Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Eudragit NM30D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5126 KiB  
Article
Preparation and Evaluation of Auxiliary Permeable Microneedle Patch Composed of Polyvinyl Alcohol and Eudragit NM30D Aqueous Dispersion
by Mengzhen Xing, Yuning Ma, Xiaocen Wei, Chen Chen, Xueli Peng, Yuxia Ma, Bingwen Liang, Yunhua Gao and Jibiao Wu
Pharmaceutics 2023, 15(7), 2007; https://doi.org/10.3390/pharmaceutics15072007 - 22 Jul 2023
Cited by 3 | Viewed by 4260
Abstract
Poor transdermal permeability limits the possibility of most drug delivery through the skin. Auxiliary permeable microneedles (AP-MNs) with a three-dimensional network structure can effectively break the skin stratum corneum barrier and assist in the transdermal delivery of active ingredients. Herein, we propose a [...] Read more.
Poor transdermal permeability limits the possibility of most drug delivery through the skin. Auxiliary permeable microneedles (AP-MNs) with a three-dimensional network structure can effectively break the skin stratum corneum barrier and assist in the transdermal delivery of active ingredients. Herein, we propose a simple method for preparing AP-MNs using polyvinyl alcohol and Eudragit NM30D for the first time. To optimize the formulation of microneedles, the characteristics of swelling properties, skin insertion, solution viscosity, and needle integrity were systematically examined. Additionally, the morphology, mechanical strength, formation mechanism, skin permeability, swelling performance, biocompatibility, and in vitro transdermal drug delivery of AP-MNs were evaluated. The results indicated that the microneedles exhibited excellent mechanical-strength and hydrogel-forming properties after swelling. Further, it proved that a continuous and unblockable network channel was created based on physical entanglement and encapsulation of two materials. The 24 h cumulative permeation of acidic and alkaline model drugs, azelaic acid and matrine, were 51.73 ± 2.61% and 54.02 ± 2.85%, respectively, significantly enhancing the transdermal permeability of the two drugs. In summary, the novel auxiliary permeable microneedles prepared through a simple blending route of two materials was a promising and valuable way to improve drug permeation efficiency. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

17 pages, 8209 KiB  
Article
Eluxadoline-Loaded Eudragit Nanoparticles for Irritable Bowel Syndrome with Diarrhea: Formulation, Optimization Using Box–Behnken Design, and Anti-Diarrheal Activity
by Md. Khalid Anwer, Mohammed Muqtader Ahmed, Mohammed F. Aldawsari, Muzaffar Iqbal, Gamal A. Soliman and Ibrahim A. Aljuffali
Pharmaceutics 2023, 15(5), 1460; https://doi.org/10.3390/pharmaceutics15051460 - 10 May 2023
Cited by 7 | Viewed by 2859
Abstract
Eluxadoline (ELD), a recently approved drug, exhibits potential therapeutic effects in the management and treatment of IBS-D. However, its applications have been limited due to poor aqueous solubility, leading to a low dissolution rate and oral bioavailability. The current study’s goals are to [...] Read more.
Eluxadoline (ELD), a recently approved drug, exhibits potential therapeutic effects in the management and treatment of IBS-D. However, its applications have been limited due to poor aqueous solubility, leading to a low dissolution rate and oral bioavailability. The current study’s goals are to prepare ELD-loaded eudragit (EG) nanoparticles (ENPs) and to investigate the anti-diarrheal activity on rats. The prepared ELD-loaded EG-NPs (ENP1-ENP14) were optimized with the help of Box–Behnken Design Expert software. The developed formulation (ENP2) was optimized based on the particle size (286 ± 3.67 nm), PDI (0.263 ± 0.01), and zeta potential (31.8 ± 3.18 mV). The optimized formulation (ENP2) exhibited a sustained release behavior with maximum drug release and followed the Higuchi model. The chronic restraint stress (CRS) was successfully used to develop the IBS-D rat model, which led to increased defecation frequency. The in vivo studies revealed a significant reduction in defecation frequency and disease activity index by ENP2 compared with pure ELD. Thus, the results demonstrated that the developed eudragit-based polymeric nanoparticles can act as a potential approach for the effective delivery of eluxadoline through oral administration for irritable bowel syndrome diarrhea treatment. Full article
Show Figures

