Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = FLJ11286

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1988 KiB  
Article
Epidemiological Surveillance, Variability, and Evolution of Isolates Belonging to the Spanish Clone of the 4,[5],12:i:- Monophasic Variant of Salmonella enterica Serovar Typhimurium
by Xenia Vázquez, Patricia García, Javier Fernández, Víctor Ladero, Carlos Rodríguez-Lucas, Jürgen J. Heinisch, Rosaura Rodicio and M. Rosario Rodicio
Antibiotics 2025, 14(7), 711; https://doi.org/10.3390/antibiotics14070711 - 16 Jul 2025
Viewed by 291
Abstract
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 [...] Read more.
Background/Objective: The present study focused on the analysis of the Spanish clone belonging to the successful 4,[5],12:i:- monophasic variant of Salmonella enterica serovar Typhimurium. Methods: All isolates of the clone recovered in a Spanish region from human clinical samples between 2008 and 2018 (N = 14) were investigated using microbiological approaches and genome sequence analysis. In addition, they were compared with isolates from the years 2000 to 2003 (N = 21), which were previously characterized but had not yet been sequenced. Results: Phylogenetic analyses indicate that all isolates are closely related (differing by 1 to 103 SNPs) but belong to two clades termed A and B. With few exceptions, clade A comprised isolates of the first period, also including two “older” control strains, LSP 389/97 and LSP 272/98. Clade B only contained isolates from the second period. Isolates from both periods were resistant to antibiotics and biocides, with almost all resistance genes located on large IncC plasmids, additionally carrying pSLT-derived virulence genes. The number of resistance genes was highly variable, resulting in a total of 22 ABR (antibiotic biocide resistance) profiles. The number of antibiotic resistance genes, but not that of biocide resistance genes, was considerably lower in isolates from the second than from the first period (with averages of 5.5 versus 9.6 genes). Importantly, IS26, which resides in multiple copies within these plasmids, appears to be playing a crucial role in the evolution of resistance, and it was also responsible for the monophasic phenotype, which was associated with four different deletions eliminating the fljAB region. Conclusions: the observed reduction in the number of antibiotic resistance genes could correlate with the loss of adaptive advantage originating from the ban on the use of antibiotics as feed additives implemented in the European Union since 2006, facilitated by the intrinsic instability of the IncC plasmids. Two consecutive IS26 transposition events, which can explain both the clonal relationship of the isolates and their variability, may account for the observed fljAB deletions. Full article
(This article belongs to the Special Issue Genomic Analysis of Antimicrobial Drug-Resistant Bacteria)
Show Figures

