Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = Ebola glycoprotein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1573 KiB  
Article
Polyvalent Mannuronic Acid-Coated Gold Nanoparticles for Probing Multivalent Lectin–Glycan Interaction and Blocking Virus Infection
by Rahman Basaran, Darshita Budhadev, Eleni Dimitriou, Hannah S. Wootton, Gavin J. Miller, Amy Kempf, Inga Nehlmeier, Stefan Pöhlmann, Yuan Guo and Dejian Zhou
Viruses 2025, 17(8), 1066; https://doi.org/10.3390/v17081066 - 30 Jul 2025
Viewed by 286
Abstract
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. [...] Read more.
Multivalent lectin–glycan interactions (MLGIs) are vital for viral infection, cell-cell communication and regulation of immune responses. Their structural and biophysical data are thus important, not only for providing insights into their underlying mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information remains to be limited for some important MLGIs, significantly restricting the research progress. We have recently demonstrated that functional nanoparticles, including ∼4 nm quantum dots and varying sized gold nanoparticles (GNPs), densely glycosylated with various natural mono- and oligo- saccharides, are powerful biophysical probes for MLGIs. Using two important viral receptors, DC-SIGN and DC-SIGNR (together denoted as DC-SIGN/R hereafter), as model multimeric lectins, we have shown that α-mannose and α-manno-α-1,2-biose (abbreviated as Man and DiMan, respectively) coated GNPs not only can provide sensitive measurement of MLGI affinities but also reveal critical structural information (e.g., binding site orientation and mode) which are important for MLGI targeting. In this study, we produced mannuronic acid (ManA) coated GNPs (GNP-ManA) of two different sizes to probe the effect of glycan modification on their MLGI affinity and antiviral property. Using our recently developed GNP fluorescence quenching assay, we find that GNP-ManA binds effectively to both DC-SIGN/R and increasing the size of GNP significantly enhances their MLGI affinity. Consistent with this, increasing the GNP size also significantly enhances their ability to block DC-SIGN/R-augmented virus entry into host cells. Particularly, ManA coated 13 nm GNP potently block Ebola virus glycoprotein-driven entry into DC-SIGN/R-expressing cells with sub-nM levels of EC50. Our findings suggest that GNP-ManA probes can act as a useful tool to quantify the characteristics of MLGIs, where increasing the GNP scaffold size substantially enhances their MLGI affinity and antiviral potency. Full article
(This article belongs to the Special Issue Role of Lectins in Viral Infections and Antiviral Intervention)
Show Figures

Figure 1

14 pages, 1756 KiB  
Article
Development of a Pentacistronic Ebola Virus Minigenome System
by Brady N. Zell, Vaille A. Swenson, Shao-Chia Lu, Lin Wang, Michael A. Barry, Hideki Ebihara and Satoko Yamaoka
Viruses 2025, 17(5), 688; https://doi.org/10.3390/v17050688 - 9 May 2025
Viewed by 970
Abstract
Ebola virus (EBOV) causes severe disease outbreaks in humans with high case fatality rates. EBOV requires adaptation to cause lethal disease in mice by acquiring single mutations in both the nucleoprotein (NP) and VP24 genes. As an attempt to model mouse-adapted EBOV (MA-EBOV), [...] Read more.
Ebola virus (EBOV) causes severe disease outbreaks in humans with high case fatality rates. EBOV requires adaptation to cause lethal disease in mice by acquiring single mutations in both the nucleoprotein (NP) and VP24 genes. As an attempt to model mouse-adapted EBOV (MA-EBOV), we engineered novel pentacistronic minigenomes (5xMG) containing a reporter gene, VP40, and glycoprotein genes as well as the NP and VP24 genes from either EBOV or MA-EBOV. The 5xMGs were constructed and optimized, and the produced transcription- and replication-competent virus-like particles (trVLPs) were demonstrated to infect several cell lines. Introduction of the mouse-adaptation mutations did not significantly impact the replication and transcription of the 5xMG or the relative infectivity of the trVLPs in vitro. This work demonstrates the development of the 5xMG system as a new versatile tool to study EBOV biology. Full article
Show Figures

