Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Preparation of Maghnite-H+
2.3. Activation of Mag-Na+ and Mag-CTA+
2.4. Copolymerization Procedure
2.5. Synthesis of Nanocomposites Copolymer/Clay (Lim-co-Sty/Mag)
2.6. Characterization
3. Results
3.1. Characterization of the Modified Clay (H+, Na+ and CTA+)
3.2. Characterization of the Obtained Copolymer (Lim-co-Sty)
3.2.1. H-NMR Measurements
3.2.2. FT-IR Measurements
3.2.3. Differential Scanning Calorimetry (DSC)
3.2.4. GPC Measurements
3.3. Effects of Various Synthesis Parameters on the Copolymerization Yields
3.3.1. Effect of Catalyst Amount
3.3.2. Effect of the Temperature
3.3.3. Effect of Reaction Time
3.4. Characterization of Nanocomposites (Lim-co-Sty-Mag)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenouillot, F.; Rousseau, A.; Colomines, G.; Saint-Joup, R.; Pascault, J.P. Polymers from Renewable 1,4:3,6-Dianhydrohexitols (Isosorbide, Isomannide and Isoidide): A Review. Prog. Polym. Sci. 2010, 35, 578–622. [Google Scholar] [CrossRef]
- Lavilla, C.; Martínez de Ilarduya, A.; MAlla, M.G.; García-Martín, A.; Galbis, J.A.; Muñoz-Guerra, S. Bio-Based Aromatic Polyesters from a Novel Bicyclic Diol Derived from d-Mannitol. Macromolecules 2012, 45, 8257–8266. [Google Scholar] [CrossRef]
- Jasinska, L.; Koning, C.E.J. Waterborne polyesters partially based on renewable resources. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 5907–5915. [Google Scholar] [CrossRef]
- Jansen, D.J.; Shenvi, R.A. Synthesis of medicinally relevant terpenes: Reducing the cost and time of drug discovery. Future Med. Chem. 2014, 6, 1127–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukel, E.; Wojcik, R.; Arlt, H. Cationic Polymerization of α-Pinene Oxide and β-Pinene Oxide by a Unique Oxonium lonCarbenium Ion Sequence. J.Macromol. Sci. Part A 1976, 10, 1371–1390. [Google Scholar] [CrossRef]
- Sharma, S.; Srivastava, A.K. Synthesis and characterization of copolymers of limonene with styrene initiated by azobisisobutyronitrile. Eur. Polym. J. 2004, 40, 2235–2240. [Google Scholar] [CrossRef]
- Keszler, B.; Kennedy, J.P. Synthesis of high molecular weight poly (β-pinene). Adv. Polym. Sci. 1992, 100, 1–9. [Google Scholar]
- Ham, G.E. Penultimate unit effects in terpolymerization. J. Polym Sci. A Polym. Chem. 1964, 2, 4191–4200. [Google Scholar] [CrossRef]
- Derdar, H.; Belbachir, M.; Harrane, A. A green synthesis of polylimonene using Maghnite-H+, an exchanged montmorillonite clay, as eco-catalyst. Bull. Chem. React. Eng. Catal. 2019, 14, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Derdar, H.; Belbachir, M.; Hennaoui, F.; Akeb, M.; Harrane, A. Green copolymerization of limonene with β-pinene catalyzed by an eco-catalyst Maghnite-H+. Polym. Sci. Ser. B 2018, 60, 555–562. [Google Scholar] [CrossRef]
- Doiuchi, T.; Yamanguchi, H.; Minoura, Y. Cyclocopolymerization of d-limonene with maleic anhydride. Eur. Polym. J. 1981, 19, 961–986. [Google Scholar] [CrossRef]
- Roberts, W.; Day, A. A Study of the Polymerization of α- and β-Pinene with Friedel- Crafts Type Catalysts. J. Am. Chem. Soc. 1950, 72, 1226–1230. [Google Scholar] [CrossRef]
