Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Eosin Yellow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9023 KB  
Article
Pentachroma O-H: A Five-Color Histological Staining Method for Enhanced Intestinal Tissue Analysis
by Emanuel-Ciprian Onica, Cristina-Stefania Dumitru, Flavia Zara, Marius Raica, Cristian Silviu Suciu, Alina Cristina Barb, Oana-Alexia Ene, Cristi Tarta and Dorin Novacescu
Int. J. Mol. Sci. 2025, 26(22), 10811; https://doi.org/10.3390/ijms262210811 - 7 Nov 2025
Viewed by 1073
Abstract
Current histological staining methods for intestinal tissue analysis face limitations in simultaneously visualizing multiple tissue components, often requiring multiple sequential stains that increase processing time and tissue consumption. This proof-of-concept study aimed to define and develop a pentachromatic staining method for enhanced visualization [...] Read more.
Current histological staining methods for intestinal tissue analysis face limitations in simultaneously visualizing multiple tissue components, often requiring multiple sequential stains that increase processing time and tissue consumption. This proof-of-concept study aimed to define and develop a pentachromatic staining method for enhanced visualization of gastrointestinal tissue architecture. We developed the Pentachroma O-H method, an original protocol using readily available histological reagents (Alcian Blue pH 2.5, Weigert’s resorcin–fuchsin, Mayer’s hematoxylin, and Van Gieson’s solution) applied in an optimized sequence. The protocol was tested on healthy human ileum tissue obtained from surgical specimens as proof of concept. Thirty serial sections were stained with Pentachroma O-H and compared to adjacent sections stained with conventional hematoxylin–eosin (H&E) to document the emerging morphological characteristics of this original stain. Pentachroma O-H achieved distinct five-color differentiation in approximately 45 min: acidic mucins appeared turquoise–blue, collagen fibers red, elastic fibers black–purple, smooth muscle and erythrocyte cytoplasm yellow, and nuclei blue–black. The method clearly delineated intestinal architecture, including mucosal goblet cells, muscularis mucosae, connective tissue vasculature (parietal smooth muscle and elastic laminae), fibers, and cellular components, as well as lymphoid tissue aggregates and infiltrates, with improved contrast compared to H&E. All tissue components were simultaneously visualized in single sections with excellent morphological preservation. This first description of Pentachroma O-H demonstrates its capability to provide comprehensive ileum tissue visualization equivalent to multiple traditional special stains in a single, efficient protocol, offering significant potential advantages for gastrointestinal pathology assessment and warranting future validation studies across diverse tissue types and pathological conditions. Full article
(This article belongs to the Special Issue Molecular Research of Gastrointestinal Disease 2.0)
Show Figures

Figure 1

32 pages, 29621 KB  
Article
A Comparison of the Fading of Dyestuffs as Textile Colourants and Lake Pigments
by Jo Kirby and David Saunders
Heritage 2025, 8(7), 260; https://doi.org/10.3390/heritage8070260 - 3 Jul 2025
Cited by 1 | Viewed by 2242
Abstract
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and [...] Read more.
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and tannin-containing black dyes for the wools and eosin for the pigments. The wools were dyed within the MODHT European project on historic tapestries (2002–2005), using recipes derived from fifteenth- to seventeenth-century sources. The pigments were prepared according to European recipes of the same period, or using late nineteenth-century French or English recipes. Colour measurements made throughout the experiment allowed for overall colour difference (ΔE00) to be tracked and half-lives to be calculated for some of the colour changes. Alterations in the samples’ hue and chroma were also monitored, and spectral information was collected. The results showed that, for both textiles and pigments, madder is the most stable red dye, followed by cochineal, and then brazilwood. Eosin was the most fugitive sample examined. Comparisons of textile and lake samples derived from the same dyestuff, whether red or yellow, indicate that the colourants are more stable when used as textile dyes than in analogous lake pigments. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