Figure 1

21 pages, 3359 KiB  
Article
Thymol-Loaded Eudragit RS30D Cationic Nanoparticles-Based Hydrogels for Topical Application in Wounds: In Vitro and In Vivo Evaluation
by Amira Mohamed Mohsen, Yosra Ibrahim Nagy, Amr M. Shehabeldine and Mona M. Okba
Pharmaceutics 2023, 15(1), 19; https://doi.org/10.3390/pharmaceutics15010019 - 21 Dec 2022
Cited by 22 | Viewed by 3164
Abstract
Natural medicines formulated using nanotechnology-based systems are a rich source of new wound-treating therapeutics. This study aims to develop thymol-loaded cationic polymeric nanoparticles (CPNPs) to enhance the skin retention and wound healing efficacy of thymol. The developed materials exhibited entrapment efficiencies of 56.58 [...] Read more.
Natural medicines formulated using nanotechnology-based systems are a rich source of new wound-treating therapeutics. This study aims to develop thymol-loaded cationic polymeric nanoparticles (CPNPs) to enhance the skin retention and wound healing efficacy of thymol. The developed materials exhibited entrapment efficiencies of 56.58 to 68.97%, particle sizes of 36.30 to 99.41 nm, and positively charged zeta potential. In Vitro sustained release of thymol up to 24 h was achieved. Selected thymol CPNPs (F5 and C2) were mixed with methylcellulose to form hydrogels (GF5 and GC2). An In Vivo skin-retention study revealed that GF5 and GC2 showed 3.3- and 3.6-fold higher retention than free thymol, respectively. An In Vitro scratch-wound healing assay revealed a significant acceleration in wound closure at 24 h by 58.09% (GF5) and 57.45% (GC2). The potential for free thymol hydrogel, GF5, and GC2 to combat MRSA in a murine skin model was evaluated. The bacterial counts, recovered from skin lesions and the spleen, were assessed. Although a significant reduction in the bacterial counts recovered from the skin lesions was shown by all three formulations, only GF5 and GC2 were able to reduce the bacterial dissemination to the spleen. Thus, our study suggests that Eudragit RS30D nanoparticles-based hydrogels are a potential delivery system for enhancing thymol skin retention and wound healing activity. Full article
Show Figures

Graphical abstract

18 pages, 3255 KiB  
Article
Multiparticulate Systems of Meloxicam for Colonic Administration in Cancer or Autoimmune Diseases
by Eva Navarro-Ruíz, Covadonga Álvarez-Álvarez, M Ángeles Peña, Carlos Torrado-Salmerón, Zaid Dahma and Paloma Marina de la Torre-Iglesias
Pharmaceutics 2022, 14(7), 1504; https://doi.org/10.3390/pharmaceutics14071504 - 20 Jul 2022
Cited by 6 | Viewed by 2709
Abstract
The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal [...] Read more.
The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal tract (GIT) and this can be used as a modified release strategy. Eudragit® polymers are the most widely used synthetic products in the design of colonic release formulations because they might offer mucoadhesiveness and pH-dependent release. Colonic delivery systems produced with pH-dependent and permeable polymers (FS-30D) or with pH-independent and low permeability polymers (NM-30D), must dissolve at a pH range of 6.0–7.0 to delay the release of the drug and prevent degradation in the GIT, before reaching the colon. The conditions prepared to simulate a gastrointestinal transit showed the CNM multiparticulate system, composed of Eudragit® NM and cellulose, as the best release option for MLX with a more sustained release with respect to the other formulations. CNM formulation followed Higuchi and First-order release kinetics, thus MLX release was controlled by a combination of diffusion and polymers swelling/eroding processes. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

