Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = FEM/DEM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1508 KiB  
Article
In Silico Investigation of the RBC Velocity Fluctuations in Ex Vivo Capillaries
by Eren Çolak, Özgür Ekici and Şefik Evren Erdener
Appl. Sci. 2025, 15(14), 7796; https://doi.org/10.3390/app15147796 - 11 Jul 2025
Viewed by 219
Abstract
A properly functioning capillary microcirculation is essential for sufficient oxygen and nutrient delivery to the central nervous system. The physical mechanisms governing the transport of red blood cells (RBCs) inside the narrow and irregularly shaped capillary lumen are complex, but understanding them is [...] Read more.
A properly functioning capillary microcirculation is essential for sufficient oxygen and nutrient delivery to the central nervous system. The physical mechanisms governing the transport of red blood cells (RBCs) inside the narrow and irregularly shaped capillary lumen are complex, but understanding them is essential for identifying the root causes of neurological disorders like cerebral ischemia, Alzheimer’s disease, and other neurodegenerative conditions such as concussion and cognitive dysfunction in systemic inflammatory conditions. In this work, we conducted numerical simulations of three-dimensional capillary models, which were acquired ex vivo from a mouse retina, to characterize RBC transport. We show how the spatiotemporal velocity of the RBCs deviates in realistic capillaries and equivalent cylindrical tubes, as well as how this profile is affected by hematocrit and red cell distribution width (RDW). Our results show a previously unprecedented level of RBC velocity fluctuations in capillaries that depends on the geometric features of different confinement regions and a capillary circularity index (Icc) that represents luminal irregularity. This velocity fluctuation is aggravated by high hematocrit conditions, without any further effect on RDW. These results can provide a better understanding of the underlying mechanisms of pathologically high capillary transit time heterogeneity that results in microcirculatory dysfunction. Full article
Show Figures