13 pages, 3473 KB  
Article
CuO-NiO-Embedded Guar Gum Hydrogel as an Efficient Catalyst for Dyes Removal
by Nujud Maslamani
Polymers 2025, 17(11), 1577; https://doi.org/10.3390/polym17111577 - 5 Jun 2025
Viewed by 811
Abstract
In this work, Guar gum and copper oxide-nickel oxide (GG-CuO-NiO) hydrogel were produced with the help of formaldehyde solution to display an efficient catalytic performance toward the catalytic degradation of selected dyes (Methylene Blue (MB), Methyl Orange (MO), and Eosin Yellow (EY)) in [...] Read more.
In this work, Guar gum and copper oxide-nickel oxide (GG-CuO-NiO) hydrogel were produced with the help of formaldehyde solution to display an efficient catalytic performance toward the catalytic degradation of selected dyes (Methylene Blue (MB), Methyl Orange (MO), and Eosin Yellow (EY)) in the presence of NaBH4. The morphological and structural properties of the prepared hydrogel were thoroughly analyzed using SEM, EDX, XRD, and FT-IR techniques. According to the results, the GG-CuO-NiO hydrogel was able to reduce MB by 95% in one minute, 90.0% in four minutes, and 80.0% in 10 min for MO and EY, respectively. The catalytic efficiency of the hydrogel for MB was studied by adjusting its concentrations, varying reducing agent concentrations, and altering the amount of gel used. Using the recyclability method, which involved testing the GG-CuO-NiO hydrogel multiple times for the reduction of MB, the stability, reusability, and loss of catalytic activity of the hydrogel were examined. As a result, the designed GG-CuO-NiO hydrogel was stable for up to four times toward the reduction of MB. Lastly, the efficiency of the GG-CuO-NiO hydrogel was evaluated for MB removal in real samples and displayed exceptional reduction capabilities. Full article
(This article belongs to the Special Issue Advances in Natural Fiber-Polymer Composites)
Show Figures

Figure 1

25 pages, 8331 KB  
Article
Aqueous Cymbopogon citratus Extract Mediated Silver Nanoparticles: Part II. Dye Degradation Studies
by Himabindu Kurra, Aditya Velidandi, Ninian Prem Prashanth Pabbathi and Vikram Godishala
Eng 2025, 6(5), 102; https://doi.org/10.3390/eng6050102 - 19 May 2025
Cited by 2 | Viewed by 1117
Abstract
This study investigates the catalytic potential of silver nanoparticles (AgNPs) synthesized using aqueous Cymbopogon citratus (lemongrass) extract for the degradation of toxic textile dyes, offering an eco-friendly solution to industrial wastewater treatment. The green-synthesized AgNPs demonstrated remarkable degradation efficiency (>94%) for multiple dyes, [...] Read more.
This study investigates the catalytic potential of silver nanoparticles (AgNPs) synthesized using aqueous Cymbopogon citratus (lemongrass) extract for the degradation of toxic textile dyes, offering an eco-friendly solution to industrial wastewater treatment. The green-synthesized AgNPs demonstrated remarkable degradation efficiency (>94%) for multiple dyes, such as rhodamine B, methyl red, methyl orange, methylene blue, eosin yellow, and Eriochrome black T, in the presence of sodium borohydride. Optimization studies employing a one-factor-at-a-time approach revealed the critical influence of AgNPs and reductant concentration, temperature, and pH. Kinetic analysis confirmed pseudo-first-order degradation behavior. Reactive species scavenging experiments established that hydroxyl radicals and holes played dominant roles in the degradation mechanism. Notably, the AgNPs retained catalytic activity across eight reuse cycles with negligible performance loss, demonstrating strong potential for repeated application. Comparative analysis with data from the literature highlights the superior performance of C. citratus-derived AgNPs in terms of reaction rate and efficiency. This work underscores the value of plant-extract-mediated AgNPs synthesis not only for its environmental compatibility but also for its catalytic effectiveness. The study advances the practical applicability of green nanotechnology in wastewater remediation and supports its integration into sustainable industrial practices. Full article
Show Figures