Figure 1

12 pages, 426 KiB  
Article
Proteomic Analysis of Serum in Cardiac Transthyretin Amyloidosis: Diagnostic and Prognostic Implications for Biomarker Discovery
by Joanna Waś, Monika Gawor-Prokopczyk, Agnieszka Sioma, Rafał Szewczyk, Aleksandra Pel, Jolanta Krzysztoń-Russjan, Magdalena Niedolistek, Dorota Sokołowska, Jacek Grzybowski and Łukasz Mazurkiewicz
Biomedicines 2025, 13(7), 1647; https://doi.org/10.3390/biomedicines13071647 - 6 Jul 2025
Viewed by 462
Abstract
Background/Objectives: Having serum biomarkers available for cardiac transthyretin amyloidosis (ATTR-CA) would be beneficial for diagnosis and prognosis. This study aimed to identify potential ATTR-CA biomarkers through proteomic analysis. Patients and Methods: Serum proteomic analyses were conducted on 15 ATTR-CA patients before receiving treatment, [...] Read more.
Background/Objectives: Having serum biomarkers available for cardiac transthyretin amyloidosis (ATTR-CA) would be beneficial for diagnosis and prognosis. This study aimed to identify potential ATTR-CA biomarkers through proteomic analysis. Patients and Methods: Serum proteomic analyses were conducted on 15 ATTR-CA patients before receiving treatment, 11 ATTR-CA patients who had received tafamidis treatment for at least six months, and 13 patients with suspected cardiac amyloidosis who were later ruled out. All patients underwent blood tests, standard 12-lead electrocardiography, transthoracic echocardiography, and 99mTc-DPD scintigraphy. Results: Proteomic analysis revealed significant differences in protein levels among the study groups. Key findings revealed increased levels of several proteins, including ceruloplasmin, apolipoprotein E, SERPINA1, and cDNA FLJ54111 (which is highly similar to serum transferrin), in ATTR-CA patients before receiving specific treatment. There was also a reduction in prothrombin, transferrin, CD14, and alpha-2-macroglobulin. In the ATTR-CA group treated with tafamidis, elevated levels of SERPINA1, paraoxonase 1, and complement C2 were observed. Notably, levels of cDNA FLJ54111 and SERPINA3 were reduced in this group. Compared to the control group, patients with ATTR-CA exhibited higher levels of ceruloplasmin, SERPINA3, and VCAM1, as well as lower levels of ApoA-I, ApoA-II, clusterin, and gelsolin. Controls exhibited elevated levels of transthyretin and prothrombin. Conclusions: This study identified candidate serum biomarkers for diagnosing ATTR-CA and monitoring the effectiveness of tafamidis treatment. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Detection of LUAD-Associated Genes Using Wasserstein Distance in Multiomics Feature Selection
by Shaofei Zhao, Siming Huang, Lingli Yang, Weiyu Zhou, Kexuan Li and Shige Wang
Bioengineering 2025, 12(7), 694; https://doi.org/10.3390/bioengineering12070694 - 25 Jun 2025
Viewed by 475
Abstract
Lung adenocarcinoma (LUAD) is characterized by substantial genetic heterogeneity, making it challenging to identify reliable biomarkers for diagnosis and treatment. Tumor mutational burden (TMB) is widely recognized as a predictive biomarker due to its association with immune response and treatment efficacy. In this [...] Read more.
Lung adenocarcinoma (LUAD) is characterized by substantial genetic heterogeneity, making it challenging to identify reliable biomarkers for diagnosis and treatment. Tumor mutational burden (TMB) is widely recognized as a predictive biomarker due to its association with immune response and treatment efficacy. In this study, we take a different approach by treating TMB as a response variable to uncover its genetic drivers using multiomics data. We conducted a thorough evaluation of recent feature selection methods through extensive simulations and identified three top-performing approaches: projection correlation screening (PC-Screen), distance correlation sure independence screening (DC-SIS), and Wasserstein distance-based screening (WD-Screen). Unlike traditional approaches that rely on simple statistical tests or dataset splitting for validation, we adopt a method-based validation strategy, selecting top-ranked features from each method and identifying consistently selected genes across all three. Using The Cancer Genome Atlas (TCGA) dataset, we integrated copy number alteration (CNA), mRNA expression, and DNA methylation data as predictors and applied our selected methods. In the two-platform analysis (mRNA + CNA), we identified 13 key genes, including both previously reported LUAD-associated genes (CCNG1, CKAP2L, HSD17B4, SHROOM1, TIGD6, and TMEM173) and novel candidates (DTWD2, FLJ33630, NME5, NUDT12, PCBD2, REEP5, and SLC22A5). Expanding to a three-platform analysis (mRNA + CNA + methylation) further refined our findings, with PCBD2 and TMEM173 emerging as the robust candidates. These results highlight the complexity of multiomics integration and the need for advanced feature selection techniques to uncover biologically meaningful patterns. Our multiomics strategy and robust selection approach provide insights into the genetic determinants of TMB, offering potential biomarkers for targeted LUAD therapies and demonstrating the power of Wasserstein distance-based feature selection in complex genomic analysis. Full article
(This article belongs to the Special Issue Recent Advances in Genomics Research)
Show Figures