Figure 1

18 pages, 5983 KiB  
Article
Fixed Particle Size Ratio Pure Copper Metal Powder Molding Fine Simulation Analysis
by Yuanbo Zhao, Mengyao Weng, Wenchao Wang, Wenzhe Wang, Hui Qi and Chongming Li
Crystals 2025, 15(7), 628; https://doi.org/10.3390/cryst15070628 - 5 Jul 2025
Viewed by 240
Abstract
In this paper, a discrete element method (DEM) coupled with a finite element method (FEM) was used to elucidate the impact of packing structures and size ratios on the cold die compaction behavior of pure copper powders. HCP structure, SC structure, and three [...] Read more.
In this paper, a discrete element method (DEM) coupled with a finite element method (FEM) was used to elucidate the impact of packing structures and size ratios on the cold die compaction behavior of pure copper powders. HCP structure, SC structure, and three random packing structures with different particle size ratios (1:2, 1:3, and 1:4) were generated by the DEM, and then simulated by the FEM to analyze the average relative density, von Mises stress, and force chain structures of the compact. The results show that for HCP and SC structures with a regular stacking structure, the average relative densities of the compact were higher than those of random packing structures, which were 0.9823, 0.9693, 0.9456, 0.9502, and 0.9507, respectively. Compared with their initial packing density, it could be improved by up to 21.13%. For the bigger particle in HCP and SC structures, the stress concentration was located between the adjacent layers, while in the small particles, it was located between contacted particles. During the initial compaction phase, smaller particles tend to occupy the voids between larger particles. As the pressure increases, larger particles deform plastically in a notable way to create a stabilizing force chain. This action reduces the axial stress gradient and improves radial symmetry. The transition from a contact-dominated to a body-stress-dominated state is further demonstrated by stress distribution maps and contact force vector analysis, highlighting the interaction between particle rearrangement and plasticity. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 3945 KiB  
Article
A Characterization of the Powder Yield Behaviors During a Hot Isostatic Pressing Process
by Guozheng Quan, Wenjing Ran, Weiwei Dai, Qian Jiang, Yanze Yu and Yu Zhang
Metals 2025, 15(7), 752; https://doi.org/10.3390/met15070752 - 4 Jul 2025
Viewed by 153
Abstract
The constitutive model significantly influences the accuracy of predicting the complex rheological behavior of hot isostatically pressed powders. The temperature plays a crucial role in determining material properties during hot isostatic pressing (HIP), making it essential to account for its effect on the [...] Read more.
The constitutive model significantly influences the accuracy of predicting the complex rheological behavior of hot isostatically pressed powders. The temperature plays a crucial role in determining material properties during hot isostatic pressing (HIP), making it essential to account for its effect on the yield model parameters to more accurately describe the densification evolution of powders. In this study, HIP experiments were conducted using two different process schemes, and the shrinkage deformation of the envelope under each scheme was analyzed. High-temperature uniaxial compression experiments were performed on HIP samples with varying densities to analyze and characterize the stress–strain response of the powder during HIP. A mesoscopic particle-scale high-temperature uniaxial compression model was developed based on the discrete element method (DEM), and the strain and stress values corresponding to different densities in the high-temperature uniaxial compression simulations were validated through experimental comparison. The strain evolution during the uniaxial compression process was analyzed, and the relationship between the parameters of the Shima–Oyane model and the temperature was established, leading to the development of a temperature-compensated Shima–Oyane model. Based on the obtained parameters at various densities and temperatures, a yield stress map for the nickel-based alloy was constructed. The accuracy of this model was verified by comparing experimental results with finite element method (FEM) simulations. The findings of this study contribute to a more precise prediction of densification behavior in thermally driven isostatic pressing. Full article
(This article belongs to the Special Issue Multi-scale Simulation of Metallic Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 5375 KiB  
Article
DEM-FEM Simulation of Double Compaction of Cu and Al Composite Metal Powders with Multiple Particle Sizes
by Wenchao Wang, Yuanbo Zhao, Mengyao Weng, Kangxing Dong, Hui Qi, Wenzhe Wang and Chongming Li
Crystals 2025, 15(6), 526; https://doi.org/10.3390/cryst15060526 - 30 May 2025
Cited by 1 | Viewed by 389
Abstract
In this paper, the analysis method which coupled discrete element method (DEM) and finite element method (FEM) is used to simulate the double compaction of random packing of Cu and Al composite powders with multiple particle sizes. Cu and Al composite powders with [...] Read more.
In this paper, the analysis method which coupled discrete element method (DEM) and finite element method (FEM) is used to simulate the double compaction of random packing of Cu and Al composite powders with multiple particle sizes. Cu and Al composite powders with varying particle size ratios from 1:2 to 1:5 were generated by DEM and then imported to MSC. Marc software (MSC.MARC2015 version) to construct FEM analysis. The effects of metal ratios, compaction pressure and size ratios on the relative density and von Mises stress of the compact were studied. The results show that the average relative density of the compact increases with the Al content, and the stress decreases. The stress in the Cu particle is particularly higher than that in the Al particle, mainly because the contact normal force of the Cu particle is nearly parallel at each contact surface. Therefore, the phenomenon of stress concentration is easier to occur within copper particles. When Al content is 30wt.%, the particle size difference enhances densification efficiency by up to 12.3%, as evidenced by an initial relative density increase from 0.7915 to 0.8047, primarily due to smaller Cu particles effectively filling interparticle voids. When the compaction pressure is fixed, the average relative density of the compact with the particle size ratio 1:5 is higher than the others, and the contact forces inside the particles significantly decrease. Full article
Show Figures