Figure 1

21 pages, 5738 KB  
Article
Natural Phenolic-Aromatic-Compound-Based Fe-Zr Binary Oxide Nanoparticles for Eosin Yellow Adsorption Application
by Reema H. Aldahiri, Naha Meslet Alsebaii, Azza A. Al-Ghamdi, Manoj Kumar Khanna, Sumbul Hafeez, Elham A. Alzahrani and Seungdae Oh
Water 2025, 17(4), 521; https://doi.org/10.3390/w17040521 - 12 Feb 2025
Cited by 1 | Viewed by 1285
Abstract
This manuscript explores the removal of eosin yellow dye, a toxic color substance contributing to water pollution, from aqueous solutions. For this purpose, iron-zirconia binary oxide (Fe2O3-ZrO2) was functionalized with eugenol oil, a natural phenolic aromatic compound [...] Read more.
This manuscript explores the removal of eosin yellow dye, a toxic color substance contributing to water pollution, from aqueous solutions. For this purpose, iron-zirconia binary oxide (Fe2O3-ZrO2) was functionalized with eugenol oil, a natural phenolic aromatic compound extracted from the clove plant. The functional groups developed in the binary oxide were confirmed by Fourier transform infrared spectroscopy (FT-IR), and its crystal structure was determined via X-ray diffraction (XRD). The grain size analyzed by the XRD pattern was found to be 45 nanometers. The morphological analysis revealed nanoparticles of quasi-spherical type with a size ranging from 4 to 5 nanometers. The consistency between SEAD and XRD further confirmed that the material formed was iron-zirconia binary oxide. The obtained material, which was insoluble in water, was used as an adsorbent. Through the adsorption study of eosin yellow dye, the maximum monolayer adsorption capacity of approximately 91.0 mg/g at 27 °C and pH = 7.0 for the functionalized adsorbent was determined. The process was exothermic, feasible, and spontaneous. At a dose of 1.0 g/L, the adsorbent was responsible for removing more than 90% of eosin yellow with 10–70 mg/L initial concentration, while about 56% removal was achieved at a higher concentration of 150 mg/L at 27 °C and pH = 7.0. These results highlight the potential of functionalized Fe2O3-ZrO2 as an effective adsorbent for water purification applications. Full article
(This article belongs to the Special Issue Adsorption Technologies in Wastewater Treatment Processes)
Show Figures

Figure 1

20 pages, 4247 KB  
Article
Green Synthesis of Er-Doped ZnO Nanoparticles: An Investigation on the Methylene Blue, Eosin, and Ibuprofen Removal by Photodegradation
by Marília C. R. Silva, Samuel Castro-Lopes, Aimée G. Jerônimo, Ricardo Barbosa, Alexsandro Lins, Pollyana Trigueiro, Bartolomeu C. Viana, Francisca P. Araujo, Josy A. Osajima and Ramón R. Peña-Garcia
Molecules 2024, 29(2), 391; https://doi.org/10.3390/molecules29020391 - 12 Jan 2024
Cited by 55 | Viewed by 4854
Abstract
We present a study on the green synthesis of undoped and Er-doped ZnO compounds using Mangifera indica gum (MI). A set of tests were conducted to assess the structure of the material. The tests included X-ray diffraction, Raman, and Fourier-transform infrared spectroscopy. Optical [...] Read more.
We present a study on the green synthesis of undoped and Er-doped ZnO compounds using Mangifera indica gum (MI). A set of tests were conducted to assess the structure of the material. The tests included X-ray diffraction, Raman, and Fourier-transform infrared spectroscopy. Optical properties were studied using diffuse reflectance and photoluminescence. Morphological and textural investigations were done using SEM images and N2 adsorption/desorption. Furthermore, photocatalytic tests were performed with methylene blue (MB), yellow eosin (EY), and the pharmaceutical drug ibuprofen (IBU) under UV irradiation. The study demonstrated that replacing the stabilizing agent with Mangifera indica gum is an effective method for obtaining ZnO nanoparticles. Additionally, the energy gap of the nanoparticles exhibits a slight reduction in value. Photoluminescence studies showed the presence of zinc vacancies and other defects in both samples. In the photocatalytic test, the sample containing Er3+ exhibited a degradation of 99.7% for methylene blue, 81.2% for yellow eosin, and 52.3% for ibuprofen over 120 min. In the presence of methyl alcohol, the degradation of MB and EY dyes is 16.7% and 55.7%, respectively. This suggests that hydroxyl radicals are responsible for the direct degradation of both dyes. In addition, after the second reuse, the degradation rate for MB was 94.08%, and for EY, it was 82.35%. For the third reuse, the degradation rate for MB was 97.15%, and for EY, it was 17%. These results indicate the significant potential of the new semiconductor in environmental remediation applications from an ecological synthesis. Full article
(This article belongs to the Special Issue Green Photocatalysis for Degradation of Organic Contaminants)
Show Figures

