Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Eh-pH diagram

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2411 KiB  
Article
Thermodynamic Study Proposal of Processing By-Product Containing Au, Ag, Cu and Fe Sulfides from Antimony Ore Treatment
by Dušan Oráč, Martina Laubertová, František Molnár, Jakub Klimko, Vladimír Marcinov and Jana Pirošková
Processes 2025, 13(3), 842; https://doi.org/10.3390/pr13030842 - 13 Mar 2025
Viewed by 628
Abstract
A possible thermodynamic study of processing Cu (Ag, Au) and Fe sulfide concentrate as a by-product after the processing of tetrahedrite concentrate, applying pyrometallurgical and hydrometallurgical methods, was studied. The sample of sulfide concentrate, 34.7 wt. % Cu, 21.4% Fe, 12 g/t Au, [...] Read more.
A possible thermodynamic study of processing Cu (Ag, Au) and Fe sulfide concentrate as a by-product after the processing of tetrahedrite concentrate, applying pyrometallurgical and hydrometallurgical methods, was studied. The sample of sulfide concentrate, 34.7 wt. % Cu, 21.4% Fe, 12 g/t Au, and 7.317 g/t Ag was contained. Analytical technique AAS was used to analyze the sample before conducting a thermodynamic study of the leaching of sulfide concentrate by applying Pourbaix Eh–pH diagrams. The outcome of this thermodynamic research will provide essential data to support recent hydrometallurgical technologies. If its correctness can be verified experimentally, this result will be promoted to developing a new alternative copper-production technology. The minor components Sb, As, Hg, and Bi are also present in the concentrate in the form of sulfides Sb2S3, As2S3, Bi2S3, and HgS. This theoretical proposed hydrometallurgical technology shows that it is possible to obtain Fe in the form of Fe(OH)3, and after its thermal decomposition, it can be prepared as Fe2O3 as a marketable product. In any case, the most economically advantageous would be complete hydrometallurgical processing, i.e., also Cu(Ag,Au)Fe sulfide concentrate, with the possibility of valorizing Cu, Ag, and Au in metallic form. Full article
(This article belongs to the Special Issue Non-ferrous Metal Metallurgy and Its Cleaner Production)
Show Figures

Figure 1

19 pages, 4830 KiB  
Article
Thermodynamic Study of the Sustainable Hydrometallurgical Treatment of Copper Converter Flue Dust Based on Pb, Zn, and Sn Oxides
by Alexandra Kollová, Martina Laubertová, Jarmila Trpčevská and Martin Sisol
Materials 2024, 17(23), 5690; https://doi.org/10.3390/ma17235690 - 21 Nov 2024
Viewed by 956
Abstract
The presented article deals with the thermodynamic study of copper converter flue dust (CCFD) treatment by hydrometallurgical process. The investigated sample of CCFD contains 38.31 wt.% Zn, 11.35 wt.% Pb, and 2.92 wt.% Sn in the form of oxides (PbO, ZnO, and SnO [...] Read more.
The presented article deals with the thermodynamic study of copper converter flue dust (CCFD) treatment by hydrometallurgical process. The investigated sample of CCFD contains 38.31 wt.% Zn, 11.35 wt.% Pb, and 2.92 wt.% Sn in the form of oxides (PbO, ZnO, and SnO2). The leaching of CCFD in sulphuric acid, acetic acid, nitric acid, and sodium hydroxide was thermodynamically studied. Using Pourbaix diagrams for individual metal–S/C/N/Na/–H2O systems, the possibility of leaching oxides in selected leaching agents was confirmed. A sustainable and environmentally friendly method of processing the sample of CCFD using a hydrometallurgical method is proposed. A suitable selective leaching agent is the acetic acid solution. When leaching in an acetic acid solution, zinc and lead are chemically dissolved to form acetates Zn(CH3COO)2(aq) in the form of Zn2+(aq) at a temperature of 20 °C with a pH range of 0–3.5 and at a temperature of 80 °C with a pH range of 0–2.95, as well as Pb(CH3COO)2(aq) as Pb2+(aq) at a temperature of 20 °C with a pH range of 0–1.95 and at a temperature of 80 °C with a pH range of 0–2, respectively, while tin remains as a solid residue in the form of SnO2(s) at the temperatures of 20 °C and 80 °C throughout the whole acidic pH range. Various analytical techniques, such as SEM, EDX, XRD, and AAS, were used to analyse samples before a thermodynamic study of the leaching of CCFD was conducted by applying Pourbaix Eh–pH diagrams. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (3rd Edition))
Show Figures