Figure 1

13 pages, 2340 KiB  
Opinion
Oral Medicine and Oral Clinical Chemistry Game Changers for Future Plaque Control and Maintenance: PerioSafe® aMMP-8 POCT, Lumoral® 2× PDT- and Lingora® Fermented Lingonberry Oral Rinse-Treatments
by Nur Rahman Ahmad Seno Aji, Vaibhav Sahni, Miika T. Penttala, Dimitra Sakellari, Andreas Grigoriadis, Tommi Pätilä, Pirjo Pärnänen, Dirk Neefs, Andreas Pfützner, Shipra Gupta, Timo Sorsa and Ismo T. Räisänen
Dent. J. 2025, 13(3), 127; https://doi.org/10.3390/dj13030127 - 13 Mar 2025
Cited by 2 | Viewed by 1421
Abstract
Background: Periodontitis is a global health crisis that affects almost half of the world’s population and commonly goes unnoticed because of its asymptomatic and pain-free nature. For early and easy detection and treatment, safe and non-invasive chair-side oral fluid biomarker (aMMP-8) diagnostics [...] Read more.
Background: Periodontitis is a global health crisis that affects almost half of the world’s population and commonly goes unnoticed because of its asymptomatic and pain-free nature. For early and easy detection and treatment, safe and non-invasive chair-side oral fluid biomarker (aMMP-8) diagnostics and new anti-microbial, anti-inflammatory and anti-proteolytic treatment modalities have been developed, which this review aims to introduce. Methods: For convenient diagnosis and tackling of periodontitis, adoption of an oral fluid aMMP-8 chair-side point-of-care rapid diagnostic test (POCT) has been proposed, comparable to home pregnancy and COVID-19 antigen tests, to be conveniently used by healthcare professionals and by patients themselves. To improve treatment of detected periodontitis, Finnish scientists have also developed a potentially industry-altering, biofilm-modulating, anti-microbial, anti-inflammatory, and anti-proteolytic (i) dual-light-activated photodynamic-therapy (2×PDT) and (ii) fermented lingonberry juice (FLJ) oral rinse designed for home personalized medicine and professional use. These new oral medicine technologies are reviewed and some unpublished results are presented. Results: aMMP-8 is the superior biomarker for grade of periodontitis (progression rate) when compared to the total latent/proform MMP-8 (total-MMP-8) and microbial lipopolysaccharide (LPS/LAL) activity. Cut-off 20 ng/mL is the optimal cut-off for aMMP-8 POCT and does not make false positives. Antibacterial 2× PDT light and anti-microbial FLJ treatments can eliminate and reduce problem-causing bacteria and Candida-yeasts from the mouth. Conclusions: These new oral medicine technologies have shown promising results and could have the potential to revolutionize diagnosis, prevention, oral care, plaque control and maintenance. These new game-changer oral medicine technologies have launched a new clinical field in dentistry: oral clinical chemistry. Full article
Show Figures

Figure 1

8 pages, 554 KiB  
Opinion
Oral Anti-Inflammatory and Symbiotic Effects of Fermented Lingonberry Juice—Potential Benefits in IBD
by Pirjo Pärnänen, Ismo T. Räisänen and Timo Sorsa
Nutrients 2024, 16(17), 2896; https://doi.org/10.3390/nu16172896 - 29 Aug 2024
Cited by 2 | Viewed by 2897
Abstract
Microbial dysbiosis may manifest as inflammation both orally and in the gastrointestinal tract. Altered oral and gut microbiota composition and decreased diversity have been shown in inflammatory bowel disease (IBD) and periodontal disease (PD). Recent studies have verified transmission of oral opportunistic microbes [...] Read more.
Microbial dysbiosis may manifest as inflammation both orally and in the gastrointestinal tract. Altered oral and gut microbiota composition and decreased diversity have been shown in inflammatory bowel disease (IBD) and periodontal disease (PD). Recent studies have verified transmission of oral opportunistic microbes to the gut. Prebiotics, probiotics, or dietary interventions are suggested to alleviate IBD symptoms in addition to medicinal treatment. Lingonberries contain multiple bioactive molecules, phenolics, which have a broad spectrum of effects, including antimicrobial, anti-inflammatory, antioxidant, anti-proteolytic, and anti-cancer properties. An all-natural product, fermented lingonberry juice (FLJ), is discussed as a potential natural anti-inflammatory substance. FLJ has been shown in clinical human trials to promote the growth of oral lactobacilli, and inhibit growth of the opportunistic oral pathogens Candida, Streptococcus mutans, and periodontopathogens, and decrease inflammation, oral destructive proteolysis (aMMP-8), and dental microbial plaque load. Lactobacilli are probiotic and considered also beneficial for gut health. Considering the positive outcome of these oral studies and the fact that FLJ may be swallowed safely, it might be beneficial also for the gut mucosa by balancing the microbiota and reducing proteolytic inflammation. Full article
(This article belongs to the Special Issue Role of Probiotics and Prebiotics in Gut Symbiosis)
Show Figures