- Barros, M.T.; Petrova, K.T.; Ramos, A.M. Potentially Biodegradable Polymers based on α- or β-Pinene and Sugar Derivatives or Styrene, Obtained under Normal Conditions and Microwave Irradiation. Eur. J. Org. Chem. 2007, 8, 1357–1363. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. Springer Plus. 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, B.; Zhou, Y.; Qin, H.; Wu, C.; Pang, C.; Lian, Y.; Xu, J. Pretreatment of wastewater from acrylonitrile–butadiene–styrene (ABS) resin. Chem. Eng. J. 2012, 179, 1–7. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Zhou, Y. Compatibility of waste rubber powder/polystyrene blends by the addition of styrene grafted styrene butadiene rubber copolymer: Effect on morphology and properties. Polym. Bull. 2013, 70, 2829–2841. [Google Scholar] [CrossRef]
- Devi, R.R.; Maji, T.K. Chemical modification of simul wood with styrene–acrylonitrile copolymer and organically modified nanoclay. Wood. Sci. Technol. 2012, 46, 299–315. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, J. Largely improved the low temperature toughness of acrylonitrilestyrene-acrylate (ASA) resin: Fabricated a core-shell structure of two elastomers through the differences of interfacial tensions. Appl. Sur. Sci. 2018, 444, 345–354. [Google Scholar] [CrossRef]
- Huang, K.; Yu, S.; Li, X. One-pot synthesis of bimetal MOFs as highly efficient catalysts for selective oxidation of styrene. J. Chem. Sci. 2020, 132, 139. [Google Scholar] [CrossRef]
- Lima, M.S.; Costa, C.S.M.F.; Coelho, J.F.J.; Fonseca, A.C.; Serra, A.C. Simple strategy toward the substitution of styrene by sobrerol-based monomers in unsaturated polyester resins. Green. Chem. 2018, 20, 4880–4890. [Google Scholar] [CrossRef]
- Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Ukushima, Y.F.; Kamigaito, O. Mechanical properties of nylon 6-clay hybrid. J. Mat. Res. 1993, 8, 1185–1189. [Google Scholar] [CrossRef]
- Harrane, A.; Meghabar, R.; Belbachir, M. In situ polymerization of ε-caprolactone catalyzed by Maghnite TOA to produce poly(ε-caprolactone)/montmorillonite nanocomposites. Des. Monomers Polym. 2006, 9, 181–191. [Google Scholar] [CrossRef]
- Zare, Y.; Fasihi, M.; Rhee, K.Y. Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites. Appl. Clay. Sci. 2017, 143, 265–272. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef] [Green Version]
- Mykola, S.; Olga, N.; Dmitry, M. The influence of alkylammonium modified clays on the fungal resistance and biodeterioration of epoxy-clay nanocomposites. Int. Biodeterior. Biodegrad. 2016, 110, 136–140. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Pinjari, D.V.; Gogate, P.R.; Sonawane, S.H.; Pandit, A.B. Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization. Chem. Eng. Processing Process Intensif. 2011, 50, 1160–1168. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Pinjari, D.V.; Gogate, P.R.; Sonawane, S.H.; Pandit, A.B. Synthesis of exfoliated poly(styrene-co-methyl methacrylate)/montmorillonite nanocomposite using ultrasound assisted in situ emulsion copolymerization. Chem. Eng. J. 2012, 181, 770–778. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Pinjari, D.V.; Gogate, P.R.; Sonawane, S.H.; Pandit, A.B. Analysis of semibatch emulsion polymerization: Role of ultrasound and initiator. Ultrason. Sonochem. 2012, 19, 97–103. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Sonawane, S.H.; Pinjari, D.V.; Gogate, P.R.; Pandit, A.B. Kinetic studies of semibatch emulsion copolymerization of methyl methacrylate and styrene in the presence of high intensity ultrasound and initiator. Chem. Eng. Processing Process Intensif. 2014, 85, 168–177. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Sonawane, S.H. Ultrasound Assisted In-Situ Emulsion Polymerization for Polymer Nanocomposite: A Review. Chem. Eng. Processing Process Intensif. 2014, 85, 86–107. [Google Scholar] [CrossRef]