Graphical abstract

17 pages, 2315 KiB  
Article
Optimization of Copper-Ammonia-Sulfate Electrolyte for Maximizing Cu(I):Cu(II) Ratio Using pH and Copper Solubility
by Zulqarnain Ahmad Ali and Joshua M. Werner
Waste 2024, 2(4), 397-413; https://doi.org/10.3390/waste2040022 - 8 Oct 2024
Viewed by 2819
Abstract
An investigation has been carried out to understand the solution chemistry of the Cu-NH-SO4−2 system, focusing on the effect of pH on the solubility of copper in the solution and maximizing the Cu(I):Cu(II) ratio. A Pourbaix diagram for the [...] Read more.
An investigation has been carried out to understand the solution chemistry of the Cu-NH-SO4−2 system, focusing on the effect of pH on the solubility of copper in the solution and maximizing the Cu(I):Cu(II) ratio. A Pourbaix diagram for the Cu-N-S system has also been created using the HSC Chemistry software for a wide range of Cu-NH3 species, unlike most other studies that focused only on Cu(NH3)42+ and Cu(NH3)52+ (Cu(II)) as the dominant species. The Pourbaix diagram demonstrated that the Cu(I) exists as Cu(NH3)2+, while the Cu(II) species are present in the system as Cu(NH3)42+ and Cu(NH3)52+, depending upon the Eh and pH of the solution. Copper precipitation was observed in the electrolyte at pH values less than 8.0, and the precipitation behavior increased as the pH became acidic. The highest Cu(I):Cu(II) ratio was observed at higher pH values of 10.05 due to the higher solubility of copper at higher alkaline pH. The maximum Cu(II) concentration can be achieved at 4.0 M NH4OH and 0.76 M (NH4)2SO4. In the case of low pH, the highest Cu(I):Cu(II) ratio obtained was 0.91 against the 4.0 M and 0.25 M concentrations of NH4OH and (NH4)2SO4, respectively. Meanwhile, at high pH, the maximum Cu(I):Cu(II) ratio was 15.11 against the 0.25 M (NH4)2SO4 and 4.0 M NH4OH. Furthermore, the low pH experiments showed the equilibrium constant (K) K < 1, and the high pH experiments demonstrated K > 1, which justified the lower and higher copper concentrations in the solution, respectively. Full article
Show Figures

Figure 1

17 pages, 7229 KiB  
Article
Study of Hydrometallurgical Treatment of Metal-Bearing Material from Environmental Burdens Containing Iron, Chromium, Nickel, and Cobalt
by Martina Laubertová, Oksana Velgosova, Martin Sisol and Tomáš Vindt
Minerals 2024, 14(10), 968; https://doi.org/10.3390/min14100968 - 25 Sep 2024
Viewed by 1577
Abstract
In Slovakia, around 200 environmental burdens that contain a significant amount of usable raw materials were created by the extraction of ores or the dumping of industrial waste. In this research, the hydrometallurgical metal recovery method from a metal-bearing environmental landfill in Sereď [...] Read more.
In Slovakia, around 200 environmental burdens that contain a significant amount of usable raw materials were created by the extraction of ores or the dumping of industrial waste. In this research, the hydrometallurgical metal recovery method from a metal-bearing environmental landfill in Sereď was investigated. The analysis of a representative sample of waste obtained from this landfill proved the presence of significant amounts of metals (43.45% Fe; 1.3% Cr; 0.09% Co, and 0.23% Ni). A thermodynamic study of the metals’ (Fe, Cr, Ni, and Co) leaching probability confirmed the possibility of metal extraction in an acidic environment. Subsequently, the effect of the most important factors on the leaching process (stirring intensity, temperature, liquid-to-solid phase ratio, and acid concentration) was experimentally tested. The analysis of the results determined the optimal leaching conditions. The extraction of 90.35% Fe and 59.62% Cr was ensured at a stirring intensity of 400 rpm, a leaching temperature of 80 °C, a liquid-to-solid phase ratio of 40, and a H2SO4 concentration of 3 mol/dm3. Various techniques, including SEM, EDX, XRD, Eh-pH diagrams, and AAS analysis, were used to analyze samples and products after leaching. The possibility of precipitating metals/compounds from the leachate to obtain a marketable product was theoretically proposed and proven. Full article
Show Figures