Figure 1

17 pages, 2812 KiB  
Article
Detecting the FLJ22447 lncRNA in Ovarian Cancer with Cyclopentane-Modified FIT-PNAs (cpFIT-PNAs)
by Sheethal Thomas Mannully, Rawan Mahajna, Huda Nazzal, Salam Maree, Hongchao Zheng, Daniel H. Appella, Reuven Reich and Eylon Yavin
Biomolecules 2024, 14(6), 609; https://doi.org/10.3390/biom14060609 - 22 May 2024
Viewed by 2033
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic cancers that is typically diagnosed at the very late stage of disease progression. Thus, there is an unmet need to develop diagnostic probes for early detection of OC. One approach may rely on [...] Read more.
Ovarian cancer (OC) is one of the most lethal gynecologic cancers that is typically diagnosed at the very late stage of disease progression. Thus, there is an unmet need to develop diagnostic probes for early detection of OC. One approach may rely on RNA as a molecular biomarker. In this regard, FLJ22447 lncRNA is an RNA biomarker that is over-expressed in ovarian cancer (OC) and in cancer-associated fibroblasts (CAFs). CAFs appear early on in OC as they provide a metastatic niche for OC progression. FIT-PNAs (forced intercalation-peptide nucleic acids) are DNA analogs that are designed to fluoresce upon hybridization to their complementary RNA target sequence. In recent studies, we have shown that the introduction of cyclopentane PNAs into FIT-PNAs (cpFIT-PNA) results in superior RNA sensors. Herein, we report the design and synthesis of cpFIT-PNAs for the detection of this RNA biomarker in living OC cells (OVCAR8) and in CAFs. cpFIT-PNA was compared to FIT-PNA and the cell-penetrating peptide (CPP) of choice was either a simple one (four L-lysines) or a CPP with enhanced cellular uptake (CLIP6). The combination of CLIP6 with cpFIT-PNA resulted in a superior sensing of FLJ22447 lncRNA in OVCAR8 cells as well as in CAFs. Moreover, incubation of CLIP6-cpFIT-PNA in OVCAR8 cells leads to a significant decrease (ca. 60%) in FLJ22447 lncRNA levels and in cell viability, highlighting the potential theranostic use of such molecules. Full article
(This article belongs to the Section Biomacromolecules: Nucleic Acids)
Show Figures

Graphical abstract

17 pages, 2227 KiB  
Article
Insights into the Evolution of IncR Plasmids Found in the Southern European Clone of the Monophasic Variant of Salmonella enterica Serovar Typhimurium
by Xenia Vázquez, Javier Fernández, Jürgen J. Heinisch, Rosaura Rodicio and M. Rosario Rodicio
Antibiotics 2024, 13(4), 314; https://doi.org/10.3390/antibiotics13040314 - 29 Mar 2024
Cited by 1 | Viewed by 2246
Abstract
Salmonella enterica subspecies enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium which has emerged as a world-wide distributed pathogen in the last decades. Several clones have been identified within this variant, the European clone, the Spanish clone, the Southern European [...] Read more.
Salmonella enterica subspecies enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium which has emerged as a world-wide distributed pathogen in the last decades. Several clones have been identified within this variant, the European clone, the Spanish clone, the Southern European clone and the U.S./American clone. The present study focused on isolates of the Southern European clone that were obtained from clinical samples at Spanish hospitals. The selected isolates were multidrug resistant, with most resistance genes residing on IncR plasmids that also carried virulence genes. These plasmids had a mosaic structure, comprising a highly reduced IncR backbone, which has acquired a large amount of exogenous DNA mostly derived from pSLT and IncI1-I(alfa) plasmids. Although composed of approximately the same elements, the investigated plasmids displayed a high diversity, consistent with active evolution driven by a wealth of mobile genetic elements. They comprise multiple intact or truncated insertion sequences, transposons, pseudo-compound transposons and integrons. Particularly relevant was the role of IS26 (with six to nine copies per plasmid) in generating insertions, deletions and inversions, with many of the rearrangements uncovered by tracking the patterns of eight bp target site duplications. Most of the resistance genes detected in the analyzed isolates have been previously associated with the Southern European clone. However, erm(B), lnu(G) and blaTEM-1B are novel, with the last two carried by a second resistance plasmid found in one of the IncR-positive isolates. Thus, evolution of resistance in the Southern European clone is not only mediated by diversification of the IncR plasmids, but also through acquisition of additional plasmids. All isolates investigated in the present study have the large deletion affecting the fljBA region previously found to justify the monophasic phenotype in the Southern European and U.S./American clones. An SNP-based phylogenetic analysis revealed the close relationship amongst our isolates, and support that those sharing the large fljBA deletion could be more heterogeneous than previously anticipated. Full article
(This article belongs to the Special Issue The Evolution of Plasmid-Mediated Antimicrobial Resistance)
Show Figures