19 pages, 18771 KiB  
Article
Toltrazuril-Loaded Polymeric Nanocapsules as a Promising Approach for the Preventive Control of Coccidiosis in Poultry
by Lana Flávia Baron, Francisco Noé da Fonseca, Shaiana Salete Maciag, Franciana Aparecida Volpato Bellaver, Adriana Mércia Guaratini Ibeli, Marcos Antônio Zanella Mores, Gabryelle Furtado de Almeida, Silvia Stanisçuaski Guterres, Ana Paula Almeida Bastos and Karina Paese
Pharmaceutics 2022, 14(2), 392; https://doi.org/10.3390/pharmaceutics14020392 - 10 Feb 2022
Cited by 6 | Viewed by 3073
Abstract
Coccidiosis is a disease caused by intracellular protozoan parasites of the genus Eimeria that affect the intestinal tract of poultry. However, strain resistance and drug residue in the carcass have drawn the attention of the productive sector. The nanotechnology can improve the biological [...] Read more.
Coccidiosis is a disease caused by intracellular protozoan parasites of the genus Eimeria that affect the intestinal tract of poultry. However, strain resistance and drug residue in the carcass have drawn the attention of the productive sector. The nanotechnology can improve the biological effect of drugs, reducing of administered doses and toxic effects. Due to this, toltrazuril-load polymeric nanoparticles based on Eudragit® S100 (NCt) or poly-ε-caprolactone (LNCt) were developed to prevent coccidiosis in broilers. Nanoformulations were produced and showed homogeneous particle diameter distribution in the nanometer range (z-average and D (4.3) < 200 nm), negative zeta potential (<−8.93 mV), drug content ~100%, and encapsulation efficiency >90%. Cell viability assays using avian fibroblasts showed that LNCt presented no relevant toxicity up to 72 h. LNCt was then prophylactically administrated to chicken followed by challenge with Eimeria oocysts. The evaluation of the small intestine and cecum showed that the treatment with LNCt (3.5 mg/kg/day) in drinking water reduced the lesion scores and oocysts excretion, similar to the reference medicine containing toltrazuril (Baycox®, 7 mg/kg/day). The current study shows the potential protective use of nanoencapsulating anticoccidial drugs as a promising approach for the control of coccidiosis in poultry. Full article
(This article belongs to the Special Issue Polymeric Nanocapsules in Drug Delivery)
Show Figures

Figure 1

13 pages, 4742 KiB  
Article
Single-Cellular Biological Effects of Cholesterol-Catabolic Bile Acid-Based Nano/Micro Capsules as Anti-Inflammatory Cell Protective Systems
by Armin Mooranian, Corina Mihaela Ionescu, Daniel Walker, Melissa Jones, Susbin Raj Wagle, Bozica Kovacevic, Jacqueline Chester, Thomas Foster, Edan Johnston, Jafri Kuthubutheen, Daniel Brown, Marcus D. Atlas, Momir Mikov and Hani Al-Salami
Biomolecules 2022, 12(1), 73; https://doi.org/10.3390/biom12010073 - 4 Jan 2022
Cited by 16 | Viewed by 2708
Abstract
Recent studies in our laboratories have shown promising effects of bile acids in ➀ drug encapsulation for oral targeted delivery (via capsule stabilization) particularly when encapsulated with Eudragit NM30D® and ➁ viable-cell encapsulation and delivery (via supporting cell viability and biological activities, [...] Read more.
Recent studies in our laboratories have shown promising effects of bile acids in ➀ drug encapsulation for oral targeted delivery (via capsule stabilization) particularly when encapsulated with Eudragit NM30D® and ➁ viable-cell encapsulation and delivery (via supporting cell viability and biological activities, postencapsulation). Accordingly, this study aimed to investigate applications of bile acid-Eudragit NM30D® capsules in viable-cell encapsulation ready for delivery. Mouse-cloned pancreatic β-cell line was cultured and cells encapsulated using bile acid-Eudragit NM30D® capsules, and capsules’ images, viability, inflammation, and bioenergetics of encapsulated cells assessed. The capsules’ thermal and chemical stability assays were also assessed to ascertain an association between capsules’ stability and cellular biological activities. Bile acid-Eudragit NM30D® capsules showed improved cell viability (e.g., F1 < F2 & F8; p < 0.05), insulin, inflammatory profile, and bioenergetics as well as thermal and chemical stability, compared with control. These effects were formulation-dependent and suggest, overall, that changes in ratios of bile acids to Eudragit NM30D® can change the microenvironment of the capsules and subsequent cellular biological activities. Full article
(This article belongs to the Collection Feature Papers in Lipids)
Show Figures