Figure 1

21 pages, 2443 KiB  
Article
rVSVΔG-ZEBOV-GP Vaccine Is Highly Immunogenic and Efficacious Across a Wide Dose Range in a Nonhuman Primate EBOV Challenge Model
by Amy C. Shurtleff, John C. Trefry, Sheri Dubey, Melek M. E. Sunay, Kenneth Liu, Ziqiang Chen, Michael Eichberg, Peter M. Silvera, Steve A. Kwilas, Jay W. Hooper, Shannon Martin, Jakub K. Simon, Beth-Ann G. Coller and Thomas P. Monath
Viruses 2025, 17(3), 341; https://doi.org/10.3390/v17030341 - 28 Feb 2025
Cited by 1 | Viewed by 882
Abstract
The recombinant vesicular stomatitis virus-Zaire Ebolavirus envelope glycoprotein vaccine (rVSVΔG-ZEBOV-GP) was highly effective against Ebola virus disease in a ring vaccination trial conducted during the 2014–2016 outbreak in Guinea and is licensed by regulatory agencies including US FDA, EMA, and prequalified by WHO. [...] Read more.
The recombinant vesicular stomatitis virus-Zaire Ebolavirus envelope glycoprotein vaccine (rVSVΔG-ZEBOV-GP) was highly effective against Ebola virus disease in a ring vaccination trial conducted during the 2014–2016 outbreak in Guinea and is licensed by regulatory agencies including US FDA, EMA, and prequalified by WHO. Vaccination studies in a nonhuman primate (NHP) model guided initial dose selection for clinical trial evaluation. We summarize two dose-ranging studies with the clinical-grade rVSVΔG-ZEBOV-GP vaccine candidate to assess the impact of dose level on immune responses and efficacy in an NHP Ebola virus (EBOV) challenge model. Forty-six cynomolgus macaques were vaccinated with a wide range of rVSVΔG-ZEBOV-GP doses and challenged 42 days later intramuscularly with 1000 pfu EBOV. Vaccination with rVSVΔG-ZEBOV-GP induced relatively high levels of EBOV-specific IgG and neutralizing antibodies, measured using the same validated assays as used in rVSVΔG-ZEBOV-GP clinical trials. Similar responses were observed across dose groups from 1 × 108 to 1 × 102 pfu. A single vaccination conferred 98% protection from lethal intramuscular EBOV challenge across all dose groups. These results demonstrate that robust antibody titers are induced in NHPs across a wide range of rVSVΔG-ZEBOV-GP vaccine doses, correlating with high levels of protection against death from EBOV challenge. Full article
(This article belongs to the Special Issue Vaccines and Treatments for Viral Hemorrhagic Fevers)
Show Figures

Figure 1

14 pages, 2970 KiB  
Article
Development of Long-Term Stability of Enveloped rVSV Viral Vector Expressing SARS-CoV-2 Antigen Using a DOE-Guided Approach
by MD Faizul Hussain Khan, Caroline E. Wagner and Amine A. Kamen
Vaccines 2024, 12(11), 1240; https://doi.org/10.3390/vaccines12111240 - 30 Oct 2024
Viewed by 2197
Abstract
Liquid formulations have been successfully used in many viral vector vaccines including influenza (Flu), hepatitis B, polio (IPV), Ebola, and COVID-19 vaccines. The main advantage of liquid formulations over lyophilized formulations is that they are cost-effective, as well as easier to manufacture and [...] Read more.
Liquid formulations have been successfully used in many viral vector vaccines including influenza (Flu), hepatitis B, polio (IPV), Ebola, and COVID-19 vaccines. The main advantage of liquid formulations over lyophilized formulations is that they are cost-effective, as well as easier to manufacture and distribute. However, studies have shown that the liquid formulations of enveloped viral vector vaccines are not stable over extended periods of time. In this study, we explored the development of the liquid formulations of an enveloped recombinant Vesicular Stomatitis Virus (VSV) expressing the SARS-CoV-2 spike glycoprotein. To do so, we used a design of experiments (DOE) method, which allowed us to assess the stability dynamics of the viral vector in an effective manner. An initial stability study showed that trehalose, gelatin, and histidine were effective at maintaining functional viral titers during freeze–thaw stress and at different temperatures (−20, 4, 20, and 37 °C). These preliminary data helped to identify critical factors for the subsequent implementation of the DOE method that incorporated a stress condition at 37 °C. We used the DOE results to identify the optimal liquid formulations under the selected accelerated stress conditions, which then guided the identification of long-term storage conditions for further evaluation. In the long-term stability study, we identified several liquid formulations made of sugar (sucrose, trehalose, and sorbitol), gelatin, and a histidine buffer that resulted in the improved stability of rVSV-SARS-CoV-2 at 4 °C for six months. This study highlights an effective approach for the development of liquid formulations for viral vector vaccines, contributing significantly to the existing knowledge on enveloped viral vector thermostability. Full article
(This article belongs to the Special Issue Novel Vaccines and Vaccine Technologies for Emerging Infections)
Show Figures