Figure 1

13 pages, 4921 KiB  
Article
Epigenetic Profiling of Type 2 Diabetes Mellitus: An Epigenome-Wide Association Study of DNA Methylation in the Korean Genome and Epidemiology Study
by Hyein Seo, Jae-Ho Park, Jin-Taek Hwang, Hyo-Kyoung Choi, Soo-Hyun Park and Jangho Lee
Genes 2023, 14(12), 2207; https://doi.org/10.3390/genes14122207 - 13 Dec 2023
Cited by 4 | Viewed by 2789
Abstract
Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung–Ansan (AS–AS) cohort. [...] Read more.
Diabetes is characterized by persistently high blood glucose levels and severe complications and affects millions of people worldwide. In this study, we explored the epigenetic landscape of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically the Ansung–Ansan (AS–AS) cohort. Using epigenome-wide association studies, we investigated DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes (DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4, UFM1, PFKFB2, C7orf50, and ABCG1, indicating significant changes in methylation. Correlation analysis highlighted the association between the leading DMPs (e.g., cg19693031 and cg26974062 for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and hemoglobin A1c), confirming their relevance in T2DM. Moreover, we identified 62 significantly differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites included in each DMR, which have previously been implicated in T2DM-related processes. This study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights can be utilized in identifying potential biomarkers and therapeutic targets for effective management and prevention of diabetes. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

12 pages, 496 KiB  
Article
Optimized Sugar-Free Citrus Lemon Juice Fermentation Efficiency and the Lipid-Lowering Effects of the Fermented Juice
by Chang-Lu Hsu, Wen Pei, Tzu-Chun Chen, Ming-Chieh Hsu, Pei-Chun Chen, Heng-Miao Kuo, Jeng-Fung Hung and Yi-Jinn Lillian Chen
Nutrients 2023, 15(24), 5089; https://doi.org/10.3390/nu15245089 - 13 Dec 2023
Cited by 5 | Viewed by 3564
Abstract
Aging and obesity make humans more prone to cardiovascular and metabolic syndrome diseases, leading to several serious health conditions, including hyperlipidemia, high blood pressure, and sleep disturbance. This study aimed to explore the hypolipidemic effect of fermented citrus lemon juice using a hyperlipidemic [...] Read more.
Aging and obesity make humans more prone to cardiovascular and metabolic syndrome diseases, leading to several serious health conditions, including hyperlipidemia, high blood pressure, and sleep disturbance. This study aimed to explore the hypolipidemic effect of fermented citrus lemon juice using a hyperlipidemic hamster model. The sugar-free lemon juice’s fermentation was optimized, and the characteristics of fresh and fermented lemon juice (FLJ) were evaluated and compared, which contained polyphenols and superoxide dismutase-like activity. Results showed that the absorption and utilization efficiency of FLJ was higher compared with the unfermented lemon juice. This study’s prefermentation efficiency evaluation found that 21–30 days of bacterial DMS32004 and DMS32005 fermentation of fresh lemon juice provided the best fermentation benefits, and 21-day FLJ was applied as a remedy after the efficiency compassion. After six weeks of feeding, the total cholesterol (TC) and triglyceride (TG) values in the blood and liver of the FLJ treatment groups were decreased compared with the high-fat diet (HFD) group. In addition, the blood low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced in the FLJ treatment groups compared with the HFD group. In contrast, the blood high-density lipoprotein (HDL-C) to LDL-C ratio increased considerably in the FLJ treatment groups, and the total to HDL ratio was significantly lower than in the HFD group. Compared with the HFD group, the TC content in the FLJ treatment groups’ feces increased significantly. This study demonstrated that the sugar-free fermentation method and fermentation cycle management provided FLJ with the potential to regulate blood lipids. Further research and verification will be carried out to isolate specific substances from the FLJ and identify their mechanisms of action. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

