Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = Electrorheological fluids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4527 KiB  
Article
High-Transparency Linear Actuator Using an Electromagnetic Brake for Damping Modulation in Physical Human–Robot Interaction
by Zahid Ullah, Thachapan Sermsrisuwan, Khemwutta Pornpipatsakul, Ronnapee Chaichaowarat and Witaya Wannasuphoprasit
J. Sens. Actuator Netw. 2024, 13(5), 65; https://doi.org/10.3390/jsan13050065 - 10 Oct 2024
Cited by 8 | Viewed by 1876
Abstract
Enhancing the transparency of high-transmission-ratio linear actuators is crucial for improving the safety and capability of high-force robotic systems having physical contact with humans in unstructured environments. However, realizing such enhancement is challenging. A proposed solution for active body weight support systems involves [...] Read more.
Enhancing the transparency of high-transmission-ratio linear actuators is crucial for improving the safety and capability of high-force robotic systems having physical contact with humans in unstructured environments. However, realizing such enhancement is challenging. A proposed solution for active body weight support systems involves employing a macro–mini linear actuator incorporating an electrorheological-fluid brake to connect a high-force unit with an agile, highly back-drivable unit. This paper introduces the use of an electromagnetic (EM) brake with reduced rotor inertia to address this challenge. The increased torque capacity of the EM brake enables integration with a low-gear-ratio linear transmission. The agile translation of the endpoint is propelled by a low-inertia motor (referred to as the “mini”) via a pulley-belt mechanism to achieve high transparency. The rotor of the EM brake is linked to the pulley. Damping modulation under high driving force is achieved through the adjustment of the brake torque relative to the rotational speed of the pulley. When the brake is engaged, it prevents any relative motion between the endpoint and the moving carrier. The endpoint is fully controlled by the ball screw of the high-force unit, referred to as the “macro”. A scaled prototype was constructed to experimentally characterize the damping force generated by the mini motor and the EM brake. The macro–mini linear actuator, equipped with an intrinsic failsafe feature, can be utilized for active body weight support systems that demand high antigravity force. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

10 pages, 268 KiB  
Article
Fixed Point of α-Modular Nonexpanive Mappings in Modular Vector Spaces 𝓁p(·)
by Buthinah A. Bin Dehaish and Mohamed A. Khamsi
Symmetry 2024, 16(7), 799; https://doi.org/10.3390/sym16070799 - 25 Jun 2024
Cited by 2 | Viewed by 1209
Abstract
Let C denote a convex subset within the vector space 𝓁p(·), and let T represent a mapping from C onto itself. Assume α=(α1,,αn) is a multi-index in [...] Read more.
Let C denote a convex subset within the vector space 𝓁p(·), and let T represent a mapping from C onto itself. Assume α=(α1,,αn) is a multi-index in [0,1]n such that i=1nαi=1, where α1>0 and αn>0. We define Tα:CC as Tα=i=1nαiTi, known as the mean average of the mapping T. While every fixed point of T remains fixed for Tα, the reverse is not always true. This paper examines necessary and sufficient conditions for the existence of fixed points for T, relating them to the existence of fixed points for Tα and the behavior of T-orbits of points in T’s domain. The primary approach involves a detailed analysis of recurrent sequences in R. Our focus then shifts to variable exponent modular vector spaces 𝓁p(·), where we explore the essential conditions that guarantee the existence of fixed points for these mappings. This investigation marks the first instance of such results in this framework. Full article
17 pages, 12076 KiB  
Article
Magnetic Characterization of MR Fluid by Means of Neural Networks
by Paweł Kowol, Grazia Lo Sciuto, Rafał Brociek and Giacomo Capizzi
Electronics 2024, 13(9), 1723; https://doi.org/10.3390/electronics13091723 - 29 Apr 2024
Cited by 2 | Viewed by 1580
Abstract
Magnetorheological and electrorheological fluids manifest a change in rheological behavior when subjected to a magnetic or electric field, respectively, such that they require electrical and magnetic characterization. In this paper, a simple and accurate mathematical model based on a small number of parameters [...] Read more.
Magnetorheological and electrorheological fluids manifest a change in rheological behavior when subjected to a magnetic or electric field, respectively, such that they require electrical and magnetic characterization. In this paper, a simple and accurate mathematical model based on a small number of parameters provides the relative magnetic permeability of magnetorheological fluids as a function of the applied magnetic field. Furthermore, for the testing and magnetic characterization of magnetorheological fluids, a new metering equipment setup is implemented. Starting with the achieved experimental data, the mathematical relation μr=f(B) is represented by means of a radial basis function neural network, with neurons having a Gaussian activation function; by means of post-training pruning procedures, the trained neural network is applied using the proposed data. Therefore, the obtained mathematical relation μr=f(B) is in good agreement with the experimental data, with an approximate error of 8%. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