Graphical abstract

17 pages, 3127 KiB  
Article
Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines
by Aytug Kara, Athina Vassiliadou, Baris Ongoren, William Keeble, Richard Hing, Aikaterini Lalatsa and Dolores R. Serrano
Pharmaceutics 2021, 13(12), 2134; https://doi.org/10.3390/pharmaceutics13122134 - 10 Dec 2021
Cited by 35 | Viewed by 5662
Abstract
Currently, there is an unmet need to manufacture nanomedicines in a continuous and controlled manner. Three-dimensional (3D) printed microfluidic chips are an alternative to conventional PDMS chips as they can be easily designed and manufactured to allow for customized designs that are able [...] Read more.
Currently, there is an unmet need to manufacture nanomedicines in a continuous and controlled manner. Three-dimensional (3D) printed microfluidic chips are an alternative to conventional PDMS chips as they can be easily designed and manufactured to allow for customized designs that are able to reproducibly manufacture nanomedicines at an affordable cost. The manufacturing of microfluidic chips using existing 3D printing technologies remains very challenging because of the intricate geometry of the channels. Here, we demonstrate the manufacture and characterization of nifedipine (NFD) polymeric nanoparticles based on Eudragit L-100 using 3D printed microfluidic chips with 1 mm diameter channels produced with two 3D printing techniques that are widely available, stereolithography (SLA) and fuse deposition modeling (FDM). Fabricated polymeric nanoparticles showed good encapsulation efficiencies and particle sizes in the range of 50–100 nm. SLA chips possessed better channel resolution and smoother channel surfaces, leading to smaller particle sizes similar to those obtained by conventional manufacturing methods based on solvent evaporation, while SLA manufactured nanoparticles showed a minimal burst effect in acid media compared to nanoparticles fabricated with FDM chips. Three-dimensional printed microfluidic chips are a novel and easily amenable cost-effective strategy to allow for customization of the design process for continuous manufacture of nanomedicines under controlled conditions, enabling easy scale-up and reducing nanomedicine development times, while maintaining high-quality standards. Full article
(This article belongs to the Special Issue Advances in Microfluidics for Pharmaceutical Applications)
Show Figures

Graphical abstract

21 pages, 4493 KiB  
Article
Optimized Rivastigmine Nanoparticles Coated with Eudragit for Intranasal Application to Brain Delivery: Evaluation and Nasal Ciliotoxicity Studies
by Mansi Bhanderi, Jigar Shah, Bapi Gorain, Anroop B. Nair, Shery Jacob, Syed Mohammed Basheeruddin Asdaq, Santosh Fattepur, Abdulhakeem S. Alamri, Walaa F. Alsanie, Majid Alhomrani, Sreeharsha Nagaraja and Md. Khalid Anwer
Materials 2021, 14(21), 6291; https://doi.org/10.3390/ma14216291 - 22 Oct 2021
Cited by 43 | Viewed by 4916
Abstract
Rivastigmine, a reversible cholinesterase inhibitor, is frequently indicated in the management of demented conditions associated with Alzheimer disease. The major hurdle of delivering this drug through the oral route is its poor bioavailability, which prompted the development of novel delivery approaches for improved [...] Read more.
Rivastigmine, a reversible cholinesterase inhibitor, is frequently indicated in the management of demented conditions associated with Alzheimer disease. The major hurdle of delivering this drug through the oral route is its poor bioavailability, which prompted the development of novel delivery approaches for improved efficacy. Due to numerous beneficial properties associated with nanocarriers in the drug delivery system, rivastigmine nanoparticles were fabricated to be administer through the intranasal route. During the development of the nanoparticles, preliminary optimization of processing and formulation parameters was done by the design of an experimental approach. The drug–polymer ratio, stirrer speed, and crosslinking time were fixed as independent variables, to analyze the effect on the entrapment efficiency (% EE) and in vitro drug release of the drug. The formulation (D8) obtained from 23 full factorial designs was further coated using Eudragit EPO to extend the release pattern of the entrapped drug. Furthermore, the 1:1 ratio of core to polymer depicted spherical particle size of ~175 nm, % EE of 64.83%, 97.59% cumulative drug release, and higher flux (40.39 ± 3.52 µg.h/cm2). Finally, the intranasal ciliotoxicity study on sheep nasal mucosa revealed that the exposure of developed nanoparticles was similar to the negative control group, while destruction of normal architecture was noticed in the positive control test group. Overall, from the in vitro results it could be summarized that the optimization of nanoparticles’ formulation of rivastigmine for intranasal application would be retained at the application site for a prolonged duration to release the entrapped drug without producing any local toxicity at the mucosal region. Full article
(This article belongs to the Special Issue Polymer-Based Biomaterials and Tissue Engineering)
Show Figures

