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Abstract: In a personal communication, Prof. Domínguez Benavides noted that a fixed-point theorem
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1. Introduction

In 1965, W. Kirk [1] established his celebrated fixed-point theorem for nonexpansive
mappings. Specifically, he proved that any nonexpansive map:

T : C → C

on a non-empty, closed, convex subset of a reflexive Banach space, which has the normal
structure (see below), has a fixed point.

It is worthwhile to mention that in Kirk’s proof, the reflexivity of a Banach space X is
used in the following equivalent form (established by Smulian): Every decreasing sequence
of non-empty, bounded, closed, and convex subsets of X has a non-empty intersection.

In [2], a modular version of Kirk’s theorem was utilized in order to show a fixed-point
property of variable-exponent Lebesgue spaces. Specifically, Theorem 5 in [2] reads as
follows (we refer the reader to the body of the paper for the relevant terminology):

Theorem 1. Let Ω ⊆ Rn be a bounded domain, and let p ∈ P(Ω); assume that |Ω1| = 0,
p+ < ∞ and that ρ has property (R). Let C be a non-empty, ρ-bounded, ρ-closed, and convex
subset Lp(·)(Ω). If a map T : C → C is ρ nonexpansive, then it has a fixed point.

It was rightly observed by Prof. Domínguez Benavídes that the assumption p+ < ∞
is equivalent to the ∆2 condition, which in turn, implies that the norm topology and the
modular topology on Lp(·)(Ω) coincide, from which it follows that the intersection property
(R), alluded to in the statement of Theorem 1 is just the intersection property (R) for the
norm. However, the latter implies the reflexivity of Lp(·)(Ω), which is equivalent to 1 <
p− ≤ p+ < ∞. Under these conditions, the conclusion of Theorem 1 is already known [3].

In this note, we prove the conclusion of Theorem 1, without the condition p+ < ∞, to
reveal the original modular nature of the result.
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2. The Modular Geometry of the Variable-Exponent Lebesgue Spaces

In the interest of clarity, the definition of the variable-exponent Lebesgue spaces
is recalled [4].

Definition 1. Let Ω ⊂ Rn be a domain. As usual,M(Ω) will stand for the vector space of all
real-valued Borel-measurable functions defined on Ω, and the Lebesgue measure of a subset A ⊂ Rn

will be denoted by |A|. Let P(Ω) be the subset ofM consisting of functions p : Ω −→ [1, ∞]. For
each such p, define the sets:

Ω1 := {t ∈ Ω : p(t) = 1} and Ω∞ := {x ∈ Ω : p(x) = ∞}.

The function ρ :M(Ω) −→ [0, ∞], defined by

ρ(u) =
∫

Ω\Ω∞

|u(x)|p(x)dµ + sup
x∈Ω∞

|u(x)|,

is a convex and continuous modular onM(Ω) in the sense of Nakano [2]. The associated modular
vector space is denoted by Lp(·)(Ω).

The first systematic treatment of the variable-exponent Lebesgue class is the work [4];
we refer the reader to [5] for a more recent survey on this topic. These spaces are by
no means artificial constructions: their study has intensified due to their fairly recent
applications to the hydrodynamics of electrorheological fluids and refined mathematical
models used for image restoration, to name only two; see [5] and the references therein.

It has been recently observed that, under very mild conditions on the variable exponent
p(·), the modular ρp is uniformly convex in every direction. More precisely, the following
theorem holds:

Theorem 2 ([2,6]). Let Ω ⊆ Rn be a bounded domain and let p ∈ P(Ω). Then the following
properties are equivalent:

(a) |Ω1| = |Ω∞| = 0,
(b) The modular ρ is uniformly convex in every direction in the following sense: for any z1 and

z2 in Lp(·)(Ω) such that z1 6= z2 and R > 0, there exists ∆(R, z1, z2) > 0 such that for any
u ∈ Lp(·)(Ω), we have

ρ

(
u− z1 + z2

2

)
≤ R (1− ∆(z1, z2, R)),

provided ρ(u− z1) ≤ R and ρ(u− z2) ≤ R.

As in the case of Banach spaces, the modular uniform convexity as stated in Theorem 2
implies the modular normal structure property [7]:

Proposition 1. Let Ω ⊆ Rn be a bounded domain, and let p ∈ P(Ω). Assume |Ω1| = |Ω∞| = 0.
Then, for any non-empty ρ-bounded, ρ-closed, and convex subset C of Lp(·)(Ω) not reduced to one
point, there exists f ∈ C such that

sup
g∈C

ρ( f − g) < δρ(C) = sup{ρ(a− b) , a ∈ C , b ∈ C}.

This is known as the ρ-normal structure property.

For p ∈ P(Ω), set

p− := ess inf
t∈Ω

p(t) and p+ := ess sup
t∈Ω

p(t).
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Clearly, in our setting, 1 ≤ p− ≤ p+ ≤ ∞. In particular, if p− > 1, a rather stronger
form of modular uniform convexity holds for Lp(·)(Ω).

Theorem 3 ([8]). Let Ω ⊆ Rn be open and p ∈ P(Ω). If |Ω∞| = 0 and p− > 1, then ρ satisfies
the following modular uniform convexity property. Set

D(r, ε) =

{
(u, v) ∈ Lp(·)(Ω)× Lp(·)(Ω) : ρ(u) ≤ r , ρ(v) ≤ r , ρ

(
u− v

2

)
≥ εr

}
and

δ(r, ε) = inf
{

1− 1
r

ρ

(
u + v

2

)
: (u, v) ∈ D(r, ε)

}
.

(If D(r, ε) = ∅, we define δ(r, ε) = 1.) Then, for each s ≥ 0, ε > 0, there exists η(s, ε) > 0 such
that, for arbitrary r > s > 0,

δ(r, ε) ≥ η(s, ε).

For further reference, the following standard definition is recalled:

Definition 2. A family (Ci)i∈I of sets is said to have the finite intersection property if, for every

finite subset {i1, ...ik} ⊂ I, it holds that
k⋂

j=1
Cij 6= ∅.

In this regard, the following theorem was proven in [8]:

Theorem 4. Assume that p− > 1. Then, ρ satisfies the strong-(R) property, i.e., for any C ⊂
Lp(·)(Ω) ρ-closed, ρ-bounded, and convex non-empty subset, then if (Ci)i∈I ⊂ 2C is a family
of ρ-closed convex subsets of C having the finite intersection property, it necessarily holds that⋂
i∈I

Ci 6= ∅.

We will say that ρ satisfies the property (R) if the conclusion of Theorem 4 holds for
countable families, i.e., for any (Cn)n∈N decreasing sequence of ρ-closed, ρ-bounded, and
convex non-empty subsets, it necessarily holds that

⋂
n∈N

Cn 6= ∅.

3. Fixed-Point Theorems for Lp(·)(Ω)

In this section, the main fixed-point result of this work will be addressed. The following
definition is a prerequisite:

Definition 3. Let Ω ⊆ Rn be a bounded domain, and let p ∈ P(Ω). Let ∅ 6= C ⊂ Lp(·)(Ω) and
T : C → C be a mapping. T is said to be ρ-nonexpansive if

ρ(T(x)− T(y)) ≤ ρ(x− y), for any x, y ∈ C.

A point x ∈ C that satisfies T(x) = x is said to be a fixed point of T.

The field of the fixed-point theory of maps acting on modular function spaces is
vast and deep; the interested reader is referred to [7] for a comprehensive treatment of
the subject.

The next result is the modular version of Kirk’s celebrated fixed-point theorem [1].
The proof is constructive and was first used in the Banach-space setting by Kirk [9] and
relaxes the compactness assumption in the above theorem. The main ingredient in Kirk’s
constructive proof is a technical lemma due to Gillespie and Williams [10].
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Theorem 5. Let Ω ⊆ Rn be a bounded domain, and let p ∈ P(Ω); assume that |Ω1| = 0,
|Ω∞| = 0 and that ρ has property (R). Let ∅ 6= C ⊂ Lp(·)(Ω) be ρ-bounded, ρ-closed, and convex.
If a map T : C → C is ρ nonexpansive, then it has a fixed point.

Proof. Let F be the family of non-empty ρ-closed and convex subsets of C, which are
T-invariant. The family F is not empty since C ∈ F . Define δ̃ : F → [0,+∞) by

δ̃(D) = inf {δρ(B) : B ∈ F and B ⊂ D}.

Set D1 = C. By the definition of δ̃(D1), there exists D2 ∈ F such that D2 ⊂ D1
and δρ(D2) < δ̃(D1) + 1. Assume D1, D2, · · · , Dn, for n ≥ 1, are constructed. Again
by the definition of δ̃(Dn), there exists Dn+1 ∈ F such that δρ(Dn+1) < δ̃(Dn) +

1
n and

Dn+1 ⊂ Dn. The property (R) implies D∞ =
⋂

n≥1
Dn is not empty. Clearly, it holds that

D∞ ∈ F . Assume that D∞ contains more than one point. Using Proposition 1, one derives
the existence of f0 ∈ D∞ such that

r = sup
g∈D∞

ρ( f0 − g) < δρ(D∞) = sup{ρ(a− b) , a ∈ D∞ , b ∈ D∞}.

Hence, the set
D =

⋂
g∈D∞

Bρ(g, r) ∩ D∞

is a non-empty, ρ-closed and convex subset of D∞. Note that there is no reason for D to
be T-invariant, i.e., T(D) ⊂ D. Consider the family F ∗ = {M ∈ F : D ⊂ M}. Obviously,
F ∗ is not an empty since C ∈ F ∗. Set L =

⋂
M∈F ∗

M. The set L is a non-empty, ρ-closed,

and convex subset of C, which is T-invariant. Consider B = D ∪ T(L), and observe that
convρ(B) = L (where convρ(B) is the intersection of all ρ-closed, convex subsets, which
contain B). Indeed, since L contains D and is T-invariant, it is readily concluded that B ⊂ L.
Since L is ρ-closed and convex, it follows that convρ(B) ⊂ L, whence

T(convρ(B)) ⊂ T(L) ⊂ B ⊂ convρ(B).

Hence convρ(B) ∈ F ∗ and L ⊂ convρ(B). This implies the desired equality L =
convρ(B). Define D∗ =

⋂
g∈L

Bρ(g, r) ∩ L. Observe that D∗ is non-empty since it contains

D (by the definition of D and D∞ ∈ F ∗) and is a ρ-closed, convex subset of C. On the
other hand, it is clear that δρ(D∗) ≤ r. Note that D∗ is T-invariant. Indeed, let f ∈ D∗.
It is clear by the definition of D∗ that L ⊂ Bρ( f , r). Since T is ρ-nonexpansive, one has
T(L) ⊂ Bρ(T( f ), r). For any g ∈ D, it holds L ⊂ Bρ(g, r). However, T( f ) ∈ L, so
T( f ) ∈ Bρ(g, r), which implies g ∈ Bρ(T( f ), r). Hence, D ⊂ Bρ(T( f ), r) holds. Since
B = D ∪ T(L), it follows that B ⊂ Bρ(T( f ), r). Therefore, one must have

convρ(B) = L ⊂ Bρ(T( f ), r).

By the definition of D∗, it follows that T( f ) ∈ D∗. In other words, D∗ is T-invariant.
Since L ⊂ D∞ one has D∗ ⊂ D∞. Therefore, the above construction yields D∗ ∈ F and
D∗ ⊂ D∞ such that δρ(D∗) ≤ r. Since D∗ ⊂ Dn, it is clear that

δρ(D∗) ≤ δρ(D∞) ≤ δρ(Dn+1) ≤ δ̃(Dn) +
1
n
≤ δρ(D∗) +

1
n

,

for any n ≥ 1. Letting now n→ ∞, it is readily seen that δρ(D∗) = δρ(D∞), which implies
δρ(D∞) ≤ r. This is in contradiction with the inequality r < δρ(D∞). Hence, D∞ must
consist of exactly one point, which is a fixed point of T since D∞ is T-invariant.
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Note that the conclusion of Theorem 5 requires only the validity of the intersection
property (R) for ρ on C and not on the entire space Lp(·)(Ω).

Remark 1. The proof of Theorem 5 can be significantly simplified in case ρ satisfies the so-called
strong-(R) property alluded to in Theorem 4.

Indeed, consider the family of non-empty, ρ-closed, and convex subsets of C, which are T-
invariant F , introduced in the previous proof. It is clear that F 6= ∅, since C ∈ F . The strong-(R)
property combined with Zorn’s lemma immediately yields the existence of a minimal element in F .
Let K be one such minimal element. It will be shown that K consists of exactly one point. First,

notice that, since T(K) ⊂ K, it necessarily holds that T
(

convρ(T(K))
)
⊂ T(K) ⊂ convρ(T(K)).

The minimality of K forces convρ(T(K)) = K. Fix f0 ∈ K; set r = sup
g∈K

ρ( f0 − g); define

Kr =
{

f ∈ K; rρ( f ) = sup
g∈K

ρ( f − g) ≤ r
}

.

Note that Kr is a non-empty, ρ-closed, and convex subset of K ( f0 ∈ Kr). Kr is T-invariant. To
see this, let f ∈ Kr, and observe that K ⊂ Bρ( f , r). Since T is ρ-nonexpansive, one must have
T(K) ⊂ Bρ(T( f ), r), which implies

K = convρ(T(K)) ⊂ Bρ(T( f ), r).

Hence, T( f ) ∈ Kr. Since Kr is a T-invariant subset of K, it follows that K = Kr. This clearly
implies r = sup

g∈K
ρ( f0 − g) = δρ(K), which only holds for subsets that consist of exactly one point,

on account of the ρ-normal structure property. In other words, T has a fixed point, as claimed.

Corollary 1. Let Ω ⊆ Rn be a bounded domain, and let p ∈ P(Ω). Assume that |Ω1| = 0,
|Ω∞| = 0 and p− > 1. Let C ⊂ Lp(·)(Ω) be a non-empty ρ-bounded, ρ-closed, and convex subset.
If a map T : C → C is ρ-nonexpansive, then it has a fixed point.

Proof. If p− > 1, Theorem 4 asserts that ρ satisfies the strong-(R) property. The proof
follows directly from the above remark.
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4. Kováčik, O.; Rxaxkosník, J. On spaces lp(x), wk,p(x). Czechoslov. Math. J. 1991, 41, 592–618. [CrossRef]
5. Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics;

Springer: Heidelberg, Germany, 2011; Volume 2017.
6. Bachar, M.; Méndez, O. Modular uniform convexity in every direction in lp(·) and applications. Mathematics 2020, 8, 870. [CrossRef]
7. Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhauser: New York, NY, USA, 2015.
8. Bachar, M.; Méndez, O.; Bounkhel, M. Modular uniform convexity of lebesgue spaces of variable integrability. Symmetry 2018,

10, 708. [CrossRef]
9. Kirk, W.A. Nonexpansive mappings in metric and banach spaces. Rend. Semin. Mat. Milano 1981, 51, 133–144. [CrossRef]
10. Gillespie, A.; Williams, B. Fixed point theorem for nonexpansive mappings on banach spaces. Appl. Anal. 1979, 9, 121–124.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2307/2313345
http://dx.doi.org/10.3390/math10142509
http://dx.doi.org/10.1007/s13163-010-0032-9
http://dx.doi.org/10.21136/CMJ.1991.102493
http://dx.doi.org/10.3390/math8060870
http://dx.doi.org/10.3390/sym10120708
http://dx.doi.org/10.1007/BF02924816
http://dx.doi.org/10.1080/00036817908839259

	Introduction
	The Modular Geometry of the Variable-Exponent Lebesgue Spaces
	Fixed-Point Theorems for Lp()()
	References