23 pages, 7408 KiB  
Systematic Review
Sensors and Sensing Devices Utilizing Electrorheological Fluids and Magnetorheological Materials—A Review
by Yu-Jin Park and Seung-Bok Choi
Sensors 2024, 24(9), 2842; https://doi.org/10.3390/s24092842 - 29 Apr 2024
Cited by 7 | Viewed by 2702
Abstract
This paper comprehensively reviews sensors and sensing devices developed or/and proposed so far utilizing two smart materials: electrorheological fluids (ERFs) and magnetorheological materials (MRMs) whose rheological characteristics such as stiffness and damping can be controlled by external stimuli; an electrical voltage for ERFs [...] Read more.
This paper comprehensively reviews sensors and sensing devices developed or/and proposed so far utilizing two smart materials: electrorheological fluids (ERFs) and magnetorheological materials (MRMs) whose rheological characteristics such as stiffness and damping can be controlled by external stimuli; an electrical voltage for ERFs and a magnetic field for MRMs, respectively. In this review article, the MRMs are classified into magnetorheological fluids (MRF), magnetorheological elastomers (MRE) and magnetorheological plastomers (MRP). To easily understand the history of sensing research using these two smart materials, the order of this review article is organized in a chronological manner of ERF sensors, MRF sensors, MRE sensors and MRP sensors. Among many sensors fabricated from each smart material, one or two sensors or sensing devices are adopted to discuss the sensing configuration, working principle and specifications such as accuracy and sensitivity. Some sensors adopted in this article include force sensors, tactile devices, strain sensors, wearable bending sensors, magnetometers, display devices and flux measurement sensors. After briefly describing what has been reviewed in a conclusion, several challenging future works, which should be undertaken for the practical applications of sensors or/and sensing devices, are discussed in terms of response time and new technologies integrating with artificial intelligence neural networks in which several parameters affecting the sensor signals can be precisely and optimally tuned. It is sure that this review article is very helpful to potential readers who are interested in creative sensors using not only the proposed smart materials but also different types of smart materials such as shape memory alloys and active polymers. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

12 pages, 5588 KiB  
Article
Development of Novel Hydraulic 3D Printed Actuator Using Electrorheological Fluid for Robotic Endoscopy
by Fabian Sadi, Jan Holthausen, Jan Stallkamp and Marius Siegfarth
Actuators 2024, 13(4), 119; https://doi.org/10.3390/act13040119 - 23 Mar 2024
Cited by 7 | Viewed by 2171
Abstract
Endoscopy has made a significant and noteworthy contribution to the field of medical science and technology. Nevertheless, its potential remains constrained due to the limited availability of rigid or flexible endoscopes. This paper introduces a novel hydraulic actuator based on electrorheological fluid (ERF) [...] Read more.
Endoscopy has made a significant and noteworthy contribution to the field of medical science and technology. Nevertheless, its potential remains constrained due to the limited availability of rigid or flexible endoscopes. This paper introduces a novel hydraulic actuator based on electrorheological fluid (ERF) as a pivotal advancement in bridging the existing gap within the realm of endoscopy. Following a comprehensive introduction that briefly outlines the electrorheological effect, the subsequent section is dedicated to the elucidation of the actuator’s development process. Challenges arise, particularly in terms of miniaturization and the realization of a hydraulically sealed system with integrated valve electrodes. An internal electrorheological valve system consisting of four valves that are controlled using a pulse-width modulated high voltage was suitable for position control of the antagonistic hydraulic actuators. High-precision stereolithography (SLA) printing has proven practical for manufacturing actuator components. For functional testing, a test bench was set up in which the actuator follows a setpoint through a PI control loop. The control deviation ranged from 0.6 to 1 degree, with a response time between 6 and 8 s. The experiments have demonstrated that through the use of ERF and integrated valve electrodes, a miniaturized functional actuator can be constructed. Full article
(This article belongs to the Special Issue Soft Actuators for Medical Robotics)
Show Figures