- Yusof, N.S.M.; Babgi, B.; Alghamdi, Y.; Aksu, M.; Madhavan, J.; Ashokkumar, M. Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason. Sonochem. 2016, 29, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Cherifi, Z.; Boukoussa, B.; Zaoui, A.; Belbachir, M.; Meghabar, R. Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem. 2018, 48, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, F.A.; Rivera, F.; Loyo, C.; Canales, D.; Moreno-Serna, V.; Benavente, R.; Rivas, L.M.; Ulloa, M.T.; Gil-Castell, O.; Ribes-Greus, A.; et al. Poly (lactic acid)/D-limonene/ZnO bio-nanocomposites with antimicrobial properties. J. Appl. Polym. Sci. 2022, 139, 51542. [Google Scholar] [CrossRef]
- Morère, J.; Sánchez-Miguel, E.; Tenorio, M.J.; Pando, C.; Cabañas, A. Supercritical fluid preparation of Pt, Ru and Ni/graphene nanocomposites and their application as selective catalysts in the partial hydrogenation of limonene. J. Supercrit. Fluids 2017, 120, 7–17. [Google Scholar] [CrossRef]
- Vaschetti, V.M.; Eimer, G.A.; Cánepa, A.L.; Casuscelli, S.G. Catalytic performance of V-MCM-41 nanocomposites in liquid phase limonene oxidation: Vanadium leaching mitigation. Micropor. Mesopor. Mater. 2021, 311, 110678. [Google Scholar] [CrossRef]
- Derdar, H.; Mitchell, G.R.; Mahendra, V.S.; Beachgoer, M.; Haoue, S.; Cherifi, Z.; Bachari, K.; Harrane, A.; Meghabar, R. Green Nanocomposites from Rosin-Limonene Copolymer and Algerian Clay. Polymers 2020, 12, 1971. [Google Scholar] [CrossRef] [PubMed]
- Elabed, Z.O.; Kherroub, D.E.; Derdar, H.; Belbachir, M. Novel Cationic Polymerization of β-Myrcene Using a Proton Exchanged Clay (Maghnite-H+). Polym. Sci. Ser. B 2021, 63, 480–487. [Google Scholar] [CrossRef]
- Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. Polymerization of ethylene glycol dimethacrylate (EGDM), using an Algerian clay as eco-catalyst (maghnite-H+ and Maghnite-Na+). Bull. Chem. React. Eng. Catal. 2020, 15, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chemistry 2020, 14, 468–473. [Google Scholar] [CrossRef]
- Derdar, H.; Meghabar, R.; Benachour, M.; Mitchell, G.R.; Bachari, K.; Belbachir, M.; Cherifi, Z.; Baghdadli, M.C.; Harrane, A. Polymer-Clay Nanocomposites: Exfoliation and Intercalation of Organophilic Montmorillonite Nanofillers in Styrene–Limonene Copolymer. Polym. Sci. Ser. A 2021, 63, 568–575. [Google Scholar] [CrossRef]
- Cherifi, Z.; Zaoui, A.; Boukoussa, B.; Derdar, H.; Elabed, Z.O.; Zeggai, F.Z.; Meghabar, R.; Chebout, R.; Bachari, K. Ultrasound-promoted preparation of cellulose acetate/organophilic clay bio-nanocomposites films by solvent casting method. Polym. Bull. 2022, 79, 1–13. [Google Scholar] [CrossRef]
- Derdar, H.; Mitchell, G.R.; Cherifi, Z.; Belbachir, M.; Benachour, M.; Meghabar, R.; Bachari, K.; Harrane, A. Ultrasound assisted synthesis of polylimonene and organomodified-clay nanocomposites: A structural, morphological and thermal properties. Bull. Chem. React. Eng. Catal. 2020, 15, 798–807. [Google Scholar] [CrossRef]
- Cicel, B. Mineralogical composition and distribution of Si, Al, Fe, Mg and Ca in the fine fractions of some Czech and Slovak bentonites. Geol. Carpathica Ser. Clays 1992, 43, 3–7. [Google Scholar]
- Grenier, A.; Wendorff, H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. 2007, 46, 5670–5703. [Google Scholar] [CrossRef] [PubMed]
- Khenifi, A.; Zohra, B.; Kahina, B.; Houari, H.; Zoubir, D. Removal of 2,4- DCP from wastewater by CTAB/bentonite using one-step and two-step methods: A comparative study. Chem. Eng. J. 2009, 146, 345–354. [Google Scholar] [CrossRef]
