The Effect of Abamectin on Locusta Migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking
Abstract
:1. Introduction
2. Results
2.1. Brain Dissection and Ultrastructure Examination
2.2. Midgut Dissection and Ultrastructure Examination
2.3. Alteration in Oxidative Enzymes of Treated L. migratoria Treated with Abamectin
2.4. Molecular Docking Study
3. Discussion
4. Materials and Methods
4.1. Rearing of Insect Colony
4.2. Bioassay of Lethal Effects of Abamectin
4.3. Ultrastructural Examinations
4.4. Bioassay of Oxidative Stress Enzyme
4.4.1. Initial Tissue Sample Preparation for Enzyme Assays
4.4.2. Superoxide Dismutase (SOD) Assay
4.4.3. Glutathione S–Transferase (GST) Assay
4.4.4. Malondialdehyde (MDA) Contents
4.5. Molecular Docking Study
4.5.1. Molecular Docking of Acetylcholine Esterase Enzyme
- Source of the objective protein
- 2.
- Energy minimization
4.5.2. Docking Procedure
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linnaeus, C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species; Cum Characteribus, Differentiis, Synonymis, Locis; Apud JB Delamolliere: Lugdunum, France, 1789; Volume 1. [Google Scholar]
- Pener, M.; Simpson, S. Locust phase polyphenism: An update. Adv. Insect Physiol. 2009, 36, 1–272. [Google Scholar]
- Tanaka, S.; Nishide, Y. Behavioral phase shift in nymphs of the desert locust, Schistocerca gregaria: Special attention to attraction/avoidance behaviors and the role of serotonin. J. Insect Physiol. 2013, 59, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.; Piou, C.; Doumandji-Mitiche, B.; Lecoq, M. Importance of solitarious desert locust population dynamics: Lessons from historical survey data in A lgeria. Entomol. Exp. Et Appl. 2016, 161, 168–180. [Google Scholar] [CrossRef]
- Wilps, H.; Nasseh, O.; Rembold, H.; Krall, S. The effect of Melia volkensii extracts on mortality and fitness of adult Schistocerca gregaria (Forskal)(Orth., Cyrtacanthacrinae) Investigations conducted under natural conditions in S. gregaria recession areas in the southern Tamesna Desert (Republic of Niger). J. Appl. Entomol. 1993, 116, 12–19. [Google Scholar]
- Hegazy, M.M.; Mostafa, R.M.; El-Sayed, Y.A.; Baz, M.M.; Khater, H.F.; Selim, A.; El-Shourbagy, N.M. The Efficacy of Saussurea costus Extracts against Hematophagous Arthropods of Camel and Cattle. Pak. Vet. J. 2022, 42, 547–553. [Google Scholar]
- Abbassi, K.; Atay-Kadiri, Z.; Ghaout, S. Biological effects of alkaloids extracted from three plants of Moroccan arid areas on the desert locust. Physiol. Entomol. 2003, 28, 232–236. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, J.; Zhu, K.; Xuan, T.; Liu, X.; Guo, Y.; Ma, E. Mechanisms of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Arch. Insect Biochem. Physiol. Publ. Collab. Entomol. Soc. Am. 2009, 71, 3–15. [Google Scholar] [CrossRef]
- Miladi, M.; Abdellaoui, K.; Hamouda, A.B.; Boughattas, I.; Mhafdhi, M.; Acheuk, F.; Halima-Kamel, M.B. Physiological, histopathological and cellular immune effects of Pergularia tomentosa extract on Locusta migratoria nymphs. J. Integr. Agric. 2019, 18, 2823–2834. [Google Scholar] [CrossRef]
- Ma, E.-B.; He, Y.-P.; Zhu, K.Y. Comparative studies of acetylcholinesterases purified from two field populations of the oriental migratory locust (Locusta migratoria manilensis): Implications of insecticide resistance. Pestic. Biochem. Physiol. 2004, 78, 67–77. [Google Scholar] [CrossRef]