Figure 1

13 pages, 7380 KiB  
Article
A Study on Enhanced Electrorheological Performance of Plate-like Materials via Percolation Gel-like Effect
by Suk Jekal, Minki Sa, Yeon-Ryong Chu, Chan-Gyo Kim, Jungchul Noh, Jiwon Kim, Ha-Yeong Kim, Won-Chun Oh, Zambaga Otgonbayar and Chang-Min Yoon
Gels 2023, 9(11), 891; https://doi.org/10.3390/gels9110891 - 10 Nov 2023
Cited by 4 | Viewed by 1888
Abstract
The use of plate-like materials to induce a percolation gel-like effect in electrorheological (ER) fluids is sparsely documented. Hence, we dispersed plate-like materials, namely natural mica, synthetic mica, and glass, as well as their pulverized particles, in various concentrations in silicone oil to [...] Read more.
The use of plate-like materials to induce a percolation gel-like effect in electrorheological (ER) fluids is sparsely documented. Hence, we dispersed plate-like materials, namely natural mica, synthetic mica, and glass, as well as their pulverized particles, in various concentrations in silicone oil to form ER fluids. Subsequently, the rheological properties of the fluids were evaluated and compared to identify the threshold concentration for percolating a gel-like state. The shear stress and viscoelastic moduli under zero-field conditions confirmed that plate-like materials can be used to induce percolation gel-like effects in ER fluids. This is because of the high aspect ratio of the materials, which enhances their physical stability. In practical ER investigations, ER fluids based on synthetic mica (30.0 wt%) showed the highest yield stress of 516.2 Pa under an electric field strength of 3.0 kV mm−1. This was attributed to the formation of large-cluster networks and additional polarization induced by the ions. This study provides a practical approach for developing a new type of gel-like ER fluid. Full article
(This article belongs to the Special Issue Physically Cross-Linked Gels and Their Applications)
Show Figures

Graphical abstract

15 pages, 333 KiB  
Article
A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(·)
by Amnay El Amri, Mohamed Amine Khamsi and Osvaldo D. Méndez
Symmetry 2023, 15(11), 1999; https://doi.org/10.3390/sym15111999 - 30 Oct 2023
Cited by 3 | Viewed by 1393
Abstract
We establish a fixed point property for the Lebesgue spaces with variable exponents Lp(·), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on [...] Read more.
We establish a fixed point property for the Lebesgue spaces with variable exponents Lp(·), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on ρ-non-expansive mappings defined on convex subsets of Lp(·), satisfying the “condition of uniform decrease” that we define subsequently. Full article
23 pages, 4780 KiB  
Article
Design and Optimization of a Spherical Magnetorheological Actuator
by Jakob Vizjak, Anton Hamler and Marko Jesenik
Mathematics 2023, 11(19), 4098; https://doi.org/10.3390/math11194098 - 27 Sep 2023
Cited by 1 | Viewed by 1454
Abstract
Recently, an increasing number of electromagnetic devices have been using smart fluids. These include ferrofluids, electrorheological fluids, and magnetorheological (MR) fluids. In the paper, magnetorheological fluids are considered for use in a spherical actuator for haptic applications. An approach is presented to the [...] Read more.
Recently, an increasing number of electromagnetic devices have been using smart fluids. These include ferrofluids, electrorheological fluids, and magnetorheological (MR) fluids. In the paper, magnetorheological fluids are considered for use in a spherical actuator for haptic applications. An approach is presented to the design and optimization of such a device, using finite element method modelling linked with differential evolution (DE). Much consideration was given to the construction of the objective function to be minimized. A novel approach to objective function assembly was used, using reference values based on the model design and created with parameters set to the midpoint values of the selected range. It was found to be a useful strategy when the reference values are unknown. There were four parameters to be optimized. Three of them gravitated towards the boundary value, and the fourth (actuator radius) was somewhere in between. The value of the objective function reached a minimum in the range of actuator radius between 42.9880 mm and 45.0831 mm, which is about a 5% difference in regard to the actuator radius. Three passes of optimization were performed with similar results, proving the robustness of the algorithm. Full article
(This article belongs to the Special Issue Advances in Numerical Model and Methods for Magnetic Fluids)
Show Figures