Figure 1

15 pages, 7941 KiB  
Article
An Environmentally Friendly Sulfuric Acid Decomposition Strategy for Mixed Rare Earth Concentrate
by Shaochun Hou, Bo Zhang, Wenjun Li, Tuo Zhao, Zongyang Da and Chenghong Liu
Minerals 2024, 14(2), 185; https://doi.org/10.3390/min14020185 - 9 Feb 2024
Cited by 5 | Viewed by 2258
Abstract
A novel environmentally friendly one-step decomposition strategy for mixed rare earth concentrate of Bayan Obo in sulfuric acid solution was proposed in this work. In this process, more than 84% of bastnasite and monazite were decomposed in the leaching step at a temperature [...] Read more.
A novel environmentally friendly one-step decomposition strategy for mixed rare earth concentrate of Bayan Obo in sulfuric acid solution was proposed in this work. In this process, more than 84% of bastnasite and monazite were decomposed in the leaching step at a temperature lower than the boiling point of sulfuric acid solution. So, the dilapidation of sulfuric acid in this current proposed process will be reduced to a large extent. The stability region of rare earth ion in the RE(La, Ce, Nd)-F-P-SO4-H2O system at 170 °C has been proven through Eh-pH diagrams. The factors influencing decomposition of rare earth concentrate in this process were also investigated and the optimal leaching conditions were determined to be a leaching temperature of 170 °C with an ore/acid ratio of 1:5 (g/mL), a sulfuric acid concentrate of 75% and a leaching time of 80 min. The mineralogical changes occurring during the H2SO4 leaching process were investigated by X-ray diffraction and SEM-EDS. The analysis results showed that bastnasite and most of monazite had been decomposed, leaving only a small amount of monazite in the leaching residue. Full article
(This article belongs to the Special Issue Green and Efficient Recovery/Extraction of Rare Earth Resources)
Show Figures

Graphical abstract

14 pages, 7673 KiB  
Article
Selective Leaching of Vanadium from Calcification-Roasted Pellets of Vanadium–Titanium–Iron Concentrate by a Cyclic Two-Stage Sulfuric Acid Process
by Zhonghui Peng, Zhixiang Wang, Yang Li, Yongze Zhu and Keqiang Xie
Minerals 2022, 12(12), 1613; https://doi.org/10.3390/min12121613 - 15 Dec 2022
Cited by 4 | Viewed by 2080
Abstract
Here, a process for leaching vanadium from calcified roasting pellets (CPVC) of vanadium–titanium-iron concentrate by a two-stage sulfuric acid cycle was proposed. The first stage of leaching was mainly for the removal of silicon from the pellet and leaching solution. After the second [...] Read more.
Here, a process for leaching vanadium from calcified roasting pellets (CPVC) of vanadium–titanium-iron concentrate by a two-stage sulfuric acid cycle was proposed. The first stage of leaching was mainly for the removal of silicon from the pellet and leaching solution. After the second stage, the total leaching rates of vanadium and iron were 75.52% and 0.71%, respectively. The concentration of vanadium in the leaching solution reached 6.80 g/L, which can subsequently direct a vanadium precipitation process without extraction and enrichment. After the second roasting, the crushing strength of the pellets reached 2250 N, which met the requirement for blast furnace iron making. The Eh-pH diagrams of the V-Fe-H2O system at different temperatures were plotted. Thermodynamically, it was difficult to selectively leach vanadium and iron by changing the conventional acid leaching conditions. In addition, the pellets before and after leaching were analyzed. The grade of iron in the pellets increased slightly after leaching, and the main phases in the pellets remained as Fe2O3 and Fe9TiO15. The S in the sulfuric acid solution entered the leached pellets during the acid leaching reaction and was removed by the second roasting of the leached pellets. Full article
Show Figures