- Abdellaoui, K.; Hazzoug, M.; Boussadia, O.; Miladi, M.; Omri, G.; Acheuk, F.; Ben Halima-Kamel, M.; Brahem, M. Physiological and biochemical effects of Olea europaea leaf extracts from four phenological growth stages on the oogenesis of female locust Locusta migratoria. Physiol. Entomol. 2018, 43, 129–139. [Google Scholar] [CrossRef]
- Ghazawi, N.; El-Shranoubi, E.; El-Shazly, M.; Rahman, K.A. Effects of azadirachtin on mortality rate and reproductive system of the grasshopper Heteracris littoralis Ramb.(Orthoptera: Acrididae). J. Orthoptera Res. 2007, 16, 57–65. [Google Scholar] [CrossRef]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar]
- Ma, J.; Zhou, C.; Li, Y.; Li, X. Biochemical responses to the toxicity of the biocide abamectin on the freshwater snail Physa acuta. Ecotoxicol. Environ. Saf. 2014, 101, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.A.; Passos, L.C.; Campos, M.R.; Collares, L.J.; Desneux, N.; Carvalho, G.A. Side effects of insecticides commonly used against Tuta absoluta on the predator Macrolophus basicornis. J. Pest Sci. 2019, 92, 1447–1456. [Google Scholar] [CrossRef]
- Shale, T.; Stirk, W.; van Staden, J. Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity. J. Ethnopharmacol. 1999, 67, 347–354. [Google Scholar] [CrossRef]
- Hussein, H.I.; Al-Rajhy, D.; El-Shahawi, F.I.; Hashem, S. Molluscicidal activity of Pergularia tomentosa (L.), methomyl and methiocarb, against land snails. Int. J. Pest Manag. 1999, 45, 211–213. [Google Scholar] [CrossRef]
- Green, P.W.; Veitch, N.C.; Stevenson, P.C.; Simmonds, M.S. Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis. Arthropod-Plant Interact. 2011, 5, 219–225. [Google Scholar] [CrossRef]
- Campbell, W.C.; Leaning, W.; Seward, R. Use of ivermectin in horses. In Ivermectin Abamectin; Springer: New York, NY, USA, 1989; pp. 234–244. [Google Scholar]
- Khalil, M.S. Abamectin and azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. J. Plant Pathol. Microbiol 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Molinari, G.; Soloneski, S.; Larramendy, M. New ventures in the genotoxic and cytotoxic effects of macrocyclic lactones, abamectin and ivermectin. Cytogenet. Genome Res. 2010, 128, 37–45. [Google Scholar] [CrossRef]
- Deecher, D.C.; Brezner, J.; Tanenbaum, S.W. Effects of abamectin and milbemycin D on gypsy moth (Lepidoptera: Lymantriidae). J. Econ. Entomol. 1989, 82, 1395–1398. [Google Scholar] [CrossRef]
- Subala, S.P.; Zubero, E.E.; Alatorre-Jimenez, M.A.; Shivakumar, M.S. Pre-treatment with melatonin decreases abamectin induced toxicity in a nocturnal insect Spodoptera litura (Lepidoptera: Noctuidae). Environ. Toxicol. Pharmacol. 2017, 56, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Parimala, K.V.; Maheswari, T.U. Evaluation of selected insecticides as seed protectants against the maize weevil (Sitophilus zeamais M.). Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 316–321. [Google Scholar]
- Lasota, J.A.; Dybas, R.A. Avermectins, a novel class of compounds: Implications for use in arthropod pest control. Annu. Rev. Entomol. 1991, 36, 91–117. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Vieira, B.H.; Cordeiro, D.; Cappelini, L.T.D.; Vieira, E.M.; Espíndola, E.L.G. Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere 2012, 86, 36–40. [Google Scholar] [CrossRef]
- Morsy, M.M.; Elwan, A.A.E.-H. Use of abamectin as an eco-friendly pesticide against diamondback moth on cabbage crop. J. Adv. Agric. Res. 2021, 26, 466–478. [Google Scholar] [CrossRef]