Figure 1

20 pages, 7693 KB  
Article
Photodegradation of Wastewater Containing Organic Dyes Using Modified G-C3N4-Doped ZrO2 Nanostructures: Towards Safe Water for Human Beings
by Ahmed T. Mosleh, Fatemah F. Al-Harbi, Soumaya M. Gouadria, Samer H. Zyoud, Heba Y. Zahran, Mai S. A. Hussien and Ibrahim S. Yahia
Catalysts 2024, 14(1), 42; https://doi.org/10.3390/catal14010042 - 7 Jan 2024
Cited by 5 | Viewed by 2824
Abstract
Historically, the photocatalytic efficacy of graphitic carbon nitride (g-C3N4) has been constrained by a rapid charge recombination rate and restricted sensitivity to visible light. To overcome these limitations and enhance the performance of g-C3N4, the [...] Read more.
Historically, the photocatalytic efficacy of graphitic carbon nitride (g-C3N4) has been constrained by a rapid charge recombination rate and restricted sensitivity to visible light. To overcome these limitations and enhance the performance of g-C3N4, the strategic formation of heterojunctions with semiconductor materials is deemed the optimal approach. The present study employed a facile sonication-assisted pyrolysis method to synthesize a g-C3N4@ZrO2 nanocomposite photocatalyst. This hybrid material was characterized extensively using a comprehensive suite of analytical techniques, including XRD, SEM, EDX, FTIR, and UV-Vis DRS. A comparative analysis of photocatalytic applications under identical conditions was conducted for all synthesized materials, wherein they were subjected to UVc light irradiation. The photocatalytic degradation of various dye models, such as MB, EY, and a combination of dyes, was assessed using the prepared nanocomposites. The g-C3N4@ZrO2 photocatalysts showcased superior photocatalytic performance, with a particular variant, g-CNZ6, exhibiting remarkable activity. With a bandgap energy of 2.57 eV, g-CNZ6 achieved impressive degradation efficiencies of 96.5% for MB and 95.6% for EY within 40 min. Following previous studies, the superoxide radical anions (O2. and h+) were largely accountable for the degradation of MB. Therefore, the observed efficacy of the g-C3N4@ZrO2 nanocomposite photocatalyst can be attributed to the increased generation of these reactive species. Full article
(This article belongs to the Special Issue Innovative Functional Materials in Photocatalysis, 2nd Edition)
Show Figures

Figure 1

12 pages, 3061 KB  
Article
Holographic Grating Enhancement Induced by a Dual-Photo-Initiator System in PMMA Substrate Polymers
by Peiyao Wang, Xiudong Sun and Peng Liu
Polymers 2024, 16(1), 126; https://doi.org/10.3390/polym16010126 - 30 Dec 2023
Cited by 3 | Viewed by 1960
Abstract
Polymer systems induced by the reaction between monomers and photo-initiators play a crucial role in the formation of volume-phase gratings. In this paper, we fabricated a dual-photo-initiator photopolymer by doping EY (Eosin Yellow) molecules into a TI (Titanocene, Irgacure 784@BASF) dispersed PMMA (poly-[methyl [...] Read more.
Polymer systems induced by the reaction between monomers and photo-initiators play a crucial role in the formation of volume-phase gratings. In this paper, we fabricated a dual-photo-initiator photopolymer by doping EY (Eosin Yellow) molecules into a TI (Titanocene, Irgacure 784@BASF) dispersed PMMA (poly-[methyl methacrylate]) substrate system, with the aim of promoting the diffusion and polymerization processes in volume holographic storage. The two-wave interference system is adopted to record a permanent grating structure in our materials. The temporal diffraction variations of photopolymerization (during the interference exposure) and dark diffusion (after the interference exposure) processes have been investigated and analyzed. Aiming to analyze the influence of EY doping ratios on holographic performances, some key parameters were examined in the experiment. We first measured the temporal evolution of diffraction efficiency, then an exponential fitting was adopted to obtain the response time. Finally, the angular selectivity was evaluated by the Bragg condition after holographic recording. Also, the temporal evolution of each component is described by the nonlocal polymerization-driven diffusion model with a dual-photo-initiator composition, theoretically. Furthermore, we experimentally achieved the holographic grating enhancement in both the dark diffusion and photopolymerization processes by doping appropriate EY concentrations, respectively. This work provides a foundation for the acceptability of TI&EY/PMMA polymers in further holographic storage research. Full article
Show Figures