Figure 1

14 pages, 2915 KiB  
Article
An Integrated DEM–FEM Simulation Framework for Preferential Flow Path Evaluation in Waste Landfill Composed of Non-Spherical Particles
by Hiroyuki Ishimori, Kazuto Endo and Masato Yamada
Appl. Sci. 2025, 15(11), 5798; https://doi.org/10.3390/app15115798 - 22 May 2025
Viewed by 293
Abstract
A numerical experimental method combining the discrete element method (DEM) and the finite element method (FEM) is proposed to analyze water channel flow in heterogeneous porous media such as landfill layers. In this study, non-spherical particles —thin plates and rods—are introduced into DEM-FEM [...] Read more.
A numerical experimental method combining the discrete element method (DEM) and the finite element method (FEM) is proposed to analyze water channel flow in heterogeneous porous media such as landfill layers. In this study, non-spherical particles —thin plates and rods—are introduced into DEM-FEM coupling for the first time, which allows for the virtual reconstruction of complex pore structures beyond the capability of traditional experimental approaches, such as soil tanks or X-ray CT. Fluid flow simulations performed on three types of virtual porous media showed that only the case with non-spherical particles generated water channels. Tortuosity analysis was used to quantify the complexity of the flow paths and showed median values of 1.258 and 1.218 for homogeneous and particle size-distributed cases, respectively. In contrast, the case simulating waste media had a significantly lower median tortuosity of 1.051, with a skewed distribution toward shorter paths, indicating dominant water channels. This shift in tortuosity, coupled with higher variance, serves as quantitative evidence of water channel formation. The results demonstrate that tortuosity analysis complements streamline visualization and provides a reliable means to detect and compare water channel flow behavior. The proposed DEM-FEM framework enables both qualitative and quantitative understanding of flow dynamics in large-scale, highly heterogeneous porous systems and is expected to support further research and practical design in landfill and drainage engineering. Full article
(This article belongs to the Special Issue Advanced Technologies in Landfills)
Show Figures

Figure 1

12 pages, 2765 KiB  
Article
Dynamic Coupling Model of the Magnetic Separation Process Based on FEM, CFD, and DEM
by Xiaoming Wang, Zhengchang Shen, Yonghui Hu and Guodong Liang
Processes 2025, 13(5), 1303; https://doi.org/10.3390/pr13051303 - 24 Apr 2025
Viewed by 421
Abstract
Magnetic separation is an important method in the processing process, and its essence is the targeted dispersion of the mineral processing slurry pulp in the magnetic field space. The slurry is a complex multiphase fluid system with continuous phase carrying a large number [...] Read more.
Magnetic separation is an important method in the processing process, and its essence is the targeted dispersion of the mineral processing slurry pulp in the magnetic field space. The slurry is a complex multiphase fluid system with continuous phase carrying a large number of discrete phase particles, in which the magnetic particles agglomerate, migrate, and disperse under the dominance of magnetic force. In this process, there is nonlinear and unstable dynamic coupling between the continuous phase (liquid) and the discrete phase (solid particles) and between the discrete phases. In this paper, a dynamic cyclic multi-dipole magnetic moment algorithm with a higher calculation accuracy is innovatively proposed to calculate the magnetic interaction force between particles. Moreover, the P-E magnetization model suitable for a two-dimensional uniform magnetic field is further improved and optimized to make it applicable to a three-dimensional gradient magnetic field. Finally, based on the coupling of the Finite Element Method (FEM), Computational Fluid Dynamics (CFD), and Discrete Element Method (DEM), a dynamic coupling model capable of accurately simulating the magnetic separation process is developed. This model can be used to study the separation behavior of particles under a multiphase flow and multi-force field and to explore the motion behavior of magnetic particles. Full article
(This article belongs to the Special Issue Mineral Processing Equipments and Cross-Disciplinary Approaches)
Show Figures

Figure 1

21 pages, 7451 KiB  
Article
Study on the Impact Mitigation Effect of Artificial Rock Backfill Layers for Submarine Pipelines Based on Physical Model Tests and Numerical Simulations
by Guixi Jiang, Long Yu, Yunrui Han, Chunhong Hu, Dayong Zhang and Qing Yang
Oceans 2025, 6(2), 22; https://doi.org/10.3390/oceans6020022 - 17 Apr 2025
Viewed by 1101
Abstract
Submarine pipelines laid across navigational channels are highly susceptible to anchor drop impacts, which can cause deformation and disrupt normal pipeline operations. In severe cases, anchor impacts may lead to oil and gas leaks, resulting in significant economic losses and environmental damage. To [...] Read more.
Submarine pipelines laid across navigational channels are highly susceptible to anchor drop impacts, which can cause deformation and disrupt normal pipeline operations. In severe cases, anchor impacts may lead to oil and gas leaks, resulting in significant economic losses and environmental damage. To ensure the safe operation of submarine pipelines, artificial rock backfilling is widely employed as a protective measure. Compared with complex pipeline protection structures, this approach is both cost-effective and efficient. In the physical model experiment, a combination of total force sensors and thin-film sensors was used to measure the dynamic response of pipelines under anchor impact. Additionally, The FEM-DEM numerical method was used to simulate the dynamic response and interaction process of anchor impact on the rock protection layer and pipeline. Numerical results were compared with experimental data to analyze the effects of rock protection layer thickness, backfill rock particle size, and pipeline sublayer types on pipeline impact response. The results show a good agreement between the physical model tests and numerical simulation studies, revealing several factors that influence the mitigation effect of the rock protection layer. This study provides a valuable scientific reference for the installation of rock protection layers for pipelines. Full article
Show Figures