- Leska, A.; Nowak, A.; Nowak, I.; Górczyńska, A. Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules 2021, 26, 5080. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhou, P.; Liu, F.; Zhang, W.; Yang, H.; Li, X.; Dong, J. Abamectin causes toxicity to the carp respiratory system by triggering oxidative stress, inflammation, and apoptosis and inhibiting autophagy. Environ. Sci. Pollut. Res. Int. 2023, 30, 55200–55213. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Harrigan, J. Modulation of Neurophysiology at Neuromuscular Junctions: Effects of the Pesticide Ziram and the Role of Glutamate in Muscle Contraction; University of California, Los Angeles: Los Angeles, CA, USA, 2021. [Google Scholar]
- Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Shinose, M.; Kikuchi, H.; Shiba, T.; Sakaki, Y.; Hattori, M.; Ōmura, S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 2003, 21, 526–531. [Google Scholar] [CrossRef]
- Cook, A.; Aptel, N.; Portillo, V.; Siney, E.; Sihota, R.; Holden-Dye, L.; Wolstenholme, A. Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors. Mol. Biochem. Parasitol. 2006, 147, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Abdel Rahman, K.M. Effects of abamectin and fipronil insecticides on the brain and compound eyes of the embryo of Heteracris littoralis (Rambur)(Orthoptera: Acrididae). Int. J. Trop. Insect Sci. 2023, 43, 1–5. [Google Scholar] [CrossRef]
- Rembold, H.; Puhlmann, I. Phytochemistry and biological activity of metabolites from tropical Meliaceae. Phytochem. Potential Trop. Plants 1993, 27, 153–165. [Google Scholar]
- Rembold, H.; Forster, H.; Czoppelt, C.; Rao, P.; Sieber, K. The azadirachtins, a group of insect growth regulators from the neem tree, Azadirachta indica. In Proceedings of the second International Neem Conference, Rauischholzhausen, Germany, 25–28 May 1983. [Google Scholar]
- Guiqiang, W.; Yan, Y.; Peng, J.; Zhang, L.; Zhou, H. Effects of Cascade on structures of cuticle and cerebral neurosecretory cells in oriental migratory locust. J. China Agric. Univ. 1997. [Google Scholar]
- Ghazawy, N.; ElShazly, M.M.; Darwish, E.E. Some Basic Histological and Biochemical Changes Due to the Treatment of the Grasshopper Heteracris Littoralis Ramb.(Orthoptera: Acrididae) with Azadirachtin. Ph.D. Thesis, Faculty of Science Cairo University, Giza, Egypt, 2005; 102p. (Unpublished). [Google Scholar]
- Subrahmanyam, B.; Müller, T.; Rembold, H. Inhibition of turnover of neurosecretion by azadirachtin in Locusta migratoria. J. Insect Physiol. 1989, 35, 493–500. [Google Scholar] [CrossRef]
- Ghazawy, N. Ultrastructural observations on the gonads and neurosecretory cells of schistocerca gregaria after treatment with Lufenuron (CGA-184699). J. Orthoptera Res. 2012, 21, 141–148. [Google Scholar] [CrossRef]
- Ghazawy, N.; Zinhoum, R.; Ali, M.; Afify, A.; Hussain, H. Efficacy of ozone on mortality, super oxide dismutases, nitric oxide enzymes and ultrastructural alterations on some stored product insect larvae in Egypt. Afr. Entomol. 2021, 29, 17–31. [Google Scholar] [CrossRef]
- Awad, H.; Ghazawy, N. Effects of Farnesol on the ultrastructure of brain and corpora allata, sex hormones and on some oxidative stress parameters in Locusta migratoria (Orthoptera: Acridiidae). Afr. Entomol. 2016, 24, 502–512. [Google Scholar] [CrossRef]
- Abdellaoui, K.; Halima-Kamel, M.B.; Hamouda, M.H.B. Physiological effects of gibberellic acid on the reproductive potential of Locusta migratoria migratoria. Tunis. J. Plant. Prot. 2009, 4, 67–76. [Google Scholar]