Figure 1

11 pages, 1481 KiB  
Article
Development of a Model to Estimate the Thermodynamic Stability of Organic Substances in Leaching Processes
by Carlos Ocampo-López, Álvaro Ospina-Sanjuan, Margarita Ramírez-Carmona and Leidy Rendón-Castrillón
Metals 2022, 12(9), 1424; https://doi.org/10.3390/met12091424 - 28 Aug 2022
Cited by 1 | Viewed by 2688
Abstract
The leaching processes for metals using organic substances represent a sustainable approach to recover precious minerals from solid matrices. However, the generation of organometallic species and the lack of thermodynamic diagrams make it difficult to advance the understanding of their behavior and optimize [...] Read more.
The leaching processes for metals using organic substances represent a sustainable approach to recover precious minerals from solid matrices. However, the generation of organometallic species and the lack of thermodynamic diagrams make it difficult to advance the understanding of their behavior and optimize the process. In this work, a thermodynamically and stoichiometrically consistent mathematical model was developed to estimate the thermodynamic stability of organic substances during the leaching process, and iron leaching with oxalic acid was used as a case study. The Pourbaix and the global thermodynamic stability diagrams for the system were developed in this study. Using a Gaussian®, it was estimated that the Gibbs free energy formation for Fe(C2O4)22, Fe(C2O4)21, and Fe(C2O4)33 was −1407.51, −2308.38, and −3068.89 kcal/mol. A set of eleven independent reactions was formulated for the sixteen species involved in the leaching process, and its stability functions in terms of Eh and pH were calculated to generate a 3D global thermodynamic stability diagram. According to the Eh-pH diagrams for the leaching process, ferrioxalate was identified as the most stable and predominant species in the leaching process at pH above 6.6 under reductive conditions. The mathematical model developed in this work resulted in a thermodynamic tool for predicting leaching processes. Full article
(This article belongs to the Special Issue Developments on Sustainable Hydrometallurgical Methods)
Show Figures

Figure 1

14 pages, 2796 KiB  
Article
Recovery of Rare Metals from Superalloy Scraps by an Ultrasonic Leaching Method with a Two-Stage Separation Process
by Long Wang, Sujun Lu, Jiayuan Fan, Yutian Ma, Juan Zhang, Shiyang Wang, Xiaoyao Pei, Yuan Sun, Guozhi Lv and Tingan Zhang
Separations 2022, 9(7), 184; https://doi.org/10.3390/separations9070184 - 20 Jul 2022
Cited by 8 | Viewed by 2361
Abstract
Superalloy scraps are deemed as potential unconventional sources of rare metals. In this study, an ultrasonic leaching method with a two-stage separation process was proposed. A series of Eh-pH diagrams for rare metals was constructed, and the results indicated that the leaching and [...] Read more.
Superalloy scraps are deemed as potential unconventional sources of rare metals. In this study, an ultrasonic leaching method with a two-stage separation process was proposed. A series of Eh-pH diagrams for rare metals was constructed, and the results indicated that the leaching and separation process could be realized by adjusting the potential and pH values of leaching solutions. In the ultrasonic leaching process, results showed that the economic leaching percentages of Re, Ni, Co, Al, and Cr were 92.3%, 95.2%, 98.5%, 98.7%, and 97.5%, respectively. Compared with conventional leaching, ultrasonic leaching can improve the leaching percentages of rare metals by approximately 20%. In the two-stage separation process, the optimal recovery efficiencies of Al and Cr were 94.6% and 82.1% at a pH of 4.5, and Ni and Co were 99.5% and 98.3% at a pH of 7.5. With a two-stage precipitate process, rare metals can be efficiently recovered without generating any waste acid. Full article
(This article belongs to the Special Issue Efficient and Green Recovery of Metal Minerals)
Show Figures