Figure 1

12 pages, 1129 KiB  
Article
Immunogenicity of an Extended Dose Interval for the Ad26.ZEBOV, MVA-BN-Filo Ebola Vaccine Regimen in Adults and Children in the Democratic Republic of the Congo
by Edward Man-Lik Choi, Kambale Kasonia, Hugo Kavunga-Membo, Daniel Mukadi-Bamuleka, Aboubacar Soumah, Zephyrin Mossoko, Tansy Edwards, Darius Tetsa-Tata, Rockyath Makarimi, Oumar Toure, Grace Mambula, Hannah Brindle, Anton Camacho, Nicholas E. Connor, Pierre Mukadi, Chelsea McLean, Babajide Keshinro, Auguste Gaddah, Cynthia Robinson, Kerstin Luhn, Julie Foster, Chrissy h. Roberts, John Emery Johnson, Nathalie Imbault, Daniel G. Bausch, Rebecca F. Grais, Deborah Watson-Jones and Jean Jacques Muyembe-Tamfumadd Show full author list remove Hide full author list
Vaccines 2024, 12(8), 828; https://doi.org/10.3390/vaccines12080828 - 23 Jul 2024
Viewed by 2028
Abstract
During the 2018–2020 Ebola virus disease outbreak in Democratic Republic of the Congo, a phase 3 trial of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine (DRC-EB-001) commenced in Goma, with participants being offered the two-dose regimen given 56 days apart. Suspension of trial activities in [...] Read more.
During the 2018–2020 Ebola virus disease outbreak in Democratic Republic of the Congo, a phase 3 trial of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine (DRC-EB-001) commenced in Goma, with participants being offered the two-dose regimen given 56 days apart. Suspension of trial activities in 2020 due to the COVID-19 pandemic led to some participants receiving a late dose 2 outside the planned interval. Blood samples were collected from adults, adolescents, and children prior to their delayed dose 2 vaccination and 21 days after, and tested for IgG binding antibodies against Ebola virus glycoprotein using the Filovirus Animal Nonclinical Group (FANG) ELISA. Results from 133 participants showed a median two-dose interval of 9.3 months. The pre-dose 2 antibody geometric mean concentration (GMC) was 217 ELISA Units (EU)/mL (95% CI 157; 301) in adults, 378 EU/mL (281; 510) in adolescents, and 558 EU/mL (471; 661) in children. At 21 days post-dose 2, the GMC increased to 22,194 EU/mL (16,726; 29,449) in adults, 37,896 EU/mL (29,985; 47,893) in adolescents, and 34,652 EU/mL (27,906; 43,028) in children. Participants receiving a delayed dose 2 had a higher GMC at 21 days post-dose 2 than those who received a standard 56-day regimen in other African trials, but similar to those who received the regimen with an extended interval. Full article
Show Figures