- Ammar, M.; N’cir, S. Incorporation of Cestrum parquii (Solanaceae) leaves in an artificial diet affected larval longevity and gut structure of the desert locust Schistocerca gregaria. Tunis. J. Plant Prot. 2008, 3, 27–34. [Google Scholar]
- Sumida, S.; Da Silva-Zacarin, E.C.; Decio, P.; Malaspina, O.; Bueno, F.C.; Bueno, O.C. Toxicological and histopathological effects of boric acid on Atta sexdens rubropilosa (Hymenoptera: Formicidae) workers. J. Econ. Entomol. 2010, 103, 676–690. [Google Scholar] [CrossRef] [PubMed]
- Afify, A.; Ghezawy, N.; Ali, M.; El-Tayeb, T. Effects of copper chlorophylline and magnesium chlorophylline on the humeral immune response, ultrastructural changes of midgut and DNA damage to Culex pipiens larvae. Afr. Entomol. 2019, 27, 146–158. [Google Scholar] [CrossRef]
- Berni, J.; Rabossi, A.; Quesada-Allué, L.A. Phloxine B effect on immature stages of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae)(Wiedemann). J. Econ. Entomol. 2003, 96, 662–668. [Google Scholar] [CrossRef]
- Pilat, M. Histological researches into the action of insecticides on the intestinal tube of insects. Bull. Entomol. Res. 1935, 26, 165–172. [Google Scholar] [CrossRef]
- Lucantoni, L.; Magaraggia, M.; Lupidi, G.; Ouedraogo, R.K.; Coppellotti, O.; Esposito, F.; Fabris, C.; Jori, G.; Habluetzel, A. Novel, meso-substituted cationic porphyrin molecule for photo-mediated larval control of the dengue vector Aedes aegypti. PLoS Neglected Trop. Dis. 2011, 5, e1434. [Google Scholar] [CrossRef]
- Perumalsamy, H.; Kim, J.-R.; Oh, S.M.; Jung, J.W.; Ahn, Y.-J.; Kwon, H.W. Novel histopathological and molecular effects of natural compound pellitorine on larval midgut epithelium and anal gills of Aedes aegypti. PLoS ONE 2013, 8, e80226. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Shaurub, E.-S.H.; Mohamed, D.S.; El-Sayed, A.M. Sublethal Effects of the Essential Oils of Garlic (Allium Sativum) and Lemon (Citrus Limon) on Nutritional Indices and Midgut Histological and Ultrastructural Changes in the Egyptian Cotton Leafworm (Spodoptera Littoralis). Egypt. J. Zool. 2017, 174, 1–23. [Google Scholar] [CrossRef]
- El Sayed, Y.A.; Sayed, S.; Magdy, A.; Elmenofy, W. Detection, characterization and virulence analysis of nucleopolyhedrovirus isolated from the cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control. 2022, 32, 74. [Google Scholar] [CrossRef]
- Ali, M.M.; Ramadan, M.A.; Ghazawy, N.A.; Afify, A.; Mousa, S.A. Photochemical effect of silver nanoparticles on flesh fly larval biological system. Acta Histochemica 2022, 124, 151871. [Google Scholar] [CrossRef]
- Haunerland, N.H.; Andolfatto, P.; Chisholm, J.M.; Wang, Z.; Chen, X. Fatty-acid-binding protein in locust flight muscle: Developmental changes of expression, concentration and intracellular distribution. Eur. J. Biochem. 1992, 210, 1045–1051. [Google Scholar] [CrossRef]
- Maatman, R.G.; Degano, M.; van Moerkerk, H.T.; van Marrewijk, W.J.; van der horst, D.J.; Sacchettini, J.C.; Veerkamp, J.H. Primary structure and binding characteristics of locust and human muscle fatty-acid-binding proteins. Eur. J. Biochem. 1994, 221, 801–810. [Google Scholar] [CrossRef]
- Radwan, I.T.; Sayed-Ahmed, M.Z.; Ghazawy, N.A.; Alqahtani, S.S.; Ahmad, S.; Alam, N.; Alkhaibari, A.M.; Ali, M.S.; Selim, A.; AbdelFattah, E.A. Effect of nanostructure lipid carrier of methylene blue and monoterpenes as enzymes inhibitor for Culex pipiens. Sci. Rep. 2023, 13, 12522. [Google Scholar] [CrossRef] [PubMed]