19 pages, 9737 KiB  
Article
Transcriptional Profiling of the Effect of Coleus amboinicus L. Essential Oil against Salmonella Typhimurium Biofilm Formation
by Arpron Leesombun, Sivapong Sungpradit, Ladawan Sariya, Jarupha Taowan and Sookruetai Boonmasawai
Antibiotics 2023, 12(11), 1598; https://doi.org/10.3390/antibiotics12111598 - 7 Nov 2023
Cited by 3 | Viewed by 2696
Abstract
Salmonella enterica serovar Typhimurium cause infections primarily through foodborne transmission and remains a significant public health concern. The biofilm formation of this bacteria also contributes to their multidrug-resistant nature. Essential oils from medicinal plants are considered potential alternatives to conventional antibiotics. Therefore, this [...] Read more.
Salmonella enterica serovar Typhimurium cause infections primarily through foodborne transmission and remains a significant public health concern. The biofilm formation of this bacteria also contributes to their multidrug-resistant nature. Essential oils from medicinal plants are considered potential alternatives to conventional antibiotics. Therefore, this study assessed the antimicrobial and antibiofilm activities of Coleus amboinicus essential oil (EO-CA) against S. Typhimurium ATCC 14028. Seventeen chemical compounds of EO-CA were identified, and carvacrol (38.26%) was found to be the main constituent. The minimum inhibitory concentration (MIC) of EO-CA for S. Typhimurium planktonic growth was 1024 µg/mL while the minimum bactericidal concentration was 1024 µg/mL. EO-CA at sub-MIC (≥1/16× MIC) exhibited antibiofilm activity against the prebiofilm formation of S. Typhimurium at 24 h. Furthermore, EO-CA (≥1/4× MIC) inhibited postbiofilm formation at 24 and 48 h (p < 0.05). Transcriptional profiling revealed that the EO-CA-treated group at 1/2× MIC had 375 differentially expressed genes (DEGs), 106 of which were upregulated and 269 were downregulated. Five significantly downregulated virulent DEGs responsible for motility (flhD, fljB, and fimD), curli fimbriae (csgD), and invasion (hilA) were screened via quantitative reverse transcription PCR (qRT-PCR). This study suggests the potential of EO-CA as an effective antimicrobial agent for combating planktonic and biofilm formation of Salmonella. Full article
Show Figures

Graphical abstract

17 pages, 4807 KiB  
Article
The Effect of Abamectin on Locusta Migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking
by Nirvina Abdel Raouf Ghazawy, Amira Afify, Ibrahim Taha Radwan, Hanaa Ghabban, Abeer Mousa Alkhaibari, Hattan S. Gattan, Mohammed H. Alruhaili, Abdelfattah Selim and Mona M. Ali Saad
Molecules 2023, 28(19), 6956; https://doi.org/10.3390/molecules28196956 - 6 Oct 2023
Cited by 3 | Viewed by 1784
Abstract
(1) Background: Few studies have been carried out to appraise abamectin toxicity toward Locusta migratoria nymphs. (2) Methods: This study aimed to evaluate the cytotoxic effect of abamectin as an insecticide through examining the changes and damage caused by this drug, in both [...] Read more.
(1) Background: Few studies have been carried out to appraise abamectin toxicity toward Locusta migratoria nymphs. (2) Methods: This study aimed to evaluate the cytotoxic effect of abamectin as an insecticide through examining the changes and damage caused by this drug, in both neurosecretory cells and midgut, using L. migratoria nymphs as a model of the cytotoxic effect. Histopathological change in the brain was examined in both normal and abamectin-treated fifth-instar nymphs. Neurosecretory cells (NSCs) were also examined where there were loosely disintegrated cells or vacuolated cytoplasm. (3) Results: The results showed distinct histological changes in the gastrointestinal tract of L. migratoria nymphs treated with abamectin, with significant cellular damage and disorganization, i.e., characteristic symptoms of cell necrosis, a destroyed epithelium, enlarged cells, and reduced nuclei. The observed biochemical changes included an elevation in all measured oxidative stress parameters compared to untreated controls. The malondialdehyde activities (MDAs) of the treated nymphs had a five- to six-fold increase, with a ten-fold increase in superoxide dismutase (SOD), nine-fold increase in glutathione-S-transferase (GST), and four-fold increase in nitric oxide (NO). (4) Conclusions: To further investigate the theoretical method of action, a molecular docking simulation was performed, examining the possibility that abamectin is an inhibitor of the fatty acid-binding protein Lm-FABP (2FLJ) and that it binds with two successive electrostatic hydrogen bonds. Full article
(This article belongs to the Special Issue Natural Products as Insecticidal Agents)
Show Figures