Figure 1

11 pages, 2191 KiB  
Article
A Luciferase Immunosorbent Assay Based on Attachment Glycoprotein for the Rapid and Easy Detection of Nipah Virus IgG Antibodies
by Xinyue Li, Yuting Fang, Xinyi Huang, Yongkun Zhao and Chengsong Wan
Microorganisms 2024, 12(5), 983; https://doi.org/10.3390/microorganisms12050983 - 14 May 2024
Cited by 2 | Viewed by 1824
Abstract
Nipah virus (NiV) is a virulent zoonotic disease whose natural host is the fruit bat (Pteropus medius), which can coexist with and transmit the virus. Due to its high pathogenicity, wide host range, and pandemic potential, establishing a sensitive, specific, and [...] Read more.
Nipah virus (NiV) is a virulent zoonotic disease whose natural host is the fruit bat (Pteropus medius), which can coexist with and transmit the virus. Due to its high pathogenicity, wide host range, and pandemic potential, establishing a sensitive, specific, and rapid diagnostic method for NiV is key to preventing and controlling its spread and any outbreaks. Here, we established a luciferase immunosorbent assay (LISA) based on the NiV attachment glycoprotein (G) to detect NiV-specific immunoglobulin G by expressing a fusion protein of nanoluciferase (NanoLuc) and the target antigen. Sensitivity analysis was performed and compared to an indirect enzyme-linked immunosorbent assay (ELISA), and specificity and cross-reactivity assessments were performed using NiV-positive horse serum and Ebola virus-, Crimean–Congo hemorrhagic fever virus-, and West Nile virus-positive horse sera. The optimal structural domain for NiV detection was located within amino acids 176–602 of the NiV G protein head domain. Moreover, the LISA showed at least fourfold more sensitivity than the indirect ELISA, and the cross-reactivity results suggested that the LISA had good specificity and was capable of detecting NiV-specific immunoglobulin G in both mouse and horse serum. In conclusion, the establishment of a rapid, simple NiV LISA using the G protein head domain provides a resource for NiV monitoring. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 4038 KiB  
Article
Safety and Immunogenicity of an Accelerated Ebola Vaccination Schedule in People with and without Human Immunodeficiency Virus: A Randomized Clinical Trial
by Julie A. Ake, Kristopher Paolino, Jack N. Hutter, Susan Biggs Cicatelli, Leigh Anne Eller, Michael A. Eller, Margaret C. Costanzo, Dominic Paquin-Proulx, Merlin L. Robb, Chi L. Tran, Lalaine Anova, Linda L. Jagodzinski, Lucy A. Ward, Nicole Kilgore, Janice Rusnak, Callie Bounds, Christopher S. Badorrek, Jay W. Hooper, Steven A. Kwilas, Ine Ilsbroux, Dickson Nkafu Anumendem, Auguste Gaddah, Georgi Shukarev, Viki Bockstal, Kerstin Luhn, Macaya Douoguih and Cynthia Robinsonadd Show full author list remove Hide full author list
Vaccines 2024, 12(5), 497; https://doi.org/10.3390/vaccines12050497 - 4 May 2024
Cited by 2 | Viewed by 2283
Abstract
The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose [...] Read more.
The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose 1) and Ad26.ZEBOV (dose 2), or two doses of saline/placebo, administered intramuscularly 14 days apart. The primary endpoints were safety (adverse events (AEs)) and immunogenicity (Ebola virus (EBOV) glycoprotein-specific binding antibody responses). Among 75 participants (n = 50 PWOH; n = 25 PLWH), 37% were female, the mean age was 44 years, and 56% were Black/African American. AEs were generally mild/moderate, with no vaccine-related serious AEs. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody responder rates were 100% among PWOH and 95% among PLWH; geometric mean antibody concentrations were 6286 EU/mL (n = 36) and 2005 EU/mL (n = 19), respectively. A total of 45 neutralizing and other functional antibody responses were frequently observed. Ebola-specific CD4+ and CD8+ T-cell responses were polyfunctional and durable to at least 12 months post-dose 2. The regimen was well tolerated and generated robust, durable immune responses in PWOH and PLWH. Findings support continued evaluation of accelerated vaccine schedules for rapid deployment in populations at immediate risk. Trial registration: NCT02598388 (submitted 14 November 2015). Full article
Show Figures