Figure 1

16 pages, 4615 KB  
Article
Adsorption and Removal of Composite Contaminants in Water Using Thermoplastic Polyurethane Nanofiber Membranes with Polydopamine–Polyethyleneimine Coatings
by Yan Qin, Jiaoxia Sun, Yao Zhou, Jianxin Fan and Ying Hu
Water 2023, 15(14), 2546; https://doi.org/10.3390/w15142546 - 11 Jul 2023
Cited by 8 | Viewed by 2387
Abstract
Dye wastewater containing bisphenol A (BPA) and dyes as pollutants has not been adequately studied. Our previous study revealed that thermoplastic polyurethane (TPU) nanofiber membranes (NFMs) modified by the addition of polyethyleneimine (PEI) and polydopamine (PDA) satisfactorily adsorb dyes. Herein, we first optimized [...] Read more.
Dye wastewater containing bisphenol A (BPA) and dyes as pollutants has not been adequately studied. Our previous study revealed that thermoplastic polyurethane (TPU) nanofiber membranes (NFMs) modified by the addition of polyethyleneimine (PEI) and polydopamine (PDA) satisfactorily adsorb dyes. Herein, we first optimized the synthesis conditions for such membranes, noting a PEI/PDA monomer ratio of 2:2 and a deposition time of 48 h to be optimal. Experiments using these membranes revealed that binary systems containing BPA and the dyes (Congo red (CR), Eosin yellow (EY), or sunset yellow (SY)) exhibit three adsorption behaviors. CR and BPA compete with each other for adsorption sites, decreasing the maximum adsorption capacity (Qmax) for CR 208.3 mg/g (in a monomeric system) to 182.4 mg/g. The adsorption rates for CR and BPA decreased from 0.002 min−1 and 0.331 min−1 in the monomeric systems to 8.37 × 10−4 min−1 and 0.072 min−1, respectively, in the binary CR–BPA system, exhibiting antagonistic effects. When EY and BPA coexisted, Qmax for EY increased from 60.0 (monomeric) to 71.9 mg/g, whereas that for BPA increased from 35.6 to 43.2 mg/g, showing a synergistic effect due to the possible bridging effect. The adsorption sites for SY and BPA are independent of each other. The novelty of this study is the finding that PDA/PEI-TPU NFMS exhibited high adsorption capacity for dyes and BPA in binary composite systems and PDA/PEI-TPU NFMs showed different adsorption patterns for three dye–BPA binary composite systems. The preparation of PDA/PEI-TPU NFMs and the investigation of the adsorption mechanism for dye–BPA binary composite systems are not only of theoretical importance but also provide experimental and data support for practical applications. Full article
Show Figures