- Abbott, M.; Bathurst, J.; Cunge, J.; O’connell, P.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen,“SHE”, 2: Structure of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 61–77. [Google Scholar] [CrossRef]
- Software, L. POLO-PC: A user’s guide to probit or logit analysis. LeOra Softw. 1987. [Google Scholar]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Fleischner, G.; Gatmaitan, Z.; Arias, I.M.; Jakoby, W.B. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. Natl. Acad. Sci. 1974, 71, 3879–3882. [Google Scholar] [CrossRef]
- Jain, S.K.; Levine, S.N. Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free. Radic. Biol. Med. 1995, 18, 337–341. [Google Scholar] [CrossRef]
- Mohareb, R.M.; Bagato, N.M.A.; Radwan, I.T. Design, Synthesis, Molecular Docking, and Biological Studies of New Heterocyclic Compounds Derived from β-Diketones as Novel EGFR and Pim-1 Inhibitors Endowed with Antitumor Activity. Anti-Cancer Agents Med. Chem. 2022, 22, 2558–2576. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Tissue | Control | Abamectin | Effect of Treatment |
---|---|---|---|---|
MDA (nmol/mL) | Hemolymph | 7.15 ± 0.44 | 42.10 ± 0.34 * | F2,12 = 876.671, p = 0.0001 # |
∆ | --- | 5.88 | ||
Fat | 8.68 ± 0.22 | 44.37 ± 0.73 * | F2,12 = 1807.39, p = 0.0001 # | |
∆ | --- | 5.11 | ||
SOD (U/mL) | Hemolymph | 9.00 ± 0.31 | 86.65 ± 0.43 * | F2,12 = 8710.27, p = 0.0001 # |
∆ | --- | 9.63 | ||
Fat | 11.14 ± 0.33 | 90.81 ± 1.07 * | F2,12 = 3164.62, p = 0.0001 # | |
∆ | --- | 8.15 | ||
Hemolymph | 18.72 ± 0.68 | 163.23 ± 1.60 * | F2,12 = 4483.205, p = 0.0001 # | |
GST (U/L) | ∆ | --- | 8.72 | |
Fat | 22.77 ± 1.84 | 192.92 ± 0.85 * | F2,12 = 2942.222, p = 0.0001 # | |
∆ | --- | 8.47 | ||
Hemolymph | 13.06 ± 0.56 | 52.49 ± 0.45 * | F2,12 = 1375.467, p = 0.0001 # | |
NO (µmol/L) | ∆ | --- | 4.02 | |
Fat | 13.13 ± 0.95 | 55.04 ± 0.32 * | F2,12 = 1346.17, p = 0.0001 # | |
∆ | --- | 4.19 |
Compound | Interactions | Type | Distance (Å) | Score (kcal/mol) | RMSD (Å) |
---|---|---|---|---|---|
OLA | Tyr130-O | Hydrogen bond | 1.74 | -- | -- |
Arg128-O | Hydrogen bond | 1.7 | |||
Arg108-C=O | Hydrogen bond | 1.62 | |||
Abamectin B | Arg128-OH | Hydrogen bond | 2.04 | -35.088 | 1.63 |
Arg128-Ome | Hydrogen bond | 2.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazawy, N.A.R.; Afify, A.; Radwan, I.T.; Ghabban, H.; Alkhaibari, A.M.; Gattan, H.S.; Alruhaili, M.H.; Selim, A.; Saad, M.M.A. The Effect of Abamectin on Locusta Migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking. Molecules 2023, 28, 6956. https://doi.org/10.3390/molecules28196956
Ghazawy NAR, Afify A, Radwan IT, Ghabban H, Alkhaibari AM, Gattan HS, Alruhaili MH, Selim A, Saad MMA. The Effect of Abamectin on Locusta Migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking. Molecules. 2023; 28(19):6956. https://doi.org/10.3390/molecules28196956
Chicago/Turabian StyleGhazawy, Nirvina Abdel Raouf, Amira Afify, Ibrahim Taha Radwan, Hanaa Ghabban, Abeer Mousa Alkhaibari, Hattan S. Gattan, Mohammed H. Alruhaili, Abdelfattah Selim, and Mona M. Ali Saad. 2023. "The Effect of Abamectin on Locusta Migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking" Molecules 28, no. 19: 6956. https://doi.org/10.3390/molecules28196956
APA StyleGhazawy, N. A. R., Afify, A., Radwan, I. T., Ghabban, H., Alkhaibari, A. M., Gattan, H. S., Alruhaili, M. H., Selim, A., & Saad, M. M. A. (2023). The Effect of Abamectin on Locusta Migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking. Molecules, 28(19), 6956. https://doi.org/10.3390/molecules28196956