Figure 1

23 pages, 9396 KiB  
Article
Investigating the Antiviral Properties of Nyctanthes arbor-tristis Linn against the Ebola, SARS-CoV-2, Nipah, and Chikungunya Viruses: A Computational Simulation Study
by Raed Albiheyri, Varish Ahmad, Mohammad Imran Khan, Faisal A. Alzahrani and Qazi Mohammad Sajid Jamal
Pharmaceuticals 2024, 17(5), 581; https://doi.org/10.3390/ph17050581 - 30 Apr 2024
Cited by 3 | Viewed by 2453
Abstract
Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the [...] Read more.
Background: The hunt for naturally occurring antiviral compounds to combat viral infection was expedited when COVID-19 and Ebola spread rapidly. Phytochemicals from Nyctanthes arbor-tristis Linn were evaluated as significant inhibitors of these viruses. Methods: Computational tools and techniques were used to assess the binding pattern of phytochemicals from Nyctanthes arbor-tristis Linn to Ebola virus VP35, SARS-CoV-2 protease, Nipah virus glycoprotein, and chikungunya virus. Results: Virtual screening and AutoDock analysis revealed that arborside-C, beta amyrin, and beta-sitosterol exhibited a substantial binding affinity for specific viral targets. The arborside-C and beta-sitosterol molecules were shown to have binding energies of −8.65 and −9.11 kcal/mol, respectively, when interacting with the major protease. Simultaneously, the medication remdesivir exhibited a control value of −6.18 kcal/mol. The measured affinity of phytochemicals for the other investigated targets was −7.52 for beta-amyrin against Ebola and −6.33 kcal/mol for nicotiflorin against Nipah virus targets. Additional molecular dynamics simulation (MDS) conducted on the molecules with significant antiviral potential, specifically the beta-amyrin-VP35 complex showing a stable RMSD pattern, yielded encouraging outcomes. Conclusions: Arborside-C, beta-sitosterol, beta-amyrin, and nicotiflorin could be established as excellent natural antiviral compounds derived from Nyctanthes arbor-tristis Linn. The virus-suppressing phytochemicals in this plant make it a compelling target for both in vitro and in vivo research in the future. Full article
(This article belongs to the Special Issue Antiviral Agents, 2024)
Show Figures

Figure 1

17 pages, 3411 KiB  
Article
Impact of Recombinant VSV-HIV Prime, DNA-Boost Vaccine Candidates on Immunogenicity and Viremia on SHIV-Infected Rhesus Macaques
by Alice Berger, Jannie Pedersen, Monika M. Kowatsch, Florine Scholte, Marc-Alexandre Lafrance, Hiva Azizi, Yue Li, Alejandro Gomez, Matthew Wade, Hugues Fausther-Bovendo, Marc-Antoine de La Vega, Joseph Jelinski, George Babuadze, Marie-Edith Nepveu-Traversy, Claude Lamarre, Trina Racine, Chil-Yong Kang, Bruno Gaillet, Alain Garnier, Rénald Gilbert, Amine Kamen, Xiao-Jian Yao, Keith R. Fowke, Eric Arts and Gary Kobingeradd Show full author list remove Hide full author list
Vaccines 2024, 12(4), 369; https://doi.org/10.3390/vaccines12040369 - 29 Mar 2024
Cited by 1 | Viewed by 2437
Abstract
Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of [...] Read more.
Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges. Full article
(This article belongs to the Section HIV Vaccines)
Show Figures