Figure 1

30 pages, 12369 KiB  
Review
Current Trends in Fluid Viscous Dampers with Semi-Active and Adaptive Behavior
by Luca Zoccolini, Eleonora Bruschi, Sara Cattaneo and Virginio Quaglini
Appl. Sci. 2023, 13(18), 10358; https://doi.org/10.3390/app131810358 - 15 Sep 2023
Cited by 25 | Viewed by 6046
Abstract
Fluid viscous dampers (FVDs) have shown their efficiency as energy-dissipating systems, reducing the effects induced on structures by dynamic loading conditions like earthquakes and winds. In this paper, the evolution of this technology is reviewed, with a focus on the current trends in [...] Read more.
Fluid viscous dampers (FVDs) have shown their efficiency as energy-dissipating systems, reducing the effects induced on structures by dynamic loading conditions like earthquakes and winds. In this paper, the evolution of this technology is reviewed, with a focus on the current trends in development from passive to semi-active and adaptive systems and an emphasis on their advances in adaptability and control efficacy. The paper examines the implementation of semi-active FVDs such as electrorheological, magnetorheological, variable stiffness, and variable damping dampers. These devices have a high potential to mitigate the vibrations caused by earthquakes of different intensities. In addition, adaptive FVDs are presented. As semi-active devices, the adaptive ones can adjust their behavior according to the dynamic excitations’ intensity; however, they are able to do that autonomously without the use of any external equipment. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 4009 KiB  
Article
A Feedback Control Sensing System of an Electrorheological Brake to Exert a Constant Pressing Force on an Object
by Tomasz Spotowski, Karol Osowski, Ireneusz Musiałek, Artur Olszak, Andrzej Kęsy, Zbigniew Kęsy and SeungBok Choi
Sensors 2023, 23(15), 6996; https://doi.org/10.3390/s23156996 - 7 Aug 2023
Cited by 5 | Viewed by 1908
Abstract
The paper presents the application of a strain gauge sensor and a viscous brake filled with an electrorheological (ER) fluid, which is a smart material with controlled rheological properties, by an electric field to the fluid domain. For experimental tests, a cylindrical viscous [...] Read more.
The paper presents the application of a strain gauge sensor and a viscous brake filled with an electrorheological (ER) fluid, which is a smart material with controlled rheological properties, by an electric field to the fluid domain. For experimental tests, a cylindrical viscous brake was designed. The tests were carried out on a test stand especially prepared for this purpose and suitable for the examination of the impact of the rotational speed of the input shaft and the value of the electric voltage supplied to the viscous brake on pressing forces, taking into account the ER fluid temperature and brake fluid filling level. On the basis of the experimental research results, a viscous brake control system to exert constant pressing forces with feedback from a strain gauge sensor, based on the programmable logic controller, was designed and implemented. This system, using its own control algorithm, ensured a control pressing force within the assumed range, both during the constant and follow-up control. The measurement results obtained during the tests of the viscous brake designed to exert a force were presented in the form of time courses, showing the changes of the pressing force, the electric voltage applied to the brake and the rotational speed of the brake input shaft. The developed ER fluid brake control system with feedback was tested for constant and follow-up control, taking into account the impact of the working fluid temperature. During the test it was possible to obtain a maximum pressing force equal to 50 N for an electric voltage limited to 2.5 kV. The resultant error was lower than 1 N, wherein the adjustment time after changing the desired value of the force was around 1.5 s. The correct operation of both the brake and the control system, as well as the compatibility of the pressing force value and time adjustment, were determined. The main technical contribution described in this article is the design of a new type of DECPF and a new method for its control with the use of a specifically programmed programmable logic controller which simulates the proportional-integral controllers’ operation. Full article
Show Figures

