures

Figure 1

12 pages, 6345 KiB  
Article
Heavy Metal Pollution of Chari River Water during the Crossing of N’Djamena (Chad)
by N’garam Nambatingar, Yohann Clement, Alain Merle, Tchadanaye New Mahamat and Pierre Lanteri
Toxics 2017, 5(4), 26; https://doi.org/10.3390/toxics5040026 - 12 Oct 2017
Cited by 14 | Viewed by 7991
Abstract
This study was carried out to identify and assess the water quality of the Chari River. The Chari, 1200 km long, is Chad’s major water source. Municipal sewage, industrial wastewater discharge, and seasonal run-off from agriculture are regularly fed into the river. Several [...] Read more.
This study was carried out to identify and assess the water quality of the Chari River. The Chari, 1200 km long, is Chad’s major water source. Municipal sewage, industrial wastewater discharge, and seasonal run-off from agriculture are regularly fed into the river. Several trace metals such as Cu, Zn, Fe, Ni, Cr, Mn, and Cd, were measured in different sampling stations located along the Chari River at N’Djamena in different campaigns from 2008 to 2010. Overall, manganese, zinc, chromium, and copper concentration levels were mainly in the range of the permissible limits prescribed by WHO guidelines (WHO 2011). Nickel, iron, and cadmium concentrations were still high. This preliminary study allowed us to identify the magnitude of toxic pollutants, which are responsible for Chari River water contamination in the study area. This study revealed that urgent measures must be taken to protect the local people from health problems resulting from high concentrations of heavy metals. Full article
(This article belongs to the Special Issue Emerging Contaminants in Water: Is It still a Conundrum?)
Show Figures

Figure 1

26 pages, 2128 KiB  
Article
Generalization of Series Elastic Actuator Configurations and Dynamic Behavior Comparison
by Chan Lee, Suhui Kwak, Jihoo Kwak and Sehoon Oh
Actuators 2017, 6(3), 26; https://doi.org/10.3390/act6030026 - 22 Aug 2017
Cited by 71 | Viewed by 19980
Abstract
The Series Elastic Actuator (SEA) has recently been developed by many research groups and applied in various fields. As SEA is the combination of motor, spring, gear and load, various types and configurations of mechanism have been developed as SEAs to satisfy many [...] Read more.
The Series Elastic Actuator (SEA) has recently been developed by many research groups and applied in various fields. As SEA is the combination of motor, spring, gear and load, various types and configurations of mechanism have been developed as SEAs to satisfy many requirements necessary for the applications. This paper provides a theoretical framework to categorize and compare these various configurations of SEAs. The general structure and model of SEA is provided, and SEA configurations are categorized into Force-sensing Series Elastic Actuator, Reaction Force-sensing Series Elastic Actuator and Transmitted Force-sensing Series Elastic Actuator, based on the relative location of the spring. Criteria such as Force sensitivity, Compliance and Transmissibility of SEA are derived and compared using actual SEAs that have been developed previously. Full article
(This article belongs to the Special Issue Variable Stiffness and Variable Impedance Actuators)
Show Figures

Figure 1

Back to TopTop