Figure 1

12 pages, 969 KiB  
Article
Bivalent VSV Vectors Mediate Rapid and Potent Protection from Andes Virus Challenge in Hamsters
by Joshua Marceau, David Safronetz, Cynthia Martellaro, Andrea Marzi, Kyle Rosenke and Heinz Feldmann
Viruses 2024, 16(2), 279; https://doi.org/10.3390/v16020279 - 11 Feb 2024
Cited by 1 | Viewed by 2261
Abstract
Orthohantaviruses may cause hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Andes virus (ANDV) is the only orthohantavirus associated with human–human transmission. Therefore, emergency vaccination would be a valuable public health measure to combat ANDV-derived infection clusters. Here, we utilized a promising [...] Read more.
Orthohantaviruses may cause hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Andes virus (ANDV) is the only orthohantavirus associated with human–human transmission. Therefore, emergency vaccination would be a valuable public health measure to combat ANDV-derived infection clusters. Here, we utilized a promising vesicular stomatitis virus (VSV)-based vaccine to advance the approach for emergency applications. We compared monovalent and bivalent VSV vectors containing the Ebola virus (EBOV), glycoprotein (GP), and ANDV glycoprotein precursor (GPC) for protective efficacy in pre-, peri- and post-exposure immunization by the intraperitoneal and intranasal routes. Inclusion of the EBOV GP was based on its favorable immune cell targeting and the strong innate responses elicited by the VSV-EBOV vaccine. Our data indicates no difference of ANDV GPC expressing VSV vectors in pre-exposure immunization independent of route, but a potential benefit of the bivalent VSVs following peri- and post-exposure intraperitoneal vaccination. Full article
Show Figures

Figure 1

20 pages, 3561 KiB  
Article
In Silico Analyses, Experimental Verification and Application in DNA Vaccines of Ebolavirus GP-Derived pan-MHC-II-Restricted Epitopes
by Junqi Zhang, Baozeng Sun, Wenyang Shen, Zhenjie Wang, Yang Liu, Yubo Sun, Jiaxing Zhang, Ruibo Liu, Yongkai Wang, Tianyuan Bai, Zilu Ma, Cheng Luo, Xupeng Qiao, Xiyang Zhang, Shuya Yang, Yuanjie Sun, Dongbo Jiang and Kun Yang
Vaccines 2023, 11(10), 1620; https://doi.org/10.3390/vaccines11101620 - 20 Oct 2023
Cited by 7 | Viewed by 2790
Abstract
(1) Background and Purpose: Ebola virus (EBOV) is the causative agent of Ebola virus disease (EVD), which causes extremely high mortality and widespread epidemics. The only glycoprotein (GP) on the surface of EBOV particles is the key to mediating viral invasion into host [...] Read more.
(1) Background and Purpose: Ebola virus (EBOV) is the causative agent of Ebola virus disease (EVD), which causes extremely high mortality and widespread epidemics. The only glycoprotein (GP) on the surface of EBOV particles is the key to mediating viral invasion into host cells. DNA vaccines for EBOV are in development, but their effectiveness is unclear. The lack of immune characteristics resides in antigenic MHC class II reactivity. (2) Methods: We selected MHC-II molecules from four human leukocyte antigen II (HLA-II) superfamilies with 98% population coverage and eight mouse H2-I alleles. IEDB, NetMHCIIpan, SYFPEITHI, and Rankpep were used to screen MHC-II-restricted epitopes with high affinity for EBOV GP. Further immunogenicity and conservation analyses were performed using VaxiJen and BLASTp, respectively. EpiDock was used to simulate molecular docking. Cluster analysis and binding affinity analysis of EBOV GP epitopes and selected MHC-II molecules were performed using data from NetMHCIIpan. The selective GP epitopes were verified by the enzyme-linked immunospot (ELISpot) assay using splenocytes of BALB/c (H2d), C3H, and C57 mice after DNA vaccine pVAX-GPEBO immunization. Subsequently, BALB/c mice were immunized with Protein-GPEBO, plasmid pVAX-GPEBO, and pVAX-LAMP/GPEBO, which encoded EBOV GP. The dominant epitopes of BALB/c (H-2-I-AdEd genotype) mice were verified by the enzyme-linked immunospot (ELISpot) assay. It is also used to evaluate and explore the advantages of pVAX-LAMP/GPEBO and the reasons behind them. (3) Results: Thirty-one HLA-II-restricted and 68 H2-I-restricted selective epitopes were confirmed to have high affinity, immunogenicity, and conservation. Nineteen selective epitopes have cross-species reactivity with good performance in MHC-II molecular docking. The ELISpot results showed that pVAX-GPEBO could induce a cellular immune response to the synthesized selective peptides. The better immunoprotection of the DNA vaccines pVAX-LAMP/GPEBO coincides with the enhancement of the MHC class II response. (4) Conclusions: Promising MHC-II-restricted candidate epitopes of EBOV GP were identified in humans and mice, which is of great significance for the development and evaluation of Ebola vaccines. Full article
(This article belongs to the Special Issue Immune Correlates of Protection in Vaccines)
Show Figures