Figure 1

36 pages, 6716 KiB  
Article
Fluctuating Flexoelectric Membranes in Asymmetric Viscoelastic Media: Power Spectrum through Mechanical Network and Transfer Function Models
by Edtson Emilio Herrera-Valencia and Alejandro D. Rey
Symmetry 2023, 15(5), 1004; https://doi.org/10.3390/sym15051004 - 29 Apr 2023
Cited by 3 | Viewed by 1458
Abstract
Flexoelectric liquid crystalline membranes immersed in asymmetric viscoelastic media is a material system model with physiological applications such as outer hair cells (OHCs), where membrane oscillations generate bulk flow. Motivated by this physiological process, here we extend our previous work by characterizing the [...] Read more.
Flexoelectric liquid crystalline membranes immersed in asymmetric viscoelastic media is a material system model with physiological applications such as outer hair cells (OHCs), where membrane oscillations generate bulk flow. Motivated by this physiological process, here we extend our previous work by characterizing the force transmission output of our model in addition to viscoelastic fluid flow, since solid–fluid interactions are an essential feature of confined physiological flow and flow in immersed elastic structures. In this work, the rigidity of the confinement results in a passive force reception, while more complete solid–fluid interactions will be considered in the future. A significant contribution of this work is a new asymmetry linear viscoelastic electro-rheological model and the obtained implicit relation between force transmission and flow generation and how this relation is modulated by electric field frequency and the material properties of the device. Maximal force and flow are found at resonant frequencies of asymmetry viscoelastic bulk phases, flexoelectric and dispersion mechanisms through the elastic and Womersley numbers. Full article
(This article belongs to the Special Issue Structural, Optical and Hydrodynamic Properties of Liquid Crystals)
Show Figures

Graphical abstract

13 pages, 3318 KiB  
Article
Multiphysics Modeling and Simulation of a Light-Controlled Variable Damping System
by Zhicheng Liu, Zhen Lv, Yujuan Tang, Xinjie Wang, Xiang Liu and Yusong Chen
Materials 2023, 16(8), 3194; https://doi.org/10.3390/ma16083194 - 18 Apr 2023
Cited by 1 | Viewed by 1467
Abstract
In this paper, a light-controlled variable damping system (LCVDS) is proposed based on PLZT ceramics and electrorheological fluid (ERF). The mathematical models for the photovoltage of PLZT ceramics and the hydrodynamic model for the ERF are established, and the relationship between the pressure [...] Read more.
In this paper, a light-controlled variable damping system (LCVDS) is proposed based on PLZT ceramics and electrorheological fluid (ERF). The mathematical models for the photovoltage of PLZT ceramics and the hydrodynamic model for the ERF are established, and the relationship between the pressure difference at both ends of the microchannel and the light intensity is deduced. Then, simulations are conducted by applying different light intensities in the LCVDS to analyze the pressure difference at both ends of the microchannel using COMSOL Multiphysics. The simulation results show that the pressure difference at both ends of the microchannel increases with the increase in light intensity, which is consistent with results from the mathematical model established in this paper. The error rate of the pressure difference at both ends of the microchannel is within 13.8% between the theoretical and simulation results. This investigation lays the foundation for the application of light-controlled variable damping in future engineering. Full article
(This article belongs to the Special Issue Advances in Smart Materials and Applications)
Show Figures