- Rieger, J. The glass transition temperature of polystyrene. J. Therm. Anal. 1996, 46, 965–972. [Google Scholar] [CrossRef]
- Singh, A.; Kamal, M. Synthesis and characterization of polylimonene: Polymer of an optically active terpene. J. Appl. Polm. Sci. 2012, 125, 1456–1459. [Google Scholar] [CrossRef]
- Galanos, E.; Wahlen, C.; Bytt, H.J.; Frey, H.; Floudas, G. Phase Diagram of Tapered Copolymers Based on Isoprene and Styrene. Macromol. Chem. Phys. 2022, 223, 2200033. [Google Scholar] [CrossRef]
- Salmi-Mani, H.; Ait-Touchente, Z.; Lamouri, A.; Carbonnier, B.; Caron, J.F.; Benzarti, K.; Chehimi, M.M. Diazonium salt-based photoiniferter as a new efficient pathway to clay–polymer nanocomposites. RSC. Adv. 2016, 6, 88126. [Google Scholar] [CrossRef]
- Bureau, M.N.; Denault, J.; Cole, K.C.; Enright, G.D. The role of crystallinity and reinforcement in the mechanical behavior of polyamide-6/ clay nanocomposites. Polym. Eng. Sci. 2002, 42, 1897–1906. [Google Scholar] [CrossRef]
- Kherroub, D.E.; Belbachir, M.; Lamouri, S. Nylon 6/clay nanocomposites prepared with Algerian modified clay (12-maghnite). Res. Chem. Int. 2014, 41, 5217–5228. [Google Scholar] [CrossRef]
- Vaia, R.A.; Price, G.; Ruth, P.N.; Nguyen, H.T.; Lichtenhan, J. Polymer/layered silicate nanocomposite as high performance ablative materials. Appl. Clays Sci. 1999, 15, 67–92. [Google Scholar] [CrossRef]
- Zhu, Z.K.; Yang, Y.; Yin, J.; Wang, X.Y.; Ke, Y.C.; Qi, Z.N. Preparation and properties of organosoluble montmorillonite/polyimide hybrid materials. J. Appl. Polym. Sci. 1999, 73, 2063–2068. [Google Scholar] [CrossRef]
- Wang, S.; Long, C.; Wang, X.; Li, Q.; Qi, Z. Synthesis and properties of silicone rubber/organomontmorillonite hybrid nanocomposites. J. Appl. Polym. Sci. 1998, 69, 1557–1561. [Google Scholar] [CrossRef]
Samples | Lim-co-Sty | Mag-CTA+ | Time | Frequency | Yield |
---|---|---|---|---|---|
Lim-so-sty/Mag 1% | 1 g | 1% (wt) | 3 h | 20 KHz | 100% |
Lim-co-sty/Mag 3% | 1 g | 3% (wt) | 3 h | 20 KHz | 100% |
Lim-co-sty/Mag 7% | 1 g | 7% (wt) | 3 h | 20 KHz | 100% |
Lim-co-sty/Mag 10% | 1 g | 10% (wt) | 3 h | 20 KHz | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derdar, H.; Mitchell, G.R.; Chaibedraa, S.; Mahendra, V.S.; Cherifi, Z.; Bachari, K.; Chebout, R.; Touahra, F.; Meghabar, R.; Belbachir, M. Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method. Polymers 2022, 14, 2820. https://doi.org/10.3390/polym14142820
Derdar H, Mitchell GR, Chaibedraa S, Mahendra VS, Cherifi Z, Bachari K, Chebout R, Touahra F, Meghabar R, Belbachir M. Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method. Polymers. 2022; 14(14):2820. https://doi.org/10.3390/polym14142820
Chicago/Turabian StyleDerdar, Hodhaifa, Geoffey Robert Mitchell, Sarra Chaibedraa, Vidhura Subash Mahendra, Zakaria Cherifi, Khaldoun Bachari, Redouane Chebout, Fouzia Touahra, Rachid Meghabar, and Mohammed Belbachir. 2022. "Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method" Polymers 14, no. 14: 2820. https://doi.org/10.3390/polym14142820
APA StyleDerdar, H., Mitchell, G. R., Chaibedraa, S., Mahendra, V. S., Cherifi, Z., Bachari, K., Chebout, R., Touahra, F., Meghabar, R., & Belbachir, M. (2022). Synthesis and Characterization of Copolymers and Nanocomposites from Limonene, Styrene and Organomodified-Clay Using Ultrasonic Assisted Method. Polymers, 14(14), 2820. https://doi.org/10.3390/polym14142820