Figure 1

16 pages, 2382 KiB  
Article
Improving the Solubility and Oral Bioavailability of a Novel Aromatic Aldehyde Antisickling Agent (PP10) for the Treatment of Sickle Cell Disease
by Tarek A. Ahmed, Khalid M. El-Say, Fathy I. Abd-Allah, Abdelsattar M. Omar, Moustafa E. El-Araby, Yosra A. Muhammad, Piyusha P. Pagare, Yan Zhang, Khadijah A. Mohmmad, Osheiza Abdulmalik and Martin K. Safo
Pharmaceutics 2021, 13(8), 1148; https://doi.org/10.3390/pharmaceutics13081148 - 27 Jul 2021
Cited by 5 | Viewed by 2645
Abstract
Background: Aromatic aldehydes, with their ability to increase the oxygen affinity of sickle hemoglobin, have become important therapeutic agents for sickle cell disease (SCD). One such compound, voxelotor, was recently approved for SCD treatment. Methyl 6-((2-formyl-3-hydroxyphenoxy)methyl) picolinate (PP10) is another promising aromatic aldehyde, [...] Read more.
Background: Aromatic aldehydes, with their ability to increase the oxygen affinity of sickle hemoglobin, have become important therapeutic agents for sickle cell disease (SCD). One such compound, voxelotor, was recently approved for SCD treatment. Methyl 6-((2-formyl-3-hydroxyphenoxy)methyl) picolinate (PP10) is another promising aromatic aldehyde, recently reported by our group. Like voxelotor, PP10 exhibits O2-dependent antisickling activity, but, unlike voxelotor, PP10 shows unique O2-independent antisickling effect. PP10, however, has limited solubility. This study therefore aimed to develop oral and parenteral formulations to improve PP10 solubility and bioavailability. Methods: Oral drug tablets with 2-hydroxypropyl beta cyclodextrin (HP-β-CD), polyvinylpyrrolidone, or Eudragit L100-55 PP10-binary system, and an intravenous (IV) formulation with d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) or HP-β-CD, were developed. The pharmacokinetic behavior of the formulations was studied in Sprague-Dawley rats. PP10, a methylester, and its acid metabolite were also studied in vitro with sickle whole blood to determine their effect on Hb modification, Hb oxygen affinity, and sickle red blood cell inhibition. Results: Aqueous solubility of PP10 was enhanced ~5 times with the HP-β-CD binary system, while the TPGS aqueous micelle formulation was superior, with a drug concentration of 0.502 ± 0.01 mg/mL and a particle size of 26 ± 3 nm. The oral tablets showed relative and absolute bioavailabilities of 173.4% and 106.34%, respectively. The acid form of PP10 appeared to dominate in vivo, although both PP10 forms demonstrated pharmacologic effect. Conclusion: Oral and IV formulations of PP10 were successfully developed using HP-β-CD binary system and TPGS aqueous micelles, respectively, resulting in significantly improved solubility and bioavailability. Full article
(This article belongs to the Special Issue Solubilization and Controlled Release of Poorly Water-Soluble Drugs)
Show Figures

Figure 1

22 pages, 6823 KiB  
Article
Development of Metronidazole Loaded Chitosan Nanoparticles Using QbD Approach—A Novel and Potential Antibacterial Formulation
by Nagaraja Sreeharsha, Kuldeep Rajpoot, Muktika Tekade, Dnyaneshwar Kalyane, Anroop B. Nair, Katharigatta N. Venugopala and Rakesh K. Tekade
Pharmaceutics 2020, 12(10), 920; https://doi.org/10.3390/pharmaceutics12100920 - 25 Sep 2020
Cited by 67 | Viewed by 5166
Abstract
The aim of this study was to design, optimize, and develop metronidazole (Met) loaded nanoparticles (MetNp) by employing quality-based design (QbD) as well as a risk assessment methodology. A fractional factorial design was used by selecting five independent variables viz., chitosan concentration, tripolyphosphate [...] Read more.
The aim of this study was to design, optimize, and develop metronidazole (Met) loaded nanoparticles (MetNp) by employing quality-based design (QbD) as well as a risk assessment methodology. A fractional factorial design was used by selecting five independent variables viz., chitosan concentration, tripolyphosphate concentration, and acetic acid concentration as material attributes, stirring speed, and stirring time as process parameters, whereby their influence on two dependent variables such as particle size (PS) and %entrapment efficiency (%EE) was studied. MetNp were synthesized by employing an ionic-gelation technique and optimized formula obtained from the QbD design study. PS and %EE studies revealed the formation of MetNp with 558.06 ± 2.52 nm and 59.07 ± 2.15%, respectively. Furthermore, a Met release study in various simulated gastro-intestinal media suggested pH-triggered (pH > 7.0) and sustained release profile of Met from Eudragit S100 enteric-coated MetNp capsule (MetNp cap). Moreover, the stability investigation of formulations confirmed good stability with respect to their PS and residual drug content (RDC) at different temperature conditions. In conclusion, the QbD method was effectively utilized in the development of MetNp and enteric-coated MetNp cap depicting their potential to release Met through MetNp cap only in the colon region and can be utilized for the treatment of amoebiasis in the colon. Full article
(This article belongs to the Special Issue Chitosan Nanoparticles in Drug Delivery)
Show Figures

Figure 1

Back to TopTop