Figure 1

19 pages, 5830 KB  
Article
Bio-Fabrication of Cu/Ag/Zn Nanoparticles and Their Antioxidant and Dye Degradation Activities
by Srijal Kunwar, Arpita Roy, Utsav Bhusal, Amel Gacem, Mahmood M. S. Abdullah, Promila Sharma, Krishna Kumar Yadav, Sarvesh Rustagi, Nidhi Chatterjee, Vishal Kumar Deshwal, Hyun-Kyung Park and Byong-Hun Jeon
Catalysts 2023, 13(5), 891; https://doi.org/10.3390/catal13050891 - 15 May 2023
Cited by 33 | Viewed by 4965
Abstract
The biological synthesis of nanoparticles with copper, silver, and zinc (Cu, Ag, Zn) is reported in this study, adopting a greener, safe, reliable, and eco-friendly approach by using an aqueous leaf extract of Catharanthus roseus. The synthesised trimetallic nanoparticles were characterised using [...] Read more.
The biological synthesis of nanoparticles with copper, silver, and zinc (Cu, Ag, Zn) is reported in this study, adopting a greener, safe, reliable, and eco-friendly approach by using an aqueous leaf extract of Catharanthus roseus. The synthesised trimetallic nanoparticles were characterised using different characterisation techniques. The UV–visible spectroscopic technique was initially used to assess nanoparticle formation, in which absorption bands were observed at 220, 270, and 370 nm for Cu, Zn, and Ag nanocomposites, respectively. XRD revealed that the average crystalline size of the nanocomposites was 34.67 nm. The roles of reducing and capping/stabilising agents in the synthesis of Cu/Ag/Zn nanoparticles were confirmed by FTIR analysis, and the successful biosynthesis of the same was also confirmed by X-ray energy-dispersive spectroscopy (EDX) analysis. Potential applications of these synthesised trimetallic nanoparticles were evaluated by assessing their antioxidant and catalytic dye degradation activities. The antioxidant activity of the synthesised nanomaterial was studied using the DPPH assay. The catalytic breakdown of the harmful dyes phenol red and eosin yellow was examined using NaBH4 as a reducing agent. The results showed that the nanomaterial’s radical scavenging capacity at 1000 ug/mL was 75.76% and the degradation of these dyes was up to 78% in the presence of NaBH4. Furthermore, the biogenic trimetallic nanomaterial exhibited effective catalytic degradation activity against methyl red and phenol red dyes. Full article
(This article belongs to the Special Issue Recent Advances on Nano-Catalysts for Biological Processes II)
Show Figures

Figure 1

14 pages, 5616 KB  
Article
Carboxymethyl Cellulose/Copper Oxide–Titanium Oxide Based Nanocatalyst Beads for the Reduction of Organic and Inorganic Pollutants
by Esraa M. Bakhsh, Sher Bahadar Khan, Nujud Maslamani, Ekram Y. Danish, Kalsoom Akhtar and Abdullah M. Asiri
Polymers 2023, 15(6), 1502; https://doi.org/10.3390/polym15061502 - 17 Mar 2023
Cited by 10 | Viewed by 2469
Abstract
In this work, we have developed novel beads based on carboxymethyl cellulose (CMC) encapsulated copper oxide-titanium oxide (CuO-TiO2) nanocomposite (CMC/CuO-TiO2) via Al+3 cross-linking agent. The developed CMC/CuO-TiO2 beads were applied as a promising catalyst for the catalytic [...] Read more.
In this work, we have developed novel beads based on carboxymethyl cellulose (CMC) encapsulated copper oxide-titanium oxide (CuO-TiO2) nanocomposite (CMC/CuO-TiO2) via Al+3 cross-linking agent. The developed CMC/CuO-TiO2 beads were applied as a promising catalyst for the catalytic reduction of organic and inorganic contaminants; nitrophenols (NP), methyl orange (MO), eosin yellow (EY) and potassium hexacyanoferrate (K3[Fe(CN)6]) in the presence of reducing agent (NaBH4). CMC/CuO-TiO2 nanocatalyst beads exhibited excellent catalytic activity in the reduction of all selected pollutants (4-NP, 2-NP, 2,6-DNP, MO, EY and K3[Fe(CN)6]). Further, the catalytic activity of beads was optimized toward 4-nitrophenol with varying its concentrations and testing different concentrations of NaBH4. Beads stability, reusability, and loss in catalytic activity were investigated using the recyclability method, in which the CMC/CuO-TiO2 nanocomposite beads were tested several times for the reduction of 4-NP. As a result, the designed CMC/CuO-TiO2 nanocomposite beads are strong, stable, and their catalytic activity has been proven. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 2751 KB  
Article
Prickly Pear Fruit Extract: Capping Agent for the Sol–Gel Synthesis of Discrete Titanium Dioxide Nanoparticles and Sensitizer for Dye-Sensitized Solar Cell
by Radhika Rajendhiran, Raji Atchudan, Jayabal Palanisamy, Athinarayanan Balasankar, Tae Hwan Oh, Venugopal Deivasigamani and Subramaniyan Ramasundaram
Coatings 2023, 13(3), 579; https://doi.org/10.3390/coatings13030579 - 7 Mar 2023
Cited by 11 | Viewed by 3057
Abstract
Plant extracts have been utilized as an ecofriendly natural reducing agent for the synthesis of nanomaterials, including metal oxides. Prickly pear (opuntia) fruit extract (PPE) was used as a reducing agent for the sol–gel synthesis of titanium dioxide nanoparticles (TiO2 NPs) and [...] Read more.
Plant extracts have been utilized as an ecofriendly natural reducing agent for the synthesis of nanomaterials, including metal oxides. Prickly pear (opuntia) fruit extract (PPE) was used as a reducing agent for the sol–gel synthesis of titanium dioxide nanoparticles (TiO2 NPs) and as a sensitizer for the TiO2 NPs photoanode used in dye-sensitized solar cells (DSSCs). Ultraviolet-visible and infrared spectra, X-ray diffraction patterns, and scanning electron microscopic images were confirmed in the formation of semiconducting TiO2 NPs with the predominate size of ~300 nm. The use of PPE rendered discrete TiO2 NPs, whereas the typical synthesis without PPE resulted TiO2 aggregates. TiO2 NPs had a tetragonal crystalline structure, and their grain size was varied with respect to the concentration of PPE. The size of TiO2 crystallites was found to be 20, 19, 15, and 10 nm when the volume percentage of PPE was 0.2, 0.4, 0.6, and 0.8%, respectively. TiO2 NPs obtained using PPE were coated on indium-doped tin oxide substrates and sensitized with natural dye made up of PPE and synthetic dyes, namely rose Bengal (RB) and eosin yellow (EY). The photoanode fabricated with dye-sensitized TiO2 NPs was subjected to current–voltage response studies. The maximum power-conversion efficiency, 1.4%, was recorded for photoanodes sensitized with PPE dye, which is considerably higher than that for RB (1.16%) or EY (0.8%). Overall, the above findings proved that PPE can be used as a potential reducing/capping agent and TiO2 sensitizer for DSSC applications. Full article
(This article belongs to the Special Issue Investigation on Sol–Gel Based Coatings Application)
Show Figures