Graphical abstract

14 pages, 979 KiB  
Article
The Effect of Previous Exposure to Malaria Infection and Clinical Malaria Episodes on the Immune Response to the Two-Dose Ad26.ZEBOV, MVA-BN-Filo Ebola Vaccine Regimen
by Daniela Manno, Catriona Patterson, Abdoulie Drammeh, Kevin Tetteh, Mattu Tehtor Kroma, Godfrey Tuda Otieno, Bolarinde Joseph Lawal, Seyi Soremekun, Philip Ayieko, Auguste Gaddah, Abu Bakarr Kamara, Frank Baiden, Muhammed Olanrewaju Afolabi, Daniel Tindanbil, Kwabena Owusu-Kyei, David Ishola, Gibrilla Fadlu Deen, Babajide Keshinro, Yusupha Njie, Mohamed Samai, Brett Lowe, Cynthia Robinson, Bailah Leigh, Chris Drakeley, Brian Greenwood and Deborah Watson-Jonesadd Show full author list remove Hide full author list
Vaccines 2023, 11(8), 1317; https://doi.org/10.3390/vaccines11081317 - 2 Aug 2023
Viewed by 2262
Abstract
We assessed whether the immunogenicity of the two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen with a 56-day interval between doses was affected by exposure to malaria before dose 1 vaccination and by clinical episodes of malaria in the period immediately after dose 1 and [...] Read more.
We assessed whether the immunogenicity of the two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen with a 56-day interval between doses was affected by exposure to malaria before dose 1 vaccination and by clinical episodes of malaria in the period immediately after dose 1 and after dose 2 vaccinations. Previous malaria exposure in participants in an Ebola vaccine trial in Sierra Leone (ClinicalTrials.gov: NCT02509494) was classified as low, intermediate, and high according to their antibody responses to a panel of Plasmodium falciparum antigens detected using a Luminex MAGPIX platform. Clinical malaria episodes after vaccinations were recorded as part of the trial safety monitoring. Binding antibody responses against the Ebola virus (EBOV) glycoprotein (GP) were measured 57 days post dose 1 and 21 days post dose 2 by ELISA and summarized as Geometric Mean Concentrations (GMCs). Geometric Mean Ratios (GMRs) were used to compare groups with different levels of exposure to malaria. Overall, 587 participants, comprising 188 (32%) adults (aged ≥ 18 years) and 399 (68%) children (aged 1–3, 4–11, and 12–17 years), were included in the analysis. There was no evidence that the anti-EBOV-GP antibody GMCs post dose 1 and post dose 2 differed between categories of previous malaria exposure. There was weak evidence that the GMC at 57 days post dose 1 was lower in participants who had had at least one episode of clinical malaria post dose 1 compared to participants with no diagnosed clinical malaria in the same period (GMR = 0.82, 95% CI: 0.69–0.98, p-value = 0.02). However, GMC post dose 2 was not reduced in participants who experienced clinical malaria post-dose 1 and/or post-dose 2 vaccinations. In conclusion, the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen is immunogenic in individuals with previous exposure to malaria and in those who experience clinical malaria after vaccination. This vaccine regimen is suitable for prophylaxis against Ebola virus disease in malaria-endemic regions. Full article
Show Figures