Figure 1

21 pages, 7461 KiB  
Article
Design Optimization of a Hydrodynamic Brake with an Electrorheological Fluid
by Zbigniew Kęsy, Ireneusz Musiałek and Seung-Bok Choi
Appl. Sci. 2023, 13(2), 1089; https://doi.org/10.3390/app13021089 - 13 Jan 2023
Cited by 6 | Viewed by 2670
Abstract
This article describes the design optimization of a hydrodynamic brake with an electrorheological fluid. The design optimization is performed on the basis of mathematical model of the brake geometry and the brake’s electrical circuit. The parameters of the mathematical models are selected based [...] Read more.
This article describes the design optimization of a hydrodynamic brake with an electrorheological fluid. The design optimization is performed on the basis of mathematical model of the brake geometry and the brake’s electrical circuit. The parameters of the mathematical models are selected based on experimental tests of the prototype brake. Six different objective functions are minimized during the design optimization. The functions are created taking into consideration the following factors: the braking torque, brake weight, electric power absorbed by the brake, and the torque rise time. The assumed design variables are: the number of blades and the radii (inner and outer) of the brake’s working space. The optimization calculations are performed for two design variables intervals. The first interval is defined taking into consideration the accuracy of the mathematical model. The second, narrower interval is assumed for the tested prototypical brake. On the basis of the optimization calculation results, general guidelines are presented for the optimization of the hydrodynamic brakes with an ER fluid. In addition, the possibilities of optimizing the prototype brake are determined. Full article
(This article belongs to the Special Issue Magneto-Rheological Fluids)
Show Figures

Figure 1

6 pages, 265 KiB  
Article
Remark on a Fixed-Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(·)
by Mohamed A. Khamsi and Osvaldo D. Méndez
Mathematics 2023, 11(1), 157; https://doi.org/10.3390/math11010157 - 28 Dec 2022
Viewed by 1323
Abstract
In a personal communication, Prof. Domínguez Benavides noted that a fixed-point theorem for modular nonexpansive mappings in Lp(·)(Ω) obtained under the assumptions p+< and the property (R) satisfied by ρ will [...] Read more.
In a personal communication, Prof. Domínguez Benavides noted that a fixed-point theorem for modular nonexpansive mappings in Lp(·)(Ω) obtained under the assumptions p+< and the property (R) satisfied by ρ will force p>1. Therefore, the conclusion is well known. In this note, we establish said conclusion without the assumption p+<. Full article
(This article belongs to the Special Issue New Trends in Nonlinear Analysis)
16 pages, 4742 KiB  
Article
Hollow TiO2 Nanoparticles Capped with Polarizability-Tunable Conducting Polymers for Improved Electrorheological Activity
by Seungae Lee, Jungchul Noh, Suk Jekal, Jiwon Kim, Won-Chun Oh, Hyung-Sub Sim, Hyoung-Jin Choi, Hyeonseok Yi and Chang-Min Yoon
Nanomaterials 2022, 12(19), 3521; https://doi.org/10.3390/nano12193521 - 8 Oct 2022
Cited by 17 | Viewed by 2953
Abstract
Hollow TiO2 nanoparticles (HNPs) capped with conducting polymers, such as polythiophene (PT), polypyrrole (PPy), and polyaniline (PANI), have been studied to be used as polarizability-tunable electrorheological (ER) fluids. The hollow shape of TiO2 nanoparticles, achieved by the removal of the SiO [...] Read more.
Hollow TiO2 nanoparticles (HNPs) capped with conducting polymers, such as polythiophene (PT), polypyrrole (PPy), and polyaniline (PANI), have been studied to be used as polarizability-tunable electrorheological (ER) fluids. The hollow shape of TiO2 nanoparticles, achieved by the removal of the SiO2 template, offers colloidal dispersion stability in silicone oil owing to the high number density. Conducting polymer shells, introduced on the nanoparticle surface using vapor deposition polymerization method, improve the yield stress of the corresponding ER fluids in the order of PANI < PPy < PT. PT-HNPs exhibited the highest yield stress of ca. 94.2 Pa, which is 5.0-, 1.5-, and 9.6-times higher than that of PANI-, PPy-, and bare HNPs, respectively. The improved ER response upon tuning with polymer shells is attributed to the space charge contribution arising from the movement of the charge carriers trapped by the heterogeneous interface. The ER response of studied ER fluids is consistent with the corresponding polarizability results as indicated by the permittivity and electrophoretic mobility measurements. In conclusion, the synergistic effect of hollow nanostructures and conducting polymer capping effectively enhanced the ER performance. Full article
Show Figures

Figure 1

Back to TopTop