Graphical abstract

13 pages, 2825 KB  
Article
Synthesis of Mixed-Phase TiO2–ZrO2 Nanocomposite for Photocatalytic Wastewater Treatment
by Pooja Kumari, Rajib Saha, Gaurav Saikia, Aditya Bhujel, Mahua Gupta Choudhury, Pravin Jagdale and Samrat Paul
Toxics 2023, 11(3), 234; https://doi.org/10.3390/toxics11030234 - 28 Feb 2023
Cited by 20 | Viewed by 3496
Abstract
The use of TiO2 nanoparticles for photocatalysis for the degradation of organic dyes under UV light for wastewater treatment has been widely studied. However, the photocatalytic characteristics of TiO2 nanoparticles are inadequate due to their UV light response and higher band [...] Read more.
The use of TiO2 nanoparticles for photocatalysis for the degradation of organic dyes under UV light for wastewater treatment has been widely studied. However, the photocatalytic characteristics of TiO2 nanoparticles are inadequate due to their UV light response and higher band gap. In this work, three nanoparticles were synthesized: (i) TiO2 nanoparticle was synthesized by a sol-gel process. (ii) ZrO2 was prepared using a solution combustion process and (iii) mixed-phase TiO2–ZrO2 nanoparticles were synthesized by a sol-gel process to remove Eosin Yellow (EY) from aqueous solutions in the wastewater. XRD, FTIR, UV-VIS, TEM, and XPS analysis methods were used to examine the properties of the synthesized products. The XRD investigation supported the tetragonal and monoclinic crystal structures of the TiO2 and ZrO2 nanoparticles. TEM studies identified that mixed-phase TiO2–ZrO2 nanoparticles have the same tetragonal structure as pure mixed-phase. The degradation of Eosin Yellow (EY) was examined using TiO2, ZrO2, and mixed-phase TiO2–ZrO2 nanoparticles under visible light. The results confirmed that the mixed-phase TiO2–ZrO2nanoparticles show a higher level of photocatalytic activity, and the process is accomplished at a high degradation rate in lesser time and at a lower power intensity. Full article
(This article belongs to the Special Issue Innovative Strategies to Decompose Pollutants)
Show Figures

Figure 1

8 pages, 1900 KB  
Article
Gold-Polypyrrole-Loaded Eosin in Photo-Mediated Treatment of Hidradenitis Suppurativa: In Vivo Trans-Epidermal Permeation Study and Clinical Case Report
by Abdullah I. El-Kholy, Maha Fadel, Maha Nasr, Ibrahim El-Sherbiny, Abeer Tawfik, Yasser O. Mosaad and Doaa Abdel Fadeel
Pharmaceutics 2022, 14(10), 2197; https://doi.org/10.3390/pharmaceutics14102197 - 15 Oct 2022
Cited by 2 | Viewed by 3247
Abstract
This study reports a new protocol for the management of Hidradenitis Suppurativa (HS), depending on the synergistic photodynamic and photothermal effect of eosin yellow-gold-polypyrrole hybrid nanoparticles (E-G-Ppy NPs). E-G-Ppy NPs and gold-polypyrrole NPs (G-Ppy NPs) were synthesized, characterized, and formulated in topical hydrogels. [...] Read more.
This study reports a new protocol for the management of Hidradenitis Suppurativa (HS), depending on the synergistic photodynamic and photothermal effect of eosin yellow-gold-polypyrrole hybrid nanoparticles (E-G-Ppy NPs). E-G-Ppy NPs and gold-polypyrrole NPs (G-Ppy NPs) were synthesized, characterized, and formulated in topical hydrogels. Then, in vivo trans-epidermal permeation study, under both dark and white light-irradiation conditions, was done on albino mice. The E-G-Ppy hydrogel was then applied on a twenty-four years old female with recurrent axillary HS lesions pretreated with fractional CO2 laser. Thereafter, the treated lesions were irradiated sequentially, using an IPL system, in the visible (~550 nm) and NIR band (630–1100 nm) to activate the synthesized nanoparticles. Results showed that, upon application to mice skin, E-G-Ppy exhibited good tolerance and safety under dark conditions and induced degenerative changes into dermal layers after white-light activation, reflecting deep penetration. Photo-activation of E-G-Ppy hydrogel to a severe Hidradenitis Suppurativa case showed an improvement of 80% of the lesions according to average HS-LASI scores after 4 sessions with no recurrence during a follow-up period of six months. In summary, the dual photodynamic/photothermal activation of E-G-Ppy NPs can represent a promising modality for management of HS. Further expanded clinical studies may be needed. Full article
Show Figures

Graphical abstract

17 pages, 6215 KB  
Article
Application of Advanced Analytical Techniques in Organic Cultural Heritage: A Case Study of Ancient Architecture Relics in the Palace Museum (Beijing)
by Le Wei, Yue Ma, Zhimou Guo, Junjie Ding, Gaowa Jin, An Gu and Yong Lei
Coatings 2022, 12(5), 636; https://doi.org/10.3390/coatings12050636 - 5 May 2022
Cited by 10 | Viewed by 3648
Abstract
Multilayer objects with different interfaces are quite typical for architectural heritage, and from them may be inferred the age, production process, and deterioration mechanism through analyzing characteristic compositions with advanced analytical techniques. The Meiwu ceiling in the Hall of Mental Cultivation of the [...] Read more.
Multilayer objects with different interfaces are quite typical for architectural heritage, and from them may be inferred the age, production process, and deterioration mechanism through analyzing characteristic compositions with advanced analytical techniques. The Meiwu ceiling in the Hall of Mental Cultivation of the Palace Museum was found to contain many paper-based layers during conservation. Once several surface strata were detached, a colorful layer of printed fabric textile was discovered integrally. Through microscopic observation and micro-attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) imaging, the overall structure consisted of 11 layers, namely, bast paper, cotton wiring, xuan paper, cotton printed fabric, two yellow board papers, bamboo paper, three wood pulp paper and surface coatings, and starch was considered as an organic adhesive. For identification of the printed fabric’s color palette, ultra-performance liquid chromatography (UPLC) combined with high-resolution quadrupole time-of-flight (QTOF) technology, non-invasive macro X-ray fluorescence (MA-XRF) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) were applied in situ. Seven industrial synthetic dyes, including auramine O, malachite green, and eosin Y with corresponding by-products, as well as chromium-based pigments considered as dark draft line, were confirmed. By X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and micro Fourier transform infrared spectroscopy (micro FTIR, other results showed chalk soil and talc for the outermost coating. According to the synthetic time of industrial dyes and degradation degree of paper, there were at least four occurrences and their specific time periods were speculated. Full article
Show Figures

Figure 1

Back to TopTop