Figure 1

15 pages, 1875 KiB  
Article
CD40 Signaling in Mice Elicits a Broad Antiviral Response Early during Acute Infection with RNA Viruses
by Kai J. Rogers, Paige T. Richards, Zeb R. Zacharias, Laura L. Stunz, Rahul Vijay, Noah S. Butler, Kevin L. Legge, Gail A. Bishop and Wendy Maury
Viruses 2023, 15(6), 1353; https://doi.org/10.3390/v15061353 - 12 Jun 2023
Cited by 2 | Viewed by 2578
Abstract
Macrophages are critical in the pathogenesis of a diverse group of viral pathogens, both as targets of infection and for eliciting primary defense mechanisms. Our prior in vitro work identified that CD40 signaling in murine peritoneal macrophages protects against several RNA viruses by [...] Read more.
Macrophages are critical in the pathogenesis of a diverse group of viral pathogens, both as targets of infection and for eliciting primary defense mechanisms. Our prior in vitro work identified that CD40 signaling in murine peritoneal macrophages protects against several RNA viruses by eliciting IL-12, which stimulates the production of interferon gamma (IFN-γ). Here, we examine the role of CD40 signaling in vivo. We show that CD40 signaling is a critical, but currently poorly appreciated, component of the innate immune response using two distinct infectious agents: mouse-adapted influenza A virus (IAV, PR8) and recombinant VSV encoding the Ebola virus glycoprotein (rVSV-EBOV GP). We find that stimulation of CD40 signaling decreases early IAV titers, whereas loss of CD40 elevated early titers and compromised lung function by day 3 of infection. Protection conferred by CD40 signaling against IAV is dependent on IFN-γ production, consistent with our in vitro studies. Using rVSV-EBOV GP that serves as a low-biocontainment model of filovirus infection, we demonstrate that macrophages are a CD40-expressing population critical for protection within the peritoneum and T-cells are the key source of CD40L (CD154). These experiments reveal the in vivo mechanisms by which CD40 signaling in macrophages regulates the early host responses to RNA virus infection and highlight how CD40 agonists currently under investigation for clinical use may function as a novel class of broad antiviral treatments. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

21 pages, 4565 KiB  
Article
Optimal Expression, Function, and Immunogenicity of an HIV-1 Vaccine Derived from the Approved Ebola Vaccine, rVSV-ZEBOV
by Hiva Azizi, Jason P. Knapp, Yue Li, Alice Berger, Marc-Alexandre Lafrance, Jannie Pedersen, Marc-Antoine de la Vega, Trina Racine, Chil-Yong Kang, Jamie F. S. Mann, Jimmy D. Dikeakos, Gary Kobinger and Eric J. Arts
Vaccines 2023, 11(5), 977; https://doi.org/10.3390/vaccines11050977 - 12 May 2023
Cited by 3 | Viewed by 2999
Abstract
Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain [...] Read more.
Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain (TM) and cytoplasmic tail (CT) of SIVMac239 results in high expression on the approved Ebola vaccine, rVSV-ZEBOV, also harboring the Ebola Virus (EBOV) glycoprotein (GP). Codon-optimized (CO) Env chimeras derived from a subtype A primary isolate (A74) are capable of entering a CD4+/CCR5+ cell line, inhibited by HIV-1 neutralizing antibodies PGT121, VRC01, and the drug, Maraviroc. The immunization of mice with the rVSV-ZEBOV carrying the CO A74 Env chimeras results in anti-Env antibody levels as well as neutralizing antibodies 200-fold higher than with the NL4-3 Env-based construct. The novel, functional, and immunogenic chimeras of CO A74 Env with the SIV_Env-TMCT within the rVSV-ZEBOV vaccine are now being tested in non-human primates. Full article
(This article belongs to the Section HIV Vaccines)
Show Figures

Figure 1

23 pages, 19931 KiB  
Article
Structurally Different Yet Functionally Similar: Aptamers Specific for the Ebola Virus Soluble Glycoprotein and GP1,2 and Their Application in Electrochemical Sensing
by Soma Banerjee, Mahsa Askary Hemmat, Shambhavi Shubham, Agnivo Gosai, Sivaranjani Devarakonda, Nianyu Jiang, Charith Geekiyanage, Jacob A. Dillard, Wendy Maury, Pranav Shrotriya, Monica H. Lamm and Marit Nilsen-Hamilton
Int. J. Mol. Sci. 2023, 24(5), 4627; https://doi.org/10.3390/ijms24054627 - 27 Feb 2023
Cited by 4 | Viewed by 3857
Abstract
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ [...] Read more.
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2′FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

Back to TopTop