Figure 1

59 pages, 14020 KiB  
Article
Trends and Composition—A Sedimentological-Chemical-Mineralogical Approach to Constrain the Origin of Quaternary Deposits and Landforms—From a Review to a Manual
by Harald G. Dill
Geosciences 2022, 12(1), 24; https://doi.org/10.3390/geosciences12010024 - 6 Jan 2022
Cited by 5 | Viewed by 7439
Abstract
In this study, six basic Quaternary landform series (LFS) and their sedimentary deposits (LFS1 aeolian, LFS 2.1 to 2.2 mass wasting, LFS 3 cryogenic-glacial, LFS 4.1 to 4.6 fluvial, LFS 5.1 to 5.2 coastal-marine, LFS 6.1 to 6.3 lacustrine) are subdivided into subtypes [...] Read more.
In this study, six basic Quaternary landform series (LFS) and their sedimentary deposits (LFS1 aeolian, LFS 2.1 to 2.2 mass wasting, LFS 3 cryogenic-glacial, LFS 4.1 to 4.6 fluvial, LFS 5.1 to 5.2 coastal-marine, LFS 6.1 to 6.3 lacustrine) are subdivided into subtypes and examined with regard to their sedimentological parameters and their mineralogical and chemical compositions. Emphasis is placed on the textural (related to transport and deposition), compositional (sediment load/weight, Eh and pH) and geodynamic maturity of the sedimentary deposits which are influenced by the parent lithology and bedrock tectonic and by the climate during the last 2 Ma. To constrain the development of the LFS and their sediments, composite trend-line diagrams are designed combining sedimentological (x-axis) and chemical/mineralogical dataset (y-axis): (1) sorting vs. heavy mineral content; (2) sphericity of grains vs. silica/carbonate contents; and (3) median vs. Ti/Fe ratios. In addition, the x-y plots showing the log SiO2/Al2O3 vs. log Na2O/K2O are amended by a dataset of the three most common clay minerals, i.e., kaolinite-, mica-, and smectite-group clay minerals. Such joint sedimentological-chemical-mineralogical investigations focused on the depositional environment of unconsolidated clastic sediments of Quaternary age can be used to describe the economic geology and environmental geology of mineral deposits in the pre-Quaternary sedimentary series according to the phrase: “The Present is the key to the Past”. Both trend diagrams and compositional x-y plots can contribute to constraining the development of the full transect of landform series from the fluvial incision and slope retreat to reef islands fringing the coastal zone towards the open sea as far as they are built up of clastic sedimentary deposits enriched in siliceous and/or carbonate minerals. Climate zonation and crustal maturity are the exogenous and endogenous “drivers”, as can be deduced from the compositional (mineralogy and chemistry) and physical (transport and deposition) variations observed in the Quaternary sediments. The current study bridges the gap between a review only based on literature and a hybrid manual generated by practical field studies devoted to applied geosciences in economic and environmental geology (“E & E issue”). Full article
(This article belongs to the Special Issue Quaternary Sedimentary Successions II)
Show Figures