Figure 1

20 pages, 7512 KiB  
Article
Fatigue Crack Growth Simulation of R260 Grade Pearlitic Rail Steel Using the Discrete Element Method
by Hamed Davoodi Jooneghani, Klaus Six, Saham Sadat Sharifi, Maria Cecilia Poletti and Gerald Trummer
Machines 2025, 13(4), 305; https://doi.org/10.3390/machines13040305 - 9 Apr 2025
Viewed by 494
Abstract
Fatigue-induced crack initiation and propagation are a major concern in pearlitic railway rails and wheels. Rails and wheels undergo significant plastic deformation on their near-surface layers during service, leading to the initiation and propagation of cracks within the deformed region. Existing models typically [...] Read more.
Fatigue-induced crack initiation and propagation are a major concern in pearlitic railway rails and wheels. Rails and wheels undergo significant plastic deformation on their near-surface layers during service, leading to the initiation and propagation of cracks within the deformed region. Existing models typically use finite element models (FEMs) to describe these kinds of fatigue phenomena. However, they fail to establish a strong connection between the microstructure of the undeformed and the deformed materials and their corresponding fatigue properties. Therefore, a model based on the soft-contact discrete element method (DEM) was developed that considers microstructural details such as prior austenite grains (PAGs), pearlite blocks, pearlite colonies, and lamellar orientation of the ferrite–cementite structure of the pearlite. The Voronoi Tessellation method was used to generate a hierarchical mesh to represent these microstructural details, considering the distribution of microstructural details. Crack propagation is simulated by applying damage laws on the microstructural interface level that degrade the stiffness of the fibers connecting the mesh elements. The model’s crack growth predictions are compared with experimental results from the literature to validate its accuracy for different deformation degrees. The developed model can be used in the designing and material selection phase in the railway industry to help select the material with optimum microstructural features. Also, it can be used for the selection of the optimum heat treatment process considering materials resistance to the fatigue crack growth. Full article
(This article belongs to the Special Issue Wheel–Rail Contact: Mechanics, Wear and Analysis)
Show Figures

Figure 1

26 pages, 1059 KiB  
Review
Advancements in the Application of Numerical Simulation During Tablet Compaction
by Zhe Li, Haolong Xiong, Qiong Li, Abid Naeem, Lingyu Yang, Weifeng Zhu, Yanni Wu, Zhengji Jin and Liangshan Ming
Pharmaceutics 2025, 17(2), 220; https://doi.org/10.3390/pharmaceutics17020220 - 8 Feb 2025
Viewed by 2007
Abstract
Background: Numerical simulation is a technique that utilizes electronic computers to combine concepts of the discrete element method (DEM), finite element method (FEM), computational fluid dynamics (CFD), etc., and express simulated behaviors utilizing numerical computations and images. Compaction is the main process of [...] Read more.
Background: Numerical simulation is a technique that utilizes electronic computers to combine concepts of the discrete element method (DEM), finite element method (FEM), computational fluid dynamics (CFD), etc., and express simulated behaviors utilizing numerical computations and images. Compaction is the main process of tablet manufacturing; most of the current studies have focused on macroscopic compaction and tablet characterization, while the internal stress state and microstructure changes as a result of the compaction process are not well understood. Therefore, an in-depth understanding of the flow and compaction behavior of pharmaceutical powders is essential for the analysis and control of the compaction process. Methods: Current research shows that compaction is shifting from macroscopic behavior toward internal microscopic behavior using numerical simulation technology. Results: This review focuses on the application of various numerical simulation technologies during compaction and the contact model, or the constitutive equation commonly used in numerical simulation. In addition, the difficulties of numerical simulation technology in calibrating powder parameters and the limitations of the current research are also discussed. Conclusions: Numerical simulation research in medicine and other fields will continue to flourish as numerical simulation technology advances, attracting more and more researchers using it effectively. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

28 pages, 1662 KiB  
Review
Numerical Simulation of Earthquake Impacts on Marine Structures: A Comprehensive Review
by Adel Kabi, Jersson X. Leon-Medina and Francesc Pozo
Buildings 2024, 14(12), 4039; https://doi.org/10.3390/buildings14124039 - 19 Dec 2024
Viewed by 1446
Abstract
Marine and underwater structures, such as seawalls, piers, breakwaters, and pipelines, are particularly susceptible to seismic events. These events can directly damage the structures or destabilize their supporting soil through phenomena like liquefaction. This review examines advanced numerical modeling approaches, including CFD, FEM, [...] Read more.
Marine and underwater structures, such as seawalls, piers, breakwaters, and pipelines, are particularly susceptible to seismic events. These events can directly damage the structures or destabilize their supporting soil through phenomena like liquefaction. This review examines advanced numerical modeling approaches, including CFD, FEM, DEM, FVM, and BEM, to assess the impacts of earthquakes on these structures. These methods provide cost-effective and reliable simulations, demonstrating strong alignment with experimental and theoretical data. However, challenges persist in areas such as computational efficiency and algorithmic limitations. Key findings highlight the ability of these models to accurately simulate primary forces during seismic events and secondary effects, such as wave-induced loads. Nonetheless, discrepancies remain, particularly in capturing energy dissipation processes in existing models. Future advancements in computational capabilities and techniques, such as high-resolution DNS for wave–structure interactions and improved near-field seismoacoustic modeling show potential for enhancing simulation accuracy. Furthermore, integrating laboratory and field data into unified frameworks will significantly improve the precision and practicality of these models, offering robust tools for predicting earthquake and wave impacts on marine environments. Full article
Show Figures

Figure 1

28 pages, 86380 KiB  
Article
Study on the Process of Soil Clod Removal and Potato Damage in the Front Harvesting Device of Potato Combine Harvester
by Zewen Li, Wei Sun, Hucun Wang, Juanling Wang and Petru A. Simionescu
Agriculture 2024, 14(11), 1947; https://doi.org/10.3390/agriculture14111947 - 31 Oct 2024
Cited by 4 | Viewed by 1598
Abstract
To improve soil clod removal and reduce potato damage in potato combine harvesters, this study investigates the processes involved in soil clod removal and potato collisions within the bar-lift chain separation device of the harvester. It outlines the structure and working principles of [...] Read more.
To improve soil clod removal and reduce potato damage in potato combine harvesters, this study investigates the processes involved in soil clod removal and potato collisions within the bar-lift chain separation device of the harvester. It outlines the structure and working principles of the machine, theoretically analyzes the key dimensions of the digging device and potato–soil separation components, and derives specific structural parameters. A dynamic mathematical model of the bar-lift chain is established, from which the dynamic equations are formulated. The analysis identifies factors that influence the dynamic characteristics of the bar-lift chain. This study examines the working principles and separation performance of the potato–soil separation device, with a focus on the collision characteristics between potatoes and both the screen surface and the bars. Key factors such as the separation screen’s line speed, the harvester’s forward speed, and the tilt angle of the separation screen are considered. Simulations are performed using a coupling method based on the Discrete Element Method (DEM) and Multi-Body Dynamics (MBD). Through simulation experiments, the optimal parameter combinations for the potato–soil separation device are determined. The optimal working parameters are identified as a separation screen line speed of 1.25 m/s, a forward speed of 0.83 m/s, and a tilt angle of 25°. Field harvesting experiments indicate a potato loss rate of 1.8%, a damage rate of 1.2%, an impurity rate of 1.9%, a skin breakage rate of 2.1%, and a yield of 0.15–0.21 ha/h. All results meet national and industry standards. The findings of this research provide valuable theoretical references for simulating potato–soil separation in combine harvesters and optimizing the parameters of these devices. Future potential research will consider the automatic regulation of the excavation volume of the potato–soil mixture, aiming to achieve intelligent control of the potato–soil separation operation. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

29 pages, 17177 KiB  
Article
Optimization Design and Experimental Analysis of Resistance-Reducing Anti-Fracture Rotary Blade Based on DEM Techniques
by Xiaochuan Zhao, Zhikai Ma, Jianguo Zhao, Jianchang Li, Jiale Zhao, Binhao Dai, Meilin An, Jiaping Wang and Jianjun Hao
Agronomy 2024, 14(11), 2531; https://doi.org/10.3390/agronomy14112531 - 28 Oct 2024
Viewed by 1111
Abstract
To address the significant cutting resistance and fracture susceptibility of rotary blades, an innovative blade design was conceived to minimize resistance and enhance fracture resistance. By analyzing the interaction between the blade, soil, and root systems, an optimized design for the blade structure’s [...] Read more.
To address the significant cutting resistance and fracture susceptibility of rotary blades, an innovative blade design was conceived to minimize resistance and enhance fracture resistance. By analyzing the interaction between the blade, soil, and root systems, an optimized design for the blade structure’s breakage resistance was developed. The theory of eccentric circular side cutting edges was applied to redesign the curve of the side cutting edge, and kinematic analysis was conducted to determine the optimal edge angle (26.57°). A flexible body model of corn residues was established, and cutting resistance measurements indicated a 15.1% reduction in cutting resistance. The breakage resistance of the rotary blade was validated using a discrete element method–finite element method (DEM–FEM) coupling approach. The results demonstrated the following: neck stress (−16.85%), specific strength efficiency (+9.72%), specific stiffness efficiency (+9.78%), fatigue life (+39.08%), and ultimate fracture stress (+20.16%), thereby meeting the design objectives. The comparison between field trial results and simulation data showed an error rate (<5%), confirming the simulation test’s feasibility. These findings provide theoretical references for reducing cutting resistance and enhancing breakage resistance in rotary blades. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

17 pages, 7645 KiB  
Article
Strain and Deformation Analysis Using 3D Geological Finite Element Modeling with Comparison to Extensometer and Tiltmeter Observations
by Meng Li, Hexiong Lu, Ahmed El-Mowafy, Tieding Lu and Aiping Zhao
Remote Sens. 2024, 16(21), 3967; https://doi.org/10.3390/rs16213967 - 25 Oct 2024
Viewed by 1322
Abstract
This study verifies the practicality of using finite element analysis for strain and deformation analysis in regions with sparse GNSS stations. A digital 3D terrain model is constructed using DEM data, and regional rock mass properties are integrated to simulate geological structures, resulting [...] Read more.
This study verifies the practicality of using finite element analysis for strain and deformation analysis in regions with sparse GNSS stations. A digital 3D terrain model is constructed using DEM data, and regional rock mass properties are integrated to simulate geological structures, resulting in the development of a 3D geological finite element model (FEM) using the ANSYS Workbench module. Gravity load and thermal constraints are applied to derive directional strain and deformation solutions, and the model results are compared to actual strain and tilt measurements from the Jiujiang Seismic Station (JSS). The results show that temperature variations significantly affect strain and deformation, particularly due to the elevation difference between the mountain base and summit. Higher temperatures increase thermal strain, causing tensile effects, while lower temperatures reduce thermal strain, leading to compressive effects. Strain and deformation patterns are strongly influenced by geological structures, gravity, and topography, with valleys experiencing tensile strain and ridges undergoing compression. The deformation trend indicates a southwestward movement across the study area. A comparison of FEM results with ten years of strain and tiltmeter data from JSS reveals a strong correlation between the model predictions and actual measurements, with correlation coefficients of 0.6 and 0.75 for strain in the NS and EW directions, and 0.8 and 0.9 for deformation in the NS and EW directions, respectively. These findings confirm that the 3D geological FEM is applicable for regional strain and deformation analysis, providing a feasible alternative in areas with limited GNSS monitoring. This method provides valuable insights into crustal deformation in regions with sparse strain and deformation measurement data. Full article
(This article belongs to the Special Issue Remote Sensing in Engineering Geology (Third Edition))
Show Figures

Figure 1

24 pages, 16872 KiB  
Article
An Advanced DEM-FEM Method for Herringbone Gear in Shot Peening
by Ding Zhang, Liangliang Lv, Wen Shao, Jinyuan Tang, Jiuyue Zhao and Huiyun Zhang
Appl. Sci. 2024, 14(20), 9536; https://doi.org/10.3390/app14209536 - 18 Oct 2024
Viewed by 968
Abstract
Introduction: The complex geometry of herringbone gear can lead to uneven surface strengthening, which affects the overall effect of treatment. Methods: A discrete element model (DEM) of shot peening for herringbone gears was developed, incorporating accurate gear surface parameters to study impact characteristics [...] Read more.
Introduction: The complex geometry of herringbone gear can lead to uneven surface strengthening, which affects the overall effect of treatment. Methods: A discrete element model (DEM) of shot peening for herringbone gears was developed, incorporating accurate gear surface parameters to study impact characteristics along the tooth profile. A finite element model (FEM) was created for small local units of the gear surface to calculate the residual stress and roughness. Results: There are a large number of low-velocity shots at the root of the gear, and the closer to the top of the gear, the higher the impact velocity of the shots, but the number of impacts also decreases. The surface roughness Sa near the root of the tooth is the smallest, the Sa at the pitch circle is the largest, and the Sa at the top of the tooth is intermediate. However, the residual stress levels at different positions of the tooth surface are not significantly different. Conclusion: The difference in tooth surface roughness of herringbone gear is the synergistic effect of shot impact velocity and shot frequency, but this synergistic effect has no significant effect on the stress after shot peening. Full article
Show Figures

Figure 1

12 pages, 2559 KiB  
Article
The Stability and Failure of Deep Underground Structures at Potash Mining Deposits
by Yiqiang Zhang, Siarhei Lapatsin, Michael Zhuravkov, Guangbin Yu and Ivan Karpovich
Appl. Sci. 2024, 14(20), 9434; https://doi.org/10.3390/app14209434 - 16 Oct 2024
Cited by 2 | Viewed by 1169
Abstract
The article describes the peculiarities of strength and stability evaluation for deep geotechnical structures located in salt rock masses at great depths. A number of numerical studies are presented for the deep mining excavations of various cross-sections. The numerical simulations are conducted using [...] Read more.
The article describes the peculiarities of strength and stability evaluation for deep geotechnical structures located in salt rock masses at great depths. A number of numerical studies are presented for the deep mining excavations of various cross-sections. The numerical simulations are conducted using a specific coupled algorithm of the finite element method (FEM) and distinct element method (DEM), which allows not only the prediction of dangerous zones in the undermined rock mass but also to simulation of the block fracture of the rock mass directly. Potential critical zones in the rock mass are established using an original complex limit state criterion for rock masses and FEM simulation results. Mentioned original criterion is a specific multicriterial method, which considers potential tensile, compressive and shear failure as well as crack propagation. To define the block-structure formulation in the rock mass it is proposed to use the Lade criterion in the complex limit state zones. Furthermore, block-structured rock mass behavior is simulated using DEM to predict its block-like fracture. The results of numerical studies clearly show that the mechanical behavior of potash salt rock masses significantly differ at moderate and great mining depths. Namely, the volume of the limit state zones nonlinearly increases with the increase in the mining depths up to double the size of the excavation cross-section. However, the exact amount of potentially failed rock mass has to be established using the direct DEM simulation in the limit state zones. Full article
Show Figures

Figure 1

Back to TopTop