Figure 1

18 pages, 3413 KiB  
Article
Impaired Insulin Signaling Mediated by the Small GTPase Rac1 in Skeletal Muscle of the Leptin-Deficient Obese Mouse
by Man Piu Chan, Nobuyuki Takenaka and Takaya Satoh
Int. J. Mol. Sci. 2023, 24(14), 11531; https://doi.org/10.3390/ijms241411531 - 16 Jul 2023
Cited by 3 | Viewed by 1774
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4. The small GTPase Rac1 acts as a switch of signal transduction that regulates GLUT4 translocation to the plasma membrane following insulin stimulation. However, it remains obscure whether signaling cascades upstream [...] Read more.
Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4. The small GTPase Rac1 acts as a switch of signal transduction that regulates GLUT4 translocation to the plasma membrane following insulin stimulation. However, it remains obscure whether signaling cascades upstream and downstream of Rac1 in skeletal muscle are impaired by obesity that causes insulin resistance and type 2 diabetes. In an attempt to clarify this point, we investigated Rac1 signaling in the leptin-deficient (Lepob/ob) mouse model. Here, we show that insulin-stimulated GLUT4 translocation and Rac1 activation are almost completely abolished in Lepob/ob mouse skeletal muscle. Phosphorylation of the protein kinase Akt2 and plasma membrane translocation of the guanine nucleotide exchange factor FLJ00068 following insulin stimulation were also diminished in Lepob/ob mice. On the other hand, the activation of another small GTPase RalA, which acts downstream of Rac1, by the constitutively activated form of Akt2, FLJ00068, or Rac1, was partially abrogated in Lepob/ob mice. Taken together, we conclude that insulin-stimulated glucose uptake is impaired by two mechanisms in Lepob/ob mouse skeletal muscle: one is the complete inhibition of Akt2-mediated activation of Rac1, and the other is the partial inhibition of RalA activation downstream of Rac1. Full article
(This article belongs to the Special Issue Recent Advances in the Regulation and Signaling of Small GTPases)
Show Figures

Figure 1

28 pages, 4383 KiB  
Article
The Prolonged Treatment of Salmonella enterica Strains with Human Serum Effects in Phenotype Related to Virulence
by Bożena Futoma-Kołoch, Michał Małaszczuk, Kamila Korzekwa, Małgorzata Steczkiewicz, Andrzej Gamian and Gabriela Bugla-Płoskońska
Int. J. Mol. Sci. 2023, 24(1), 883; https://doi.org/10.3390/ijms24010883 - 3 Jan 2023
Cited by 1 | Viewed by 7002
Abstract
Salmonella enterica as common pathogens of humans and animals are good model organisms to conduct research on bacterial biology. Because these bacteria can multiply in both the external environments and in the living hosts, they prove their wide adaptability. It has been previously [...] Read more.
Salmonella enterica as common pathogens of humans and animals are good model organisms to conduct research on bacterial biology. Because these bacteria can multiply in both the external environments and in the living hosts, they prove their wide adaptability. It has been previously demonstrated that prolonged exposition of Salmonella serotype O48 cells to normal human serum led to an increase in resistance to sera in connection with the synthesis of very long O-antigen. In this work, we have studied the phenotype connected to virulence of Salmonella enterica strains that were subjected to consecutive passages in 50% human serum from platelet-poor plasma (SPPP). We found that eight passages in SPPP may not be enough for the bacteria to become serum-resistant (S. Typhimurium ATCC 14028, S. Senftenberg). Moreover, C1q and C3c complement components bound to Salmonellae (S. Typhimurium ATCC 14028, S. Hammonia) membrane proteins, which composition has been changed after passaging in sera. Interestingly, passages in SPPP generated genetic changes within gene fljB, which translated to cells’ motility (S. Typhimurium ATCC 14028, S. Erlangen). One strain, S. Hammonia exposed to a serum developed a multi-drug resistance (MDR) phenotype and two S. Isaszeg and S. Erlangen tolerance to disinfectants containing quaternary ammonium salts (QAS). Furthermore, colonial morphotypes of the serum adaptants were similar to those produced by starter cultures. These observations suggest that overcoming stressful conditions is manifested on many levels. Despite great phenotypic diversity occurring after prolonged exposition to SPPP, morphotypes of colonies remained unchanged in basic media. This work is an example in which stable morphotypes distinguished by altered virulence can be confusing during laboratory work with life-threatening strains. Full article
(This article belongs to the Collection State-of-the-Art Molecular Microbiology in Poland)
Show Figures

Figure 1

16 pages, 2623 KiB  
Article
Flagellar Phenotypes Impact on Bacterial Transport and Deposition Behavior in Porous Media: Case of Salmonella enterica Serovar Typhimurium
by Xin Zheng, Hongjuan Bai, Ye Tao, Mounia Achak, Yannick Rossez and Edvina Lamy
Int. J. Mol. Sci. 2022, 23(22), 14460; https://doi.org/10.3390/ijms232214460 - 21 Nov 2022
Cited by 5 | Viewed by 2353
Abstract
Bacterial contamination of groundwater has always been an ecological problem worthy of attention. In this study, Salmonella enterica serovar Typhimurium with different flagellar phenotypes mainly characterized during host-pathogen interaction were analyzed for their transport and deposition behavior in porous media. Column transport experiments [...] Read more.
Bacterial contamination of groundwater has always been an ecological problem worthy of attention. In this study, Salmonella enterica serovar Typhimurium with different flagellar phenotypes mainly characterized during host-pathogen interaction were analyzed for their transport and deposition behavior in porous media. Column transport experiments and a modified mobile-immobile model were applicated on different strains with flagellar motility (wild-type) or without motility (ΔmotAB), without flagella (ΔflgKL), methylated and unmethylated flagellin (ΔfliB), and different flagella phases (fliCON, fljBON). Results showed that flagella motility could promote bacterial transport and deposition due to their biological advantages of moving and attaching to surfaces. We also found that the presence of non-motile flagella improved bacterial adhesion according to a higher retention rate of the ΔmotAB strain compared to the ΔflgKL strain. This indicated that bacteria flagella and motility both had promoting effects on bacterial deposition in sandy porous media. Flagella phases influenced the bacterial movement; the fliCON strain went faster through the column than the fljBON strain. Moreover, flagella methylation was found to favor bacterial transport and deposition. Overall, flagellar modifications affect Salmonella enterica serovar Typhimurium transport and deposition behavior in different ways in environmental conditions. Full article
(This article belongs to the Special Issue Flagella)
Show Figures

Graphical abstract

22 pages, 1259 KiB  
Review
DLX Genes in the Development and Maintenance of the Vertebrate Skeleton: Implications for Human Pathologies
by Giovanni Levi, Nicolas Narboux-Nême and Martine Cohen-Solal
Cells 2022, 11(20), 3277; https://doi.org/10.3390/cells11203277 - 18 Oct 2022
Cited by 10 | Viewed by 3482
Abstract
Skeletal shape and mechanical properties define, to a large extent, vertebrate morphology and physical capacities. During development, skeletal morphogenesis results from dynamic communications between chondrocytes, osteoblasts, osteoclasts, and other cellular components of the skeleton. Later in life, skeletal integrity depends on the regulatory [...] Read more.
Skeletal shape and mechanical properties define, to a large extent, vertebrate morphology and physical capacities. During development, skeletal morphogenesis results from dynamic communications between chondrocytes, osteoblasts, osteoclasts, and other cellular components of the skeleton. Later in life, skeletal integrity depends on the regulatory cascades that assure the equilibrium between bone formation and resorption. Finally, during aging, skeletal catabolism prevails over anabolism resulting in progressive skeletal degradation. These cellular processes depend on the transcriptional cascades that control cell division and differentiation in each cell type. Most Distal-less (Dlx) homeobox transcription factors are directly involved in determining the proliferation and differentiation of chondrocytes and osteoblasts and, indirectly, of osteoclasts. While the involvement of Dlx genes in the regulation of skeletal formation has been well-analyzed thanks to several mutant mouse models, the role of these genes in the maintenance of bone integrity has been only partially studied. The importance of Dlx genes for adult bone tissues is evidenced by their central role in the regulatory pathways involving Osx/Sp7 and Runx2, the two major master genes of osteogenesis. Dlx genes appear to be involved in several bone pathologies including, for example, osteoporosis. Indeed, at least five large-scale GWAS studies which aimed to detect loci associated with human bone mineral density (BMD) have identified a known DLX5/6 regulatory region within chromosome 7q21.3 in proximity of SEM1/FLJ42280/DSS1 coding sequences, suggesting that DLX5/6 expression is critical in determining healthy BMD. This review aims to summarize the major findings concerning the involvement of Dlx genes in skeletal development and homeostasis and their involvement in skeletal aging and pathology. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

Back to TopTop