Figure 1

27 pages, 4147 KiB  
Review
Metal Sulfide Precipitation: Recent Breakthroughs and Future Outlooks
by Humberto Estay, Lorena Barros and Elizabeth Troncoso
Minerals 2021, 11(12), 1385; https://doi.org/10.3390/min11121385 - 8 Dec 2021
Cited by 63 | Viewed by 14260
Abstract
The interest in metal sulfide precipitation has recently increased given its capacity to efficiently recover several metals and metalloids from different aqueous sources, including wastewaters and hydrometallurgical solutions. This article reviews recent studies about metal sulfide precipitation, considering that the most relevant review [...] Read more.
The interest in metal sulfide precipitation has recently increased given its capacity to efficiently recover several metals and metalloids from different aqueous sources, including wastewaters and hydrometallurgical solutions. This article reviews recent studies about metal sulfide precipitation, considering that the most relevant review article on the topic was published in 2010. Thus, our review emphasizes and focuses on the overall process and its main unit operations. This study follows the flow diagram definition, discussing the recent progress in the application of this process on different aqueous matrices to recover/remove diverse metals/metalloids from them, in addition to kinetic reaction and reactor types, different sulfide sources, precipitate behavior, improvements in solid–liquid separation, and future perspectives. The features included in this review are: operational conditions in terms of pH and Eh to perform a selective recovery of different metals contained in an aqueous source, the aggregation/colloidal behavior of precipitates, new materials for controlling sulfide release, and novel solid–liquid separation processes based on membrane filtration. It is therefore relevant that the direct production of nanoparticles (Nps) from this method could potentially become a future research approach with important implications on unit operations, which could possibly expand to several applications. Full article
(This article belongs to the Special Issue Critical and Precious Metals Recovery from Tailings)
Show Figures

Figure 1

13 pages, 3535 KiB  
Article
Recovery of Ag, Au, and Pt from Printed Circuit Boards by Pressure Leaching
by Guadalupe Martinez-Ballesteros, Jesus Leobardo Valenzuela-García, Agustin Gómez-Alvarez, Martin Antonio Encinas-Romero, Flerida Adriana Mejía-Zamudio, Aaron de Jesús Rosas-Durazo and Roberto Valenzuela-Frisby
Recycling 2021, 6(4), 67; https://doi.org/10.3390/recycling6040067 - 13 Oct 2021
Cited by 12 | Viewed by 4557
Abstract
Reclamation of printed circuit boards (PCBs) to recover metals is gaining growing attention due to minerals being non-renewable resources. Currently, metals extraction from PCBs through an efficient and green method is still under investigation. The present investigation concerns the recycling of printed circuit [...] Read more.
Reclamation of printed circuit boards (PCBs) to recover metals is gaining growing attention due to minerals being non-renewable resources. Currently, metals extraction from PCBs through an efficient and green method is still under investigation. The present investigation concerns the recycling of printed circuit boards using hydrometallurgical processes. First, the basic metals (Cu, Ni, Zn and Fe) were separated using a sulfuric acid solution at moderate temperatures. The remaining solids were characterized by SEM-EDS, whereby a high content of precious metals (Au, Ag and Pt) was observed. In the second stage, solids were leached with a solution of HCl and NaClO in a 1-L titanium reactor with varied oxygen pressure (0.2, 0.34 and 0.55 MPa), temperature (40, 50 and 80 °C) and concentration of HCl (2 and 4 M), obtaining extractions above 95% at [HCl] = 4 M, P = 0.34 MPa and T = 40 °C. The extraction increased depending on the concentration of HCl. Eh–pH diagrams for Ag–Cl–H2O, Au–Cl–H2O and Pt–Cl–H2O were constructed to know the possible species in the solution. Full article
Show Figures

Graphical abstract

15 pages, 5541 KiB  
Article
What Is the Real State of Single-Atom Catalysts under Electrochemical Conditions—From Adsorption to Surface Pourbaix Plots?
by Ana S. Dobrota, Tanja Đokić, Natalia V. Skorodumova, Slavko V. Mentus and Igor A. Pašti
Catalysts 2021, 11(10), 1207; https://doi.org/10.3390/catal11101207 - 8 Oct 2021
Cited by 6 | Viewed by 3378
Abstract
The interest in single-atom catalysts (SACs) is increasing, as these materials have the ultimate level of catalyst utilization, while novel reactions where SACs are used are constantly being discovered. However, to properly understand SACs and to further improve these materials, it is necessary [...] Read more.
The interest in single-atom catalysts (SACs) is increasing, as these materials have the ultimate level of catalyst utilization, while novel reactions where SACs are used are constantly being discovered. However, to properly understand SACs and to further improve these materials, it is necessary to consider the nature of active sites under operating conditions. This is particularly important when SACs are used as electrocatalysts due to harsh experimental conditions, including extreme pH values or high anodic and cathodic potential. In this contribution, density functional theory-based thermodynamic modelling is used to address the nature of metal centers in SACs formed by embedding single metal atoms (Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) into graphene monovacancy. Our results suggest that none of these SAC metal centers are clean at any potential or pH in the water thermodynamic stability region. Instead, metal centers are covered with Hads, OHads, or Oads, and in some cases, we observed the restructuring of the metal sites due to oxygen incorporation. Based on these findings, it is suggested that setting up theoretical models for SAC modelling and the interpretation of ex situ characterization results using ultra-high vacuum (UHV) techniques requires special care, as the nature of SAC active sites under operating conditions can significantly diverge from the basic models or the pictures set by the UHV measurements. Full article
Show Figures

Graphical abstract

19 pages, 3153 KiB  
Article
Total and Leached Arsenic, Mercury and Antimony in the Mining Waste Dumping Area of Abbadia San Salvatore (Mt. Amiata, Central Italy)
by Federica Meloni, Giordano Montegrossi, Marta Lazzaroni, Daniele Rappuoli, Barbara Nisi and Orlando Vaselli
Appl. Sci. 2021, 11(17), 7893; https://doi.org/10.3390/app11177893 - 26 Aug 2021
Cited by 12 | Viewed by 3008
Abstract
Total and leached Arsenic, Mercury and Antimony were determined in the topsoils developed on the mining waste dumping area of Le Lame (Mt. Amiata, central Italy) where the post-processing Hg-rich ore deposits from the mining area of Abbadia San Salvatore were stored. The [...] Read more.
Total and leached Arsenic, Mercury and Antimony were determined in the topsoils developed on the mining waste dumping area of Le Lame (Mt. Amiata, central Italy) where the post-processing Hg-rich ore deposits from the mining area of Abbadia San Salvatore were stored. The concentrations of As, Hg and Sb were up to 610, 1910 and 1610 mg kg−1, respectively, while those in the leachates (carried out with CO2-saturated MilliQ water to simulate the meteoric water conditions) were up to 102, 7 and 661 μg·L−1, respectively. Most aqueous solutions were characterized by Hg content <0.1 μg·L−1. This is likely suggesting that the mine wastes (locally named “rosticci”) were possibly resulting from an efficient roasting process that favored either the removal or inertization of Hg operated by the Gould furnaces and located in the southern sector of Le Lame. The highest values of total and leachate mercury were indeed mostly found in the northern portion where the “rosticci”, derived by the less efficient and older Spirek-Cermak furnaces, was accumulated. The saturation index was positive for the great majority of leachate samples in Fe-oxy-hydroxides, e.g., ferrihydrite, hematite, magnetite, goethite, and Al-hydroxides (boehmite and gibbsite). On the other hand, As- and Hg-compounds were shown to be systematically undersaturated, whereas oversaturation in tripuhyte (FeSbO4) and romeite (Ca2Sb2O7) was evidenced. The Eh-pH diagrams for the three chalcophile elements were also constructed and computed and updated according to the recent literature data. Full article
Show Figures

Figure 1

24 pages, 7625 KiB  
Article
Application of Eh-pH Diagrams on Acid Leaching Systems for the Recovery of REEs from Bastnaesite, Monazite and Xenotime
by Peijia Lin, Xinbo Yang, Joshua M. Werner and Rick Q. Honaker
Metals 2021, 11(5), 734; https://doi.org/10.3390/met11050734 - 29 Apr 2021
Cited by 18 | Viewed by 5338
Abstract
Bastnaesite, monazite and xenotime are rare earth minerals (REMs) that are typical sources for rare earth elements (REEs). To advance the understanding of their leaching and precipitation behavior in different hydrometallurgical processes, Eh-pH diagrams were constructed and modified using the HSC 9.9 software. [...] Read more.
Bastnaesite, monazite and xenotime are rare earth minerals (REMs) that are typical sources for rare earth elements (REEs). To advance the understanding of their leaching and precipitation behavior in different hydrometallurgical processes, Eh-pH diagrams were constructed and modified using the HSC 9.9 software. The aqueous stability of rare earth elements in H2O and acid leaching systems, i.e., the REE-Ligands-H2O systems, were depicted and studied based on the Eh-pH diagrams. This study considers the most relevant lixiviants, their resulting equilibrium states and the importance in the hydrometallurgical recovery of rare earth elements (REMs). A literature review was performed summarizing relevant Eh-pH diagrams and associated thermodynamic data. Shifting stability regions for REEs were discovered with additions of acid ligands and a narrow stability region for soluble REE-(SO4/Cl/NO3) complexes under highly acidic conditions. As such, the recovery of REEs can be enhanced by adjusting pH and Eh values. In addition, the Eh-pH diagrams of the major contaminants (i.e., Fe, Ca and Al) in leaching systems were studied. The resulting Eh-pH diagrams provide possible insights into potential passivation on the particle surfaces due to the formation of an insoluble product layer. Full article
(This article belongs to the Special Issue Recycling and Recovery of Rare Earth Metals)
Show Figures

Figure 1

19 pages, 3599 KiB  
Article
Assessing the Impact of Climate Change on Groundwater Quality of the Shallow Coastal Aquifer of Eastern Dahomey Basin, Southwestern Nigeria
by Jamiu A. Aladejana, Robert M. Kalin, Philippe Sentenac and Ibrahim Hassan
Water 2020, 12(1), 224; https://doi.org/10.3390/w12010224 - 14 Jan 2020
Cited by 71 | Viewed by 7884
Abstract
Despite the increasing interest in climate change and water security, research linking climate change and groundwater quality is still at an early stage. This study explores the seasonal effect of the change in biogeochemical process for the redox-sensitive ions and metals Fe2+ [...] Read more.
Despite the increasing interest in climate change and water security, research linking climate change and groundwater quality is still at an early stage. This study explores the seasonal effect of the change in biogeochemical process for the redox-sensitive ions and metals Fe2+, Mn2+, SO42−, and NO3 to assess the groundwater quality of the shallow coastal aquifer of Eastern Dahomey Basin in southwestern Nigeria. Field physicochemical measurement of EC, pH TDS, Eh, salinity, temperature, and the static water level (SWL) was carried out on 250 shallow wells; 230 water samples were collected for analysis between June 2017 and April 2018. A spatial distribution map of these ions and metals showed an increasing concentration in the dry season water samples compared to those of the wet season. This higher concentration could be attributed to change in the intensity of hydrochemical processes such as evaporation, redox, and mineral precipitation. Results of linear regression modelling established significant relationships between SWL, SO42−, NO3, Fe, and Eh for both wet and dry seasons with the p-value falling between 75% and 95%, which can also be seen in the plots of Eh/ORP against Fe2+, Mn2+, SO42−, and NO3. These results revealed the influence of the redox process for both seasons, while also having a higher impact in the dry season while variation of concentration revealed decrease with increase in depth, which could be attributed to a decrease in well hydraulic properties and aeration. An Eh-pH geochemical diagram revealed NO3 as the controlling biogeochemical process over Fe in most of the sample wells. Concentrations of NO3, Fe, and Mn are above the World Health Organization’s (WHO) standard for drinking water in most water samples. This study has established the link between climate change and groundwater quality in shallow coastal aquifers and suggested the need for strategic groundwater management policy and planning to ameliorate groundwater